首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We undertook cysteine substitution mutagenesis and fluorophore conjugation at selected residue positions to map sites of ligand binding and changes in solvent exposure of the acetylcholine-binding protein from Lymnaea stagnalis, a nicotinic receptor surrogate. Acrylodan fluorescence emission is highly sensitive to its local environment, and when bound to protein, exhibits changes in both intensity and emission wavelength that are reflected in the degree of solvent exclusion and the effective dielectric constant of the environment of the fluorophore. Hence, cysteine mutants were generated based on the acetylcholine-binding protein crystal structure and predicted ligand binding sites, and fluorescence parameters were assayed on the acrylodan-conjugated proteins. This approach allows one to analyze the environment around the conjugated fluorophore side chain and the changes induced by bound ligand. Introduction of an acrylodan-cysteine conjugate at position 178 yields a large blue shift with alpha-bungarotoxin association, whereas the agonists and alkaloid antagonists induce red shifts reflecting solvent exposure at this position. Such residue-selective changes in fluorescence parameters suggest that certain ligands can induce distinct conformational states of the binding protein, and that mutually exclusive binding results from disparate portals of entry to and orientations of the bound alpha-toxin and smaller acetylcholine congeners at the binding pocket. Labeling at other residue positions around the predicted binding pocket also reveals distinctive spectral changes for alpha-bungarotoxin, agonists, and alkaloid antagonists.  相似文献   

3.
Bajaj A  Celić A  Ding FX  Naider F  Becker JM  Dumont ME 《Biochemistry》2004,43(42):13564-13578
The yeast alpha-factor receptor encoded by the STE2 gene is a member of the extended family of G protein coupled receptors (GPCRs) involved in a wide variety of signal transduction pathways. We report here the use of a fluorescent alpha-factor analogue [K(7)(NBD), Nle(12)] alpha-factor (Lys(7) (7-nitrobenz-2-oxa-1,3-diazol-4-yl), norleucine(12) alpha-factor) in conjunction with flow cytometry and fluorescence microscopy to study binding of ligand to the receptor. Internalization of the fluorescent ligand following receptor binding can be monitored by fluorescence microscopy. The use of flow cytometry to detect binding of the fluorescent ligand to intact yeast cells provides a sensitive and reproducible assay that can be conducted at low cell densities and is relatively insensitive to fluorescence of unbound and nonspecifically bound ligand. Using this assay, we determined that some receptor alleles expressed in cells lacking the G protein alpha subunit exhibit a higher equilibrium binding affinity for ligand than the same alleles expressed in isogenic cells containing the normal complement of G protein subunits. On the basis of time-dependent changes in the intensity and shape of the emission spectrum of [K(7)(NBD),Nle(12)] alpha-factor during binding, we infer that the ligand associates with receptors via a two-step process involving an initial interaction that places the fluorophore in a hydrophobic environment, followed by a conversion to a state in which the fluorophore moves to a more polar environment.  相似文献   

4.
Binding of small ligands to the sites binding L-phenylalanine and ATP was measured by fluorescence titration technique. It is found that complex formation is not independent under conditions when both types of ligands are present in solution. The coupling is expressed as a synergistic binding rendering higher stabilities for complexes with ligand couples than expected on basis of separate binding of each ligand. In contrast, the substrate couple L-phenylalanine — ATP does not exhibit synergistic binding.  相似文献   

