首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caveolin 1, a component of caveolae, regulates signalling pathways compartmentalization interacting with tyrosine kinase receptors and their substrates. The role of caveolin 1 in the Insulin Receptor (IR) signalling has been well investigated. On the contrary, the functional link between caveolin 1 and IGF-I Receptor (IGF-IR) remains largely unknown. Here we show that (1) IGF-IR colocalizes with caveolin 1 in the lipid rafts enriched fractions on plasmamembrane in R-IGF-IR(WT) cells, (2) IGF-I induces caveolin 1 phosphorylation at the level of tyrosine 14, (3) this effect is rapid and results in the translocation of caveolin 1 and in the formation of membrane patches on cell surface. These actions are IGF-I specific since we did not detect caveolin 1 redistribution in insulin stimulated R(-) cells overexpressing IRs.  相似文献   

2.
The presence of cell surface caveolin/caveolae has been postulated to influence the localization, expression levels, and kinase activity of numerous receptors, including the insulin receptor. However, there are conflicting data concerning the effects of caveolin on insulin receptor expression and function. To help clarify this issue, we created a gain of function situation by expressing caveolin-1 at various levels in HEK-293 cells where the endogenous level of caveolin-1 is very low. We generated four permanent lines of this cell expressing amounts of caveolin-1 ranging from 10 to 40 times that of parental cells. The amount of caveolin-1 in the human embryonic kidney cells expressing the highest caveolin levels is comparable with that of adipocytes, cells that naturally express one of the highest levels of caveolin-1. We measured insulin receptor amount and insulin-dependent receptor autophosphorylation as well as insulin receptor substrate 1 (IRS1) tyrosine phosphorylation as an index of insulin signaling. We found that the insulin receptor level was essentially the same in the parental and all four derived cell lines. Likewise, we determined that insulin-dependent insulin receptor and IRS1 tyrosine phosphorylation was not significantly different in the four cell lines representing parental, low, medium, and high levels of caveolin-1 expression. We conclude that insulin receptor expression and ligand-dependent signaling is independent of caveolin-1 expression.  相似文献   

3.
Caveolae are plasmamembrane regions which take part in the regulation of intracellular trafficking and signaling of tyrosine kinase receptors. Insulin and IGF-I receptors and their intracellular substrates localize in caveolae. Also eNOS is targeted to caveolae and caveolin-1, the major caveolar protein, acts as a regulator of eNOS activity. Since Insulin and IGF-I phosphorylate and activate eNOS, we investigated the role of caveolin-1 in Insulin and IGF-I stimulated eNOS activity. Here we show that: (1) in human endothelial cells, Insulin and IGF-I stimulate eNOS phosphorylation in a different manner both qualitatively and quantitatively; (2) caveolin-1 down regulation abolishes Insulin and IGF-I stimulated eNOS phosphorylation. These results suggest that caveolae could represent an intracellular site that contributes to differentiate IR and IGF-IR activity, and demonstrate the role of caveolin-1 in the eNOS activation by Insulin and IGF-I.  相似文献   

4.
Thioredoxin reductase 1 (TrxR1) is an important antioxidant enzyme that controls cellular redox homeostasis. By using a proteomic‐based approach, here we identify TrxR1 as a caveolar membrane‐resident protein. We show that caveolin 1, the structural protein component of caveolae, is a TrxR1‐binding protein by demonstrating that the scaffolding domain of caveolin 1 (amino acids 82–101) binds directly to the caveolin‐binding motif (CBM) of TrxR1 (amino acids 454–463). We also show that overexpression of caveolin 1 inhibits TrxR activity, whereas a lack of caveolin 1 activates TrxR, both in vitro and in vivo. Expression of a peptide corresponding to the caveolin 1 scaffolding domain is sufficient to inhibit TrxR activity. A TrxR1 mutant lacking the CBM, which fails to localize to caveolae and bind to caveolin 1, is constitutively active and inhibits oxidative‐stress‐mediated activation of the p53/p21Waf1/Cip1 pathway and induction of premature senescence. Finally, we show that caveolin 1 expression inhibits TrxR1‐mediated cell transformation. Thus, caveolin 1 links free radicals to activation of the p53/p21Waf1/Cip1 pathway and induction of cellular senescence by acting as an endogenous inhibitor of TrxR1.  相似文献   

