首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
戚飞  林硕  樊启昶 《遗传学报》2004,31(7):750-757
用于大规模基因突变与筛选的主要策略有化学诱变、插入突变、基因诱捕。插入突变是一种通过外源DNA整合的方式来获得突变体,并克隆得到对应突变基因的方法。运用反转录病毒介导的插入突变技术,在脊椎动物斑马鱼中已经获得了许多影响胚胎发育和细胞生长过程的突变体,并找到了对应的基因。基因诱捕技术也被运用于反转录病毒载体的构建。这套系统的建立使斑马鱼成为第一个有可能达到基因饱和突变和筛选的脊椎动物。  相似文献   

2.
Two protocols have been developed, both of which utilize the thymidine analog 5-bromodeoxyuridine (BrdUrd) to induce mutations in mammalian cells in culture (E. R. Kaufman and R. L. Davidson, Proc. Natl. Acad. Sci. USA 75:4982-4986, 1978; E. R. Kaufman, Mol. Cell. Biol. 4:2449-2454, 1984). The first protocol, termed incorporational (INC) mutagenesis, utilizes high concentrations of BrdUrd in the culture medium to generate a high intracellular ratio of BrdUTP/dCTP. The second protocol, termed replicational (REP) mutagenesis, entails the incorporation of BrdUrd into DNA under nonmutagenic conditions, the removal of all BrdUrd from the culture medium, and the subsequent replication of the bromouracil-containing DNA in the presence of high intracellular levels of dTTP and dGTP. Genetic studies using reversion analysis at the hypoxanthine-guanine phosphoribosyltransferase locus were used to determine whether the mechanisms of these two BrdUrd mutagenesis protocols had enough specificity to be distinguishable by their ability to revert various mutants. The results of these studies indicated that (i) mutants induced by INC mutagenesis were induced to revert only by REP mutagenesis and not by INC mutagenesis, (ii) mutants induced by REP mutagenesis were more efficiently reverted by INC mutagenesis than by REP mutagenesis, and (iii) both spontaneous mutants and mutants induced by the chemical mutagen ethyl methanesulfonate showed a high degree of specificity when tested for reversion by the BrdUrd mutagenesis protocols.  相似文献   

3.
Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr+ host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one to two mutant phage per mutant burst. From this and the pathways of lambda DNA synthesis, it can be argued that non-targeted mutagenesis involves a loss of fidelity in semiconservative DNA replication. A series of experiments with various mutant host cells showed a major pathway of non-targeted mutagenesis by ultraviolet light, which acts in addition to "SOS induction" (where cleavage of the LexA repressor by RecA protease leads to din gene induction): (1) the induction of mutants has the same dependence on irradiation for wild-type and for umuC host cells; (2) a strain in which the SOS pathway is constitutively induced requires irradiation to the same level as wild-type cells in order to fully activate non-targeted mutagenesis; (3) non-targeted mutagenesis occurs to some extent in irradiated recA recB cells. In cells with very low levels of PolI, the induction of non-targeted mutagenesis by ultraviolet light is enhanced. We propose that the major pathway for non-targeted mutagenesis in irradiated host cells involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and that the low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage.  相似文献   

4.
Rajpal DK  Wu X  Wang Z 《Mutation research》2000,461(2):133-143
DNA damage can lead to mutations during replication. The damage-induced mutagenesis pathway is an important mechanism that fixes DNA lesions into mutations. DNA polymerase zeta (Pol zeta), formed by Rev3 and Rev7 protein complex, and Rev1 are components of the damage-induced mutagenesis pathway. Since mutagenesis is an important factor during the initiation and progression of human cancer, we postulate that this mutagenesis pathway may provide an inhibiting target for cancer prevention and therapy. In this study, we tested if UV-induced mutagenesis can be altered by molecular modulation of Rev3 enzyme levels using the yeast Saccharomyces cerevisiae as a eukaryotic model system. Reducing the REV3 expression in yeast cells through molecular techniques was employed to mimic Pol zeta inhibition. Lower levels of Pol zeta significantly decreased UV-induced mutation frequency, thus achieving inhibition of mutagenesis. In contrast, elevating the Pol zeta level by enhanced expression of both REV3 and REV7 genes led to a approximately 3-fold increase in UV-induced mutagenesis as determined by the arg4-17 mutation reversion assays. In vivo, UV lesion bypass by Pol zeta requires the Rev1 protein. Even overexpression of Pol zeta could not alleviate the defective UV mutagenesis in the rev1 mutant cells. These observations provide evidence that the mutagenesis pathway could be used as a target for inhibiting damage-induced mutations.  相似文献   