5.
Three-dimensional structures of acetylcholinesterase (AChE) reveal a narrow and deep active site gorge with two sites of ligand binding, an acylation site at the base of the gorge, and a peripheral site near the gorge entrance. Recent studies have shown that the peripheral site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, but the question of whether the peripheral site makes other contributions to the catalytic process remains open. A possible role for ligand binding to the peripheral site that has long been considered is the initiation of a conformational change that is transmitted allosterically to the acylation site to alter catalysis. However, evidence for conformational interactions between these sites has been difficult to obtain. Here we report that thioflavin T, a fluorophore widely used to detect amyloid structure in proteins, binds selectively to the AChE peripheral site with an equilibrium dissociation constant of 1.0 microm. The fluorescence of the bound thioflavin T is increased more than 1000-fold over that of unbound thioflavin T, the greatest enhancement of fluorescence for the binding of a fluorophore to AChE yet observed. Furthermore, when the acylation site ligands edrophonium or m-(N, N,N-trimethylammonio)trifluoroacetophenone form ternary complexes with AChE and thioflavin T, the fluorescence is quenched by factors of 2.7-4.2. The observation of this partial quenching of thioflavin T fluorescence is a major advance in the study of AChE for two reasons. First, it allows thioflavin T to be used as a reporter for ligand reactions at the acylation site. Second, it indicates that ligand binding to the acylation site initiates a change in the local AChE conformation at the peripheral site that quenches the fluorescence of bound thioflavin T. The data provide strong evidence in support of a conformational interaction between the two AChE sites.  相似文献   

6.
Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule-receptor interactions, this technique has also been applied to study protein-protein complexes, such as mapping antibody-antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein-ligand interactions has had an impact on biology and drug discovery.  相似文献   

7.
M4 muscarinic acetylcholine receptor is a G protein-coupled receptor (GPCR) that has been associated with alcohol and cocaine abuse, Alzheimer''s disease, and schizophrenia which makes it an interesting drug target. For many GPCRs, the high-affinity fluorescence ligands have expanded the options for high-throughput screening of drug candidates and serve as useful tools in fundamental receptor research. Here, we explored two TAMRA-labelled fluorescence ligands, UR-MK342 and UR-CG072, for development of assays for studying ligand-binding properties to M4 receptor. Using budded baculovirus particles as M4 receptor preparation and fluorescence anisotropy method, we measured the affinities and binding kinetics of both fluorescence ligands. Using the fluorescence ligands as reporter probes, the binding affinities of unlabelled ligands could be determined. Based on these results, we took a step towards a more natural system and developed a method using live CHO-K1-hM4R cells and automated fluorescence microscopy suitable for the routine determination of unlabelled ligand affinities. For quantitative image analysis, we developed random forest and deep learning-based pipelines for cell segmentation. The pipelines were integrated into the user-friendly open-source Aparecium software. Both image analysis methods were suitable for measuring fluorescence ligand saturation binding and kinetics as well as for screening binding affinities of unlabelled ligands.  相似文献   

8.
To study the properties of the extracellular epidermal growth factor (EGF) binding domain of the human EGF receptor, we have infected insect cells with a suitably engineered baculovirus vector containing the cDNA encoding the entire ectodomain of the parent molecule. This resulted in a correctly folded, stable, 110 kd protein which possessed an EGF binding affinity of 200 nM. The protein was routinely purified in milligram amounts from 1 litre insect cell cultures using a series of three standard chromatographic steps. The properties of the ectodomain were studied before and after the addition of different EGF ligands, using both circular dichroism and fluorescence spectroscopic techniques. A secondary structural analysis of the far UV CD spectrum of the ectodomain indicated significant proportions of alpha-helix and beta-sheet in agreement with a published model of the EGF receptor. The ligand additions to the receptor showed differences in both the near- and far-UV CD spectra, and were similar for each ligand used, suggesting similar conformational differences between uncomplexed and complexed receptor. Steady-state fluorescence measurements indicated that the tryptophan residues present in the ectodomain are buried and that the solvent-accessible tryptophans in the ligands become buried on binding the receptor. The rotational correlation times measured by fluorescence anisotropy decay for the receptor-ligand complexes were decreased from 6 to 2.5 ns in each case. This may indicate a perturbation of the tryptophan environment of the receptor on ligand binding. Ultracentrifugation studies showed that no aggregation occurred on ligand addition, so this could not explain the observed differences from CD or fluorescence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
There exists a significant need for the detection of novel estrogen receptor (ER) ligands for pharmaceutical uses, especially for treating complications associated with menopause. We have developed fluorescence resonance energy transfer (FRET)-based biosensors that permit the direct in vitro detection of ER ligands. These biosensors contain an ER ligand-binding domain (LBD) flanked by the FRET donor fluorophore, cyan fluorescent protein (CFP), and the acceptor fluorophore, yellow fluorescent protein (YFP). The ER-LBD has been modified so that Ala 430 has been changed to Asp, which increases the magnitude of the FRET signal in response to ligand-binding by more than four-fold compared to the wild-type LBD. The binding of agonists can be distinguished from that of antagonists on the basis of the distinct ligand-induced conformations in the ER-LBD. The approach to binding equilibrium occurs within 30min, and the FRET signal is stable over 24h. The biosensor demonstrates a high signal-to-noise, with a Z' value (a statistical determinant of assay quality) of 0.72. The affinity of the ER for different ligands can be determined using a modified version of the biosensor in which a truncated YFP and an enhanced CFP are used. Thus, we have developed platforms for high-throughput screens for the identification of novel estrogen receptor ligands. Moreover, we have demonstrated that this FRET technology can be applied to other nuclear receptors, such as the androgen receptor.  相似文献   