5.
Jang IH  Kim JH  Lee BD  Bae SS  Park MH  Suh PG  Ryu SH 《FEBS letters》2001,491(1-2):4-8
Upon epidermal growth factor treatment, phospholipase C-gamma1 (PLC-gamma1) translocates from cytosol to membrane where it is phosphorylated at tyrosine residues. Caveolae are small plasma membrane invaginations whose structural protein is caveolin. In this study, we show that the translocation of PLC-gamma1 and its tyrosine phosphorylation are localized in caveolae by caveolin-enriched low-density membrane (CM) preparation and immunostaining of cells. Pretreatment of cells with methyl-beta-cyclodextrin (MbetaCD), a chemical disrupting caveolae structure, inhibits the translocation of PLC-gamma1 to CM as well as phosphatidylinositol (PtdIns) turnover. However, MbetaCD shows no effect on tyrosine phosphorylation level of PLC-gamma1. Our findings suggest that, for proper signaling, PLC-gamma1 phosphorylation has to occur at PtdInsP(2)-enriched sites.  相似文献   

6.
Our previous studies revealed that insulin stimulates the tyrosine phosphorylation of caveolin in 3T3L1 adipocytes. To explore the mechanisms involved in this event, we evaluated the association of the insulin receptor with caveolin. The receptor was detected in a Triton-insoluble low density fraction, co-sedimenting with caveolin and flotillin on sucrose density gradients. We also detected the receptor in caveolin-enriched rosette structures by immunohistochemical analysis of plasma membrane sheets from 3T3L1 adipocytes. Insulin stimulated the phosphorylation of caveolin-1 on Tyr(14). This effect of the hormone was not blocked by overexpression of mutant forms of the Cbl-associated protein that block the translocation of phospho-Cbl to the caveolin-enriched, lipid raft microdomains. Moreover, this phosphorylation event was also unaffected by inhibitors of the MAPK and phosphatidylinositol 3-kinase pathways. Although previous studies demonstrated that the Src family kinase Fyn was highly enriched in caveolae, an inhibitor of this kinase had no effect on insulin-stimulated caveolin phosphorylation. Interestingly, overexpression of a mutant form of caveolin that failed to interact with the insulin receptor did not undergo phosphorylation. Taken together, these data indicate that the insulin receptor directly catalyzes the tyrosine phosphorylation of caveolin.  相似文献   

7.
小窝(caveolae)是一类特殊的膜脂筏,富含鞘磷脂和胆固醇。小窝蛋白-1(caveolin-1)是小窝的标志蛋白质,分子量约22 kD。后者不但直接参与小窝结构的形成、膜泡运输、胆固醇稳态维持,还通过其脚手架结构域(caveolin scaffolding domain,CSD)与众多信号分子相互作用调控细胞的生长、发育和分化,最终影响机体的生理和病理过程。近年发现,小窝蛋白-1和胞膜窖不但存在于内皮细胞、脂肪细胞、血管平滑肌细胞和纤维细胞中,还广泛表达于免疫细胞中,参与调节免疫细胞活化引起的炎症应答反应。本文结合最新的研究进展和前期结果,简要综述小窝蛋白-1在巨噬细胞、T细胞、B细胞以及中性粒细胞等免疫细胞内的调节作用,以及在细菌感染如绿脓杆菌、沙门氏菌和克雷伯杆菌的炎症中的信号转导研究进展。  相似文献   