5.
Advanced approaches to the synthesis and reconstruction of genetic material developed in the Institutes of Molecular Biology and Genetics during the past years are summarized. The evolution of methods for oligonucleotide synthesis and scopes for their use in gene production are discussed. The principles of localised mutagenesis methods developed in the Institute are described, such as: a) mutagenesis directed to the regulatory gene regions; b) segment-localized mutagenesis; c) mutagenesis directed by phosphotriester analogues of oligonucleotides. Examples of employing these methods for induction of regulatory mutants of phage lambda, production of fused genes, mutant interferon genes, construction of new DNA vectors, construction of hybrid H1-H3 subtype haemagglutinine gene of influenza virus etc. are presented. The approach to in vivo site-directed mutagenesis is experimentally substantiated.  相似文献   

6.
Two novel mutagenesis techniques to specifically alter the sequence of plasmid DNA have been developed. In contrast to other primer-directed mutagenesis methods which require a single-stranded, closed-circular template, a linearized single strand was used as the mutagenesis template. The template is prepared by restriction enzyme digestion of covalently-closed-circular plasmid DNA. These methods are simple, require small amounts of plasmid DNA, and can result in a relatively high frequency of mutagenesis.  相似文献   

7.
8.
T-DNA插入突变在植物功能基因组学中的应用   总被引:2,自引:0,他引:2  
T-DNA插入突变在植物功能基因组学研究中发挥着重要作用,广泛应用于大规模植物基因功能分析,是分离新基因、研究基因功能的有效工具。我们简单介绍了T-DNA插入突变的原理,详细论述了3种T-DNA插入突变载体的应用,并综述了利用T-DNA插入突变克隆新基因的方法,同时指出了T-DNA插入突变存在的问题及其发展方向。  相似文献   

9.
Mutation is the basis of adaptation. Yet, most mutations are detrimental, and elevating mutation rates will impair a population's fitness in the short term. The latter realization has led to the concept of lethal mutagenesis for curing viral infections, and work with drugs such as ribavirin has supported this perspective. As yet, there is no formal theory of lethal mutagenesis, although reference is commonly made to Eigen's error catastrophe theory. Here, we propose a theory of lethal mutagenesis. With an obvious parallel to the epidemiological threshold for eradication of a disease, a sufficient condition for lethal mutagenesis is that each viral genotype produces, on average, less than one progeny virus that goes on to infect a new cell. The extinction threshold involves an evolutionary component based on the mutation rate, but it also includes an ecological component, so the threshold cannot be calculated from the mutation rate alone. The genetic evolution of a large population undergoing mutagenesis is independent of whether the population is declining or stable, so there is no runaway accumulation of mutations or genetic signature for lethal mutagenesis that distinguishes it from a level of mutagenesis under which the population is maintained. To detect lethal mutagenesis, accurate measurements of the genome-wide mutation rate and the number of progeny per infected cell that go on to infect new cells are needed. We discuss three methods for estimating the former. Estimating the latter is more challenging, but broad limits to this estimate may be feasible.  相似文献   

10.
The effects of the umuC36 and umuC122::Tn 5 mutations on gamma- and UV radiation mutagenesis (nonsense, missense, and frameshift mutation assays) in Escherichia coli K12 were studied. Although both mutations reduced radiation mutagenesis, the umuC36 mutation appeared to be leaky since considerably more UV radiation mutagenesis could be detected in the umuC36 strain than in the umuC122::Tn 5 strain. In general, the umuC strain showed much larger deficiencies in UV radiation mutagenesis than they did for gamma-radiation mutagenesis. The mutability of the umuC122:: Tn 5 strain varied depending on the radiation dose, and the mutation assay used. For gamma-radiation mutagenesis, the deficiency varied from no deficiency to a 50-fold deficiency; for UV radiation mutagenesis, the deficiency varied from 100-fold to at least 5000-fold. We concluded that both umuC-dependent and umuC-independent modes function for gamma-radiation mutagenesis, while UV radiation mutagenesis seems to depend almost exclusively on the umuC-dependent mode.  相似文献   