10.
A combination of intrinsic fluorescence and circular dichroic (CD) spectroscopy has been used to characterize the complexes formed between bovine retinal arrestin and heparin or phytic acid, two ligands that are known to mimic the structural changes in arrestin attending receptor binding. No changes in the CD spectra were observed upon ligand binding, nor did the degree of tryptophan fluorescence quenching change significantly in the complexes. These data argue against any large-scale changes in protein secondary or tertiary structure accompanying ligand binding. The change in tyrosine fluorescence intensity was used to determine the dissociation constants for the heparin and phytic acid complexes of arrestin. The only change observed was a saturable diminution of tyrosine fluorescence signal from the protein. For both ligands, the data suggest two distinct binding interactions with the protein—a high-affinity interaction with K d between 200 and 300 nM, and a lower affinity interaction with K d between 2 and 8 M. Study of collisional quenching of tyrosine fluorescence in free arrestin and the ligand-replete complexes indicates that 10 of the 14 tyrosine residues of the protein are solvent-exposed in the free protein; this value drops to between 5 and 6 solvent-exposed residues in the high-affinity complexes of the two ligands. These data suggest that ligand binding leads to direct occlusion of between 4 and 5 tyrosine residues on the solvent-exposed surface of the protein, but not to any large-scale changes in protein structure. The large activation energy previously reported to be associated with arrestin–receptor interactions may therefore reflect localized movements of the N- and C-termini of arrestin, which are proposed to interact in the free protein through electrostatic interactions. Binding of the anionic ligands heparin, phytic acid, or phosphorylated rhodopsin may compete with the C-terminus of arrestin for these electrostatic interactions, thus allowing the C-terminus to swing out of the binding region.  相似文献   

11.
12.
13.
Development of CXCR4-specific ligands is an important issue in chemotherapy of HIV infection, cancer metastasis, and rheumatoid arthritis, and numerous potential ligands have been developed to date. However, it is difficult to assess their binding mode and specificity because of uncertainties in the structure of the CXCR4-ligand complexes. To address this problem, we have synthesized fluorophore labeled Ac-TZ14011, which is derived from T140, a powerful CXCR4 antagonist. Binding of Ac-TZ14011 to CXCR4 on the cell membrane was observed by fluorescence microscope, and analysis of the binding data produced IC 50 values of several ligands comparable to those obtained in RI-based assays. This fluorescence-based assay is applicable to explore new pharmacophores of CXCR4-specific ligands with high-throughput screening and also to screening of the other GPCR binding ligands.  相似文献   