8.
胞膜小窝(caveolae)是细胞质膜内陷所形成的囊状结构.小窝蛋白(caveolin)是胞膜小窝区别于其它脂筏结构的特征性蛋白分子,维持胞膜小窝的结构和功能,包括3个家族成员小窝蛋白-1、小窝蛋白-2和小窝蛋白-3.其中,小窝蛋白-1是参与胆固醇平衡、分子运输和跨膜信号发放事件的主要结构成分,从而调节细胞的生长、发育和增殖.小窝蛋白-1在细胞衰老中起着重要调控作用,主要通过p53-p21及p16-Rb信号通路抑制细胞增殖、酪氨酸激酶的级联反应,调控粘连信号级联、胰岛素信号及雌激素信号系统等途径调控衰老进程.衰老过程中不同器官小窝蛋白-1变化趋势不尽一致.近年研究还发现,小窝蛋白-1与神经系统退行性疾病、糖尿病、动脉粥样硬化等衰老相关疾病密切相关,通过调节多条信号通路参与这些疾病的发生发展.本文结合最新研究进展,对小窝蛋白-1在细胞衰老进程的作用及参与衰老相关疾病进行综述.  相似文献   

9.
Caveolin‐1 is a scaffolding protein of cholesterol‐rich caveolae lipid rafts in the plasma membrane. In addition to regulating cholesterol transport, caveolin‐1 has the ability to bind a diverse array of cell signaling molecules and regulate cell signal transduction in caveolae. Currently, there is little known about the role of caveolin‐1 in stem cells. It has been reported that the caveolin‐1 null mouse has an expanded population of cells expressing stem cell markers in the gut, mammary gland, and brain, suggestive of a role for caveolin‐1 in stem cell regulation. The caveolin‐1 null mouse also has increased bone mass and an increased bone formation rate, and its bone marrow‐derived mesenchymal stem cells (MSCs) have enhanced osteogenic potential. However, the role of caveolin‐1 in human MSC osteogenic differentiation remains unexplored. In this study, we have characterized the expression of caveolin‐1 in human bone marrow derived MSCs. We show that caveolin‐1 protein is enriched in density gradient‐fractionated MSC plasma membrane, consisting of ~100 nm diameter membrane‐bound vesicles, and is distributed in a punctate pattern by immunofluoresence localization. Expression of caveolin‐1 increases in MSCs induced to undergo osteogenic differentiation, and siRNA‐mediated knockdown of caveolin‐1 expression enhances MSC proliferation and osteogenic differentiation. Taken together, these findings suggest that caveolin‐1 normally acts to regulate the differentiation and renewal of MSCs, and increased caveolin‐1 expression during MSC osteogenesis likely acts as a negative feedback to stabilize the cell phenotype. J. Cell. Biochem. 113: 3773–3787, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Continuous stimulation of cells with insulin-like growth factors (IGFs) in G(1) phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G(1) to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G(1) phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr(1316)-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR(-/-) fibroblasts expressing exogenous mutant IGF-IR in which Tyr(1316) was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation.  相似文献   

11.
Elderly individuals have an increased susceptibility to microbial infections because of age‐related anatomical, physiological, and environmental factors. However, the mechanism of aging‐dependent susceptibility to infection is not fully understood. Here, we found that caveolae‐dependent endocytosis is elevated in senescent cells. Thus, we focused on the implications of caveolae‐dependent endocytosis using Salmonella typhimurium, which causes a variety of diseases in humans and animals by invading the eukaryotic host cell. Salmonella invasion increased in nonphagocytotic senescent host cells in which caveolin‐1 was also increased. When caveolae structures were disrupted by methyl‐β‐cyclodextrin or siRNA of caveolin‐1 in the senescent cells, Salmonellae invasion was reduced markedly compared to that in nonsenescent cells. In contrast, the over‐expression of caveolin‐1 led to increased Salmonellae invasion in nonsenescent cells. Moreover, in aged mice, caveolin‐1 was found to be highly expressed in Peyer’s patch and spleen, which are targets for infection by Salmonellae. These results suggest that high levels of caveolae and caveolin‐1 in senescent host cells might be related to the increased susceptibility of elderly individuals to microbial infections.  相似文献   