11.
An inverse correlation exists between the autoxidation of bisulfite and its mutagenicity in Salmonella. Temperature, pH, and the addition of mannitol, ethanol, or Oxoid broth affect both autoxidation and mutagenicity. A decrease in autoxidation resulted in an increase in the half-life of the parent compound, bisulfite, and its availability for uptake by the cells, leading to increased mutagenesis. The autoxidation of bisulfite is known to produce both sulfur- and oxygen-centered free radicals. The lack of mutagenicity of ammonium persulfate and peroxymonosulfate, which generate the radicals SO4- and SO5-, respectively, argues against the involvement of these oxygen-centered radicals in bisulfite mutagenesis. Inhibition of mutagenesis by the radical spin-trapping agent, DMPO, is consistent with the hypothesis that the sulfur-centered radical, SO3-, plays an important role in bisulfite mutagenesis. The mechanism of bisulfite mutagenesis suggested in this study may have relevance to other known effects attributed to bisulfite, i.e., co-carcinogenesis and immune hypersensitivity.  相似文献   

12.
13.
Krauss U  Eggert T 《BioTechniques》2005,39(5):679-682
Several primer prediction programs have been developed for a variety of applications. However none of these tools allows the prediction of a large set of primers for whole gene site-directed mutagenesis experiments using the megaprimer method. We report a novel primer prediction tool (insilico.mutagenesis), accessible at www.insilico.uni-duesseldorf.de, developed for the application to high-throughput mutagenesis used in directed evolution or structure-function dependency projects, which involve the subsequent mutagenesis of a large number of amino acid positions (e.g., in whole gene saturation or gene scanning mutagenesis experiments). Furthermore, the program is suitable for all site-directed (saturation) mutagenesis approaches, such as saturation mutagenesis of promoter sequences and other types of untranslated intergenic regions. In anticipation of downstream cloning steps, the primer design tool also includes a restriction site control feature alerting the user if unwanted restriction sites have been introduced within the mutagenesis primer. The use of our tool promises to speed up the process of site-directed mutagenesis, as it instantly allows predicting a large set of primers.  相似文献   

14.
Misrepair Mutagenesis in Bacteriophage T4   总被引:10,自引:1,他引:9       下载免费PDF全文
The T4 mutations px, y and 1206 inactivate an error-prone recombination-like repair system, reducing or abolishing mutagenesis by UV irradiation, MMS, and white light irradiation in the presence of the photosensitizer 8MOP. Both px and y increase some spontaneous mutation rates and slightly enhance proflavin mutagenesis; neither mutation affects thymineless or 2AP mutagenesis appreciably, but both mildly enhance 5BU mutagenesis. The mutation hm promotes UV, MMS, photodynamic, thymineless, and base analog mutagenesis, in addition to spontaneous base pair substitution mutation. It does not, however, markedly affect proflavin mutagenesis. The px mutation maps in the vicinity of genes 41-56, and the hm mutation maps in the vicinity of genes rI-v.  相似文献   

15.
Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning and mutagenesis since 2008 were reviewed. Specifically, new cloning techniques were classified based on their principles of complementary overhangs, homologous sequences, overlapping PCR and megaprimers and the advantages, drawbacks and performances of these methods were highlighted. New mutagenesis methods developed for random mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these methods and the mutational spectra were compared and discussed with references to commonly used techniques. The trends of mutant library preparation were summarised. Challenges in genetic diversity creation were discussed with emphases on creating “smart” libraries, controlling the mutagenesis spectrum and specific challenges in each group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for genetic diversity creation and the prospective developments that can have future impact in this field.  相似文献   

16.
Salmonella typhimurium LT2 mutH, mutL, mutS, and uvrD mutants were especially sensitive to mutagenesis by both the recA+-dependent mutagen methyl methane sulfonate and the recA+-independent mutagen ethyl methane sulfonate, but not to mutagenesis by agents such as 4-nitroquinoline-1-oxide and UV irradiation. Similarly, these mutator strains were very sensitive to mutagenesis by the methylating agents N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea. The increased susceptibility to mutagenesis by small alkylating agents due to mutH, mutL, mutS, and uvrD mutations was not accompanied by an increased sensitivity to killing by these agents. Various models are discussed in an effort to explain why strains thought to be deficient in methyl-instructed mismatch repair are sensitive to mutagenesis by methylating and ethylating agents.  相似文献   