14.
The type I interferon (IFN) receptor plays a key role in innate immunity against viral and bacterial infections. Here, we show by intramolecular Förster resonance energy transfer spectroscopy that ligand binding induces substantial conformational changes in the ectodomain of ifnar1 (ifnar1-EC). Binding of IFNα2 and IFNβ induce very similar conformations of ifnar1, which were confirmed by single-particle electron microscopy analysis of the ternary complexes formed by IFNα2 or IFNβ with the two receptor subunits ifnar1-EC and ifnar2-EC. Photo-induced electron-transfer-based fluorescence quenching and single-molecule fluorescence lifetime measurements revealed that the ligand-induced conformational change in the membrane-distal domains of ifnar1-EC is propagated to its membrane-proximal domain, which is not involved in ligand recognition but is essential for signal activation. Temperature-dependent ligand binding studies as well as stopped-flow fluorescence experiments corroborated a multistep conformational change in ifnar1 upon ligand binding. Our results thus suggest that the relatively intricate architecture of the type I IFN receptor complex is designed to propagate the ligand binding event to and possibly even across the membrane by conformational changes.  相似文献   

15.
The technique of aqueous two-phase partitioning has been used to study changes in estrogen receptor (ER) structure that occur upon ligand binding and/or heating in vitro. Studies with steroidal and nonsteroidal ligands indicate that the difference in partitioning properties between unoccupied and nontransformed ER is due to a ligand-induced change in this conformation of the protein. Furthermore, this conformational change is only partially induced by binding of 4-OH-tamoxifen. Although nontransformed 4-OH-tamoxifen complexes can be transformed by heat, there are significant differences in the transformation process for receptors bound to 4-OH-tamoxifen versus estrogenic ligands. A kinetic analysis of estrogen receptor transformation indicates that the process follows apparent first order kinetics, but is 2.5-fold slower for the 4-OH-tamoxifen-receptor complex. Direct heating of the unoccupied ER causes a significant change in receptor structure. Ligand binding to the heat-altered unoccupied receptor results in a further alteration of receptor structure. Experiments using polyethylene glycol palmitate indicate that the ligand-binding transition is associated with a reduction of the hydrophobic characteristics of the receptor. These results demonstrate that there are a number of independent conformational changes that occur within the monomeric ER steroid-binding subunit upon ligand binding and exposure to elevated temperature in vitro.  相似文献   

16.
Dissociation constants of Escherichia coli adenylosuccinate synthetase with IMP, GTP, adenylosuccinate, and AMP (a competitive inhibitor for IMP) were determined by measuring the extent of quenching of the intrinsic tryptophan fluorescence of the enzyme. The enzyme has one binding site for each of these ligands. Aspartate and GDP did not quench the fluorescence to any great extent, and their dissociation constants could not be determined. These ligand binding studies were generally supportive of the kinetic mechanism proposed earlier for the enzyme. Cys291 was modified with the fluorescent chromophores N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonate and tetramethylrhodamine maleimide in order to measure enzyme conformational changes attending ligand binding. The excitation and emission spectra of these fluorophores are not altered by the addition of active site binding ligands. TbGTP and TbGDP were used as native reporter groups, and changes in their fluorescence on complexing with the enzyme and various ligands made it possible to detect conformational changes occurring at the active site. Evidence is presented for abortive complexes of the type: enzyme-TbGTP-adenylosuccinate and enzyme-TbGTP-adenylosuccinate-aspartate. These results suggest that the IMP and aspartate binding sites are spatially separated.  相似文献   