12.
Intracellular retention of caveolin 1 in presenilin-deficient cells   总被引:2,自引:0,他引:2  
Mutations in genes encoding presenilins (PS1 and PS2) are responsible for the majority of early onset familial Alzheimer's disease. PS, a critical component of gamma-secretase, is responsible for the intramembranous cleavage of amyloid precursor protein and Notch. Other physiological functions have been assigned to PS without any clear identification of the mechanisms underlying these multiple biological roles. The early embryonic lethality of PS1 and PS2 double knock-out (PS1/2 null) mice prevents the evaluation of physiological roles of PS. To investigate new functions for presenilins, we performed a proteomic approach by using cells derived from PS1/2 null blastocysts and wild type controls. We identified a presenilin-dependent cell-surface binding of albumin. Binding of albumin depends on intact caveolae on the cellular surface. Abnormal caveolin 1 localization in PS1/2 null cells was associated with a loss of caveolae and an absence of caveolin 1 expression within lipid rafts. Expressing PS1 or PS2 but not the intracellular form of Notch1 in PS1/2 null cells restored normal caveolin 1 localization, demonstrating that presenilins are required for the subcellular trafficking of caveolin 1 independently from Notch activity. Despite an expression of both caveolin 1 and PS1 within lipid raft-enriched fractions after sucrose density centrifugation in wild type cells, no direct interaction between these two proteins was detected, implying that presenilins affect caveolin 1 trafficking in an indirect manner. We conclude that presenilins are required for caveolae formation by controlling transport of intracellular caveolin 1 to the plasma membrane.  相似文献   

13.
窖蛋白-1在不同肿瘤中发挥作用不同. 本研究以小鼠肝癌细胞H22为研究对象 ,观察下调窖蛋白-1表达对H22细胞侵袭能力的影响,并探讨其可能的分子机制. 利用RT-PCR和Western印迹法检测了窖蛋白-1在H22及小鼠正常肝细胞IAR20中的 表达.结果显示,窖蛋白 1在H22中的表达高于其在IAR20中的表达,提示窖蛋白 -1高表达可能与H22细胞恶性表型有关. RNA干扰和凝集素印记实验结果显示,窖 蛋白-1-siRNA能够有效抑制窖蛋白-1mRNA和蛋白表达,并抑制细胞表面N-聚糖 β1,6GlcNAc分支形成. Transwell细胞迁移和侵袭实验结果显示,与未转染组和 siRNA 对照组比较,转染窖蛋白-1 siRNA的H22细胞迁移和侵袭数目明显减少. 本研究证明,下调窖蛋白-1表达可抑制H22细胞表面N 聚糖β1,6GlcNAc分支形 成,从而抑制细胞迁移和侵袭能力.  相似文献   

14.
Low M(r) phosphotyrosine-protein phosphatase is involved in the regulation of several tyrosine kinase growth factor receptors. The best characterized action of this enzyme is on the signaling pathways activated by platelet-derived growth factor, where it plays multiple roles. In this study we identify tyrosine-phosphorylated caveolin as a new potential substrate for low M(r) phosphotyrosine-protein phosphatase. Caveolin is tyrosine-phosphorylated in vivo by Src kinases, recruits into caveolae, and hence regulates the activities of several proteins involved in cellular signaling cascades. Our results demonstrate that caveolin and low M(r) phosphotyrosine-protein phosphatase coimmunoprecipitate from cell lysates, and that a fraction of the enzyme localizes in caveolae. Furthermore, in a cell line sensitive to insulin, the overexpression of the C12S dominant negative mutant of low M(r) phosphotyrosine-protein phosphatase (a form lacking activity but able to bind substrates) causes the enhancement of tyrosine-phosphorylated caveolin. Insulin stimulation of these cells induces a strong increase of caveolin phosphorylation. The localization of low M(r) phosphotyrosine-protein phosphatase in caveolae, the in vivo interaction between this enzyme and caveolin, and the capacity of this enzyme to rapidly dephosphorylate phosphocaveolin, all indicate that tyrosine-phosphorylated caveolin is a relevant substrate for this phosphatase.  相似文献   