17.
P Quillardet  R Devoret 《Biochimie》1982,64(8-9):789-796
The existence of damaged-site independent mutagenesis is confirmed here by scoring the appearance of clear-plaque (c-) or virulent (vir) forward mutations on intact (non-irradiated) phage lambda grown on UV-irradiated E. coli K12 hosts. The mutation frequency was measured as a function of the incubation time between the occurrence of host DNA lesions and phage infection. The time course of mutagenesis of intact phage followed the induction pattern observed upon UV-reactivation of UV-damaged phage by Defais et al. (1976). Intact phage did not mutate in UV-irradiated hosts carrying the uvm-25 mutation known to prevent the occurrence of UV-reactivation. These findings suggest that damaged-site independent mutagenesis results from inducible error-prone repair. Clear-plaque mutations arising on intact phage were mostly found in phage bursts consisting of clear and turbid plaque formers whereas UV-damaged phage gave rise to mostly clear-plaque formers. Contrarily to damaged-site dependent mutagenesis, damaged-site independent mutagenesis can arise even at late times during the phage replication cycle. Our data indicate that about half of the phage mutations that arise upon UV-reactivation are damaged-site independent mutations. Replication of intact phage DNA in a host during induction of SOS functions provides a sensitive assay for the detection of damaged-site independent mutagenesis.  相似文献   

18.
A V79 Chinese hamster fibroblast cell line selected for resistance to the toxic effects of 5-fluorouracil (Kaufman, 1984b) was found to be cross-resistant to the toxic effects of the thymidine analog 5-bromodeoxyuridine (BrdUrd). When tested for sensitivity to BrdUrd mutagenesis, the fluorouracil-resistant cells were found to be resistant to mutagenesis induced by high concentrations of BrdUrd in the medium (INC mutagenesis) but not to mutagenesis induced by the replication of DNA containing 5-bromouracil (REP mutagenesis). Analyses of deoxyribonucleoside triphosphate pools indicated that high endogenous dCTP levels in the mutant prevented the high BrdUTP/dCTP ratio associated with INC mutagenesis. However, the mutant phenotype had no effect on the nucleotide pool imbalance associated with REP mutagenesis. This mutant provides further genetic evidence for the existence of two independent mechanisms for BrdUrd mutagenesis in mammalian cells.  相似文献   

19.
Antimutator alleles indentify genes whose normal products are involved in spontaneous mutagenesis pathways. Mutant alleles of the recA and umuC genes of Escherichia coli, whose wild-type alleles are components of the inducible SOS response, were shown to cause a decrease in the level of spontaneous mutagenesis. Using a series of chromosomal mutant trp alleles, which detect point mutations, as a reversion assay, it was shown that the reduction in mutagenesis is limited to base-pair substitutions. Within the limited number of sites than could be examined, transversions at AT sites were the favored substitutions. Frameshift mutagenesis was slightly enhanced by a mutant recA allele and unchanged by a mutant umuC allele. The wild-type recA and umuC genes are involved in the same mutagenic base-pair substitution pathway, designated "SOS-dependent spontaneous mutagenesis" (SDSM), since a recAumuC strain showed the same degree and specificity of antimutator activity as either single mutant strain. The SDSM pathway is active only in the presence of oxygen, since wild-type, recA, and umuC strains all show the same levels of reduced spontaneous mutagenesis anaerobically. The SDSM pathway can function in starving/stationary cells and may, or may not, be operative in actively dividing cultures. We suggest that, in wild-type cells, SDSM results from basal levels of SOS activity during DNA synthesis. Mutations may result from synthesis past cryptic DNA lesions (targeted mutagenesis) and/or from mispairings during synthesis with a normal DNA template (untargeted mutagenesis). Since it occurs in chromosomal genes of wild-type cells, SDSM may be biologically significant for isolates of natural enteric bacterial populations where extended starvation is often a common mode of existence.  相似文献   

20.
There appears to be no dearth of mechanisms to explain spontaneous mutagenesis. In the case of base substitutions, data for bacteriophage T4 and especially for E. coli and S. cerevisiae suggest important roles in spontaneous mutagenesis for the error-prone repair of DNA damage (to produce mutations) and for error-free repair of DNA damage (to avoid mutagenesis). Data from the very limited number of studies on the subject suggest that about 50% of the spontaneous base substitutions in E. coli, and perhaps 90% in S. cerevisiae are due to error-prone DNA repair. On the other hand, spontaneous frameshifts and deletions seem to result from mechanisms involving recombination and replication. Spontaneous insertions have been shown to be important in the strongly polar inactivation of certain loci, but it is less important at other loci. Perhaps with continued study, the term "spontaneous mutagenesis" will be replaced by more specific terms such as 5-methylcytosine deamination mutagenesis, fatty acid oxidation mutagenesis, phenylalanine mutagenesis, and imprecise-recombination mutagenesis. While most studies have concentrated on mutator mutations, the most conclusive data for the actual source of spontaneous mutations have come from the study of antimutator mutations. Further study in this area, perhaps along with an understanding of chemical antimutagens, should be invaluable in clarifying the bases of spontaneous mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号