17.
Bacterial periplasmic binding proteins (bPBPs) are specific for a wide variety of small molecule ligands. bPBPs undergo a large, ligand-mediated conformational change that can be linked to reporter functions to monitor ligand concentrations. This mechanism provides the basis of a general system for engineering families of reagentless biosensors that share a common physical signal transduction functionality and detect many different analytes. We demonstrate the facility of designing optical biosensors based on fluorophore conjugates using 8 environmentally sensitive fluorophores and 11 bPBPs specific for diverse ligands, including sugars, amino acids, anions, cations, and dipeptides. Construction of reagentless fluorescent biosensors relies on identification of sites that undergo a local conformational change in concert with the global, ligand-mediated hinge-bending motion. Construction of cysteine mutations at these locations then permits site-specific coupling of environmentally sensitive fluorophores that report ligand binding as changes in fluorescence intensity. For 10 of the bPBPs presented in this study, the three-dimensional receptor structure was used to predict the location of reporter sites. In one case, a bPBP sensor specific for glutamic and aspartic acid was designed starting from genome sequence information and illustrates the potential for discovering novel binding functions in the microbial genosphere using bioinformatics.  相似文献   

18.
We studied the binding and biological activities of gold-insulin complexes to develop a complex with properties identical to native insulin. Stabilizing amounts of insulin absorbed to 5-, 10-, or 15-nm gold particles resulted in complexes with 40-327 insulin molecules per gold particle and 4-111 times the biological activity of unlabeled insulin, based on the molar concentration of gold complex. These data suggested that these complexes behaved as multivalent ligands. Gold-insulin complexes were prepared with 5% of the stabilizing insulin concentration and were stabilized with bovine serum albumin. This resulted in a complex with 5-7 insulin molecules per 10-nm gold particle, which stimulated glucose oxidation in rat adipocytes and competed with [125I]-insulin for binding to the insulin receptor identically to unlabeled insulin on an equimolar basis. The organization and distribution of insulin receptors occupied by this monovalent-behaving gold-insulin complex were virtually identical to previous observations using monomeric ferritin-insulin. Since multivalent ligands may affect receptor binding, re-distribution, and intracellular processing, the use of electron-dense probes that resemble the unlabeled ligand in biological and binding properties is appropriate when studying receptor dynamics of in vivo or in vitro biological systems. The gold-insulin complex developed in this study should serve this function.  相似文献   

19.
The development of complexes that allow the monitoring of the release and distribution of fluorescent models of anticancer drugs initially bound to cobalt(III) moieties is reported. Strong quenching of fluorescence upon ligation to cobalt(III) was observed for both the carboxylate- and the hydroximate-bound fluorophores as was the partial return of fluorescence following addition of ascorbate and cysteine. The extent of the increase in the fluorescence intensity observed following addition of these potential reductants is indicative of the fluorophore being displaced from the complex by the action of ascorbate or cysteine, by ligand exchange. The cellular distribution of the fluorescence revealed that coordination to cobalt can dramatically alter the subcellular distribution of a bound fluorophore. This work shows that fluorescence can be an effective means of monitoring these agents in cells, and of determining their sites of activation. The results also reveal that the cytotoxicity of such agents correlates with their uptake and distribution patterns and that these are influenced by the types of ligands attached to the complex.  相似文献   

20.
Recent studies suggest that cholesterol binding is widespread among GPCRs (G-protein-coupled receptors). In the present study, we analysed putative cholesterol-induced changes in the OTR [OT (oxytocin) receptor], a prototype of cholesterol-interacting GPCRs. For this purpose, we have created recombinant OTRs that are able to bind two small-sized fluorescence-labelled ligands simultaneously. An OTR antagonist was chosen as one of the ligands. To create a second ligand-binding site, a small-sized α-BTB (bungarotoxin binding) site was inserted at the N-terminus or within the third extracellular loop of the OTR. All receptor constructs were functionally active and bound both ligands with high affinity in the nanomolar range. Measurements of the quenching behaviour, fluorescence anisotropy and energy transfer of both receptor-bound ligands were performed to monitor receptor states at various cholesterol concentrations. The quenching studies suggested no major changes in the molecular environment of the fluorophores in response to cholesterol. The fluorescence anisotropy data indicated that cholesterol affects the dynamics or orientation of the antagonist. The energy transfer efficiency between both ligands clearly increased with increasing cholesterol. Overall, cholesterol induced both a changed orientation and a decreased distance of the receptor-bound ligands, suggesting a more compact receptor state in association with cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号