15.
The stimulation of vascular endothelial growth factor receptor-2 (VEGFR-2) by tumor-derived VEGF represents a key event in the initiation of angiogenesis. In this work, we report that VEGFR-2 is localized in endothelial caveolae, associated with caveolin-1, and that this complex is rapidly dissociated upon stimulation with VEGF. The kinetics of caveolin-1 dissociation correlated with those of VEGF-dependent VEGFR-2 tyrosine phosphorylation, suggesting that caveolin-1 acts as a negative regulator of VEGF R-2 activity. Interestingly, we observed that in an overexpression system in which VEGFR-2 is constitutively active, caveolin-1 overexpression inhibits VEGFR-2 activity but allows VEGFR-2 to undergo VEGF-dependent activation, suggesting that caveolin-1 can confer ligand dependency to a receptor system. Removal of caveolin and VEGFR-2 from caveolae by cholesterol depletion resulted in an increase in both basal and VEGF-induced phosphorylation of VEGFR-2, but led to the inhibition of VEGF-induced ERK activation and endothelial cell migration, suggesting that localization of VEGFR-2 to these domains is crucial for VEGF-mediated signaling. Dissociation of the VEGFR-2/caveolin-1 complex by VEGF or cyclodextrin led to a PP2-sensitive phosphorylation of caveolin-1 on tyrosine 14, suggesting the participation of Src family kinases in this process. Overall, these results suggest that caveolin-1 plays multiple roles in the VEGF-induced signaling cascade.  相似文献   

16.
Caveolae are plasma membrane domains involved in the uptake of certain pathogens and toxins. Internalization of some cell surface integrins occurs via caveolae suggesting caveolae may play a crucial role in modulating integrin‐mediated adhesion and cell migration. Here we demonstrate a critical role for gangliosides (sialo‐glycosphingolipids) in regulating caveolar endocytosis in human skin fibroblasts. Pretreatment of cells with endoglycoceramidase (cleaves glycosphingolipids) or sialidase (modifies cell surface gangliosides and glycoproteins) selectively inhibited caveolar endocytosis by >70%, inhibited the formation of plasma membrane domains enriched in sphingolipids and cholesterol (‘lipid rafts'), reduced caveolae and caveolin‐1 at the plasma membrane by approximately 80%, and blunted activation of β1‐integrin, a protein required for caveolar endocytosis in these cells. These effects could be reversed by a brief incubation with gangliosides (but not with asialo‐gangliosides or other sphingolipids) at 10°C, suggesting that sialo‐lipids are critical in supporting caveolar endocytosis. Endoglycoceramidase treatment also caused a redistribution of focal adhesion kinase, paxillin, talin, and PIP Kinase Iγ away from focal adhesions. The effects of sialidase or endoglycoceramidase on membrane domains and the distribution of caveolin‐1 could be recapitulated by β1‐integrin knockdown. These results suggest that both gangliosides and β1‐integrin are required for maintenance of caveolae and plasma membrane domains.  相似文献   

17.
Caveolin-1 (Cav-1) is emerging as the central protein controlling caveolae formation, caveolae trafficking, and cellular signalling. In particular, it is known that Cav-1 interacts and modulates the activity of several signalling proteins through the so-called caveolin scaffolding domain. In this paper, we used a bioinformatics approach to assess the validity of some long-standing structural features of Cav-1. We could confirm the existence of a membrane spanning region of Cav-1 and highlight an interesting pattern of palmitoylated cysteine residues explaining the structural features of the Cav-1 C-terminal region. Moreover, the scaffolding domain is predicted to have a different structure than previously reported.  相似文献   

18.
Plasmalemmal caveolae are membrane microdomains that are specifically enriched in sphingolipids and contain a wide array of signaling proteins, including the endothelial isoform of nitric-oxide synthase (eNOS). EDG-1 is a G protein-coupled receptor for sphingosine 1-phosphate (S1P) that is expressed in endothelial cells and has been implicated in diverse vascular signal transduction pathways. We analyzed the subcellular distribution of EDG-1 in COS-7 cells transiently transfected with cDNA constructs encoding epitope-tagged EDG-1. Subcellular fractionation of cell lysates resolved by ultracentrifugation in discontinuous sucrose gradients revealed that approximately 55% of the EDG-1 protein was recovered in fractions enriched in caveolin-1, a resident protein of caveolae. Co-immunoprecipitation experiments showed that EDG-1 could be specifically precipitated by antibodies directed against caveolin-1 and vice versa. The targeting of EDG-1 to caveolae-enriched fractions was markedly increased (from 51 +/- 11% to 93 +/- 14%) by treatment of transfected cells with S1P (5 microm, 60 min). In co-transfection experiments expressing EDG-1 and eNOS cDNAs in COS-7 cells, we found that S1P treatment significantly and specifically increased nitric-oxide synthase activity, with an EC(50) of 30 nm S1P. Overexpression of transfected caveolin-1 cDNA together with EDG-1 and eNOS markedly diminished S1P-mediated eNOS activation; caveolin overexpression also attenuated agonist-induced phosphorylation of EDG-1 receptor by >90%. These results suggest that the interaction of the EDG-1 receptor with caveolin may serve to inhibit signaling through the S1P pathway, even as the targeting of EDG-1 to caveolae facilitates the interactions of this receptor with ligands and effectors that are also targeted to caveolae. The agonist-modulated targeting of EDG-1 to caveolae and its dynamic inhibitory interactions with caveolin identify new points for regulation of sphingolipid-dependent signaling in the vascular wall.  相似文献   

19.
Caveolin is the principal component of caveolae in vivo. In addition to a structural role, it is believed to play a scaffolding function to organize and inactivate signaling molecules that are concentrated on the cytoplasmic surface of caveolar membranes. The large GTPase dynamin has been shown to mediate the scission of caveolae from the plasma membrane, although it is unclear if dynamin interacts directly with caveolin or via accessory proteins. Therefore, the goal of this study was to test whether dynamin associates with caveolae via a direct binding to the caveolin 1 (Cav1) protein. Immunoelectron microscopy of lung endothelium or a cultured hepatocyte cell line stained with antibodies for Dyn2 and Cav1 shows that these proteins co-localize to caveolae. To further define this interaction biochemically, in vitro experiments were performed using glutathione-S-transferase (GST)-Dyn2 and GST-Cav1 fusion proteins, which demonstrated a direct interaction between these proteins. This interaction appears to be mediated by the proline-arginine-rich domain (PRD) of Dyn2, as a GST-PRD fragment binds Cav1 while GST-Dyn2DeltaPRD does not. Further, in vitro binding studies using two Dyn2 spliced forms and Cav1 peptides immobilized on paper identify specific domains of Cav1 that bind Dyn2. Interestingly, these Cav1-binding domains differ markedly between two spliced variant forms of Dyn2. In support of these distinctive physical interactions, we find that the different Dyn2 forms, when expressed as GTPase-defective mutants, exert markedly different inhibitory effects on caveolae internalization, as assayed by cholera toxin uptake. These studies provide the first evidence for a direct interaction between dynamin and the caveolin coat, and demonstrate a selectivity of one Dyn2 form toward the caveolae-mediated endocytosis.  相似文献   

20.
Caveolae are non‐clathrin invaginations of the plasma membrane in most cell types; they are involved in signalling functions and molecule trafficking, thus modulating several biological functions, including cell growth, apoptosis and angiogenesis. The major structural protein in caveolae is caveolin‐1, which is known to act as a key regulator in cancer onset and progression through its role as a tumour suppressor. Caveolin‐1 can also promote cell proliferation, survival and metastasis as well as chemo‐ and radioresistance. Here, we discuss recent findings and novel concepts that support a role for caveolin‐1 in cancer development and its distant spreading. We also address the potential application of caveolin‐1 in tumour therapy and diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号