首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Charcot-Marie-Tooth disease (CMT) is the most common hereditary peripheral neuropathy, affecting 1 in 2,500 people. The only treatment currently available is rehabilitation or corrective surgery. The most frequent form of the disease, CMT-1A, involves abnormal myelination of the peripheral nerves. Here we used a mouse model of CMT-1A to test the ability of ascorbic acid, a known promoter of myelination, to correct the CMT-1A phenotype. Ascorbic acid treatment resulted in substantial amelioration of the CMT-1A phenotype, and reduced the expression of PMP22 to a level below what is necessary to induce the disease phenotype. As ascorbic acid has already been approved by the FDA for other clinical indications, it offers an immediate therapeutic possibility for patients with the disease.  相似文献   

4.
Abstract: To understand better the mechanisms by which progesterone (PROG) promotes myelination in the PNS, cultured rat Schwann cells were transiently transfected with reporter constructs in which luciferase expression was controlled by the promoter region of either the peripheral myelin protein-22 (PMP22) or the protein zero (P0) genes. PROG stimulated the P0 promoter and promoter 1, but not promoter 2, of PMP22. The effect of PROG was specific, as estradiol and testosterone only weakly activated promoters. Dose-response curves for stimulation of both promoter constructs by PROG were biphasic. RU486, a PROG antagonist, did not abolish the effect of PROG, but stimulated promoter activities by itself. In the human carcinoma cell line T47D expressing high levels of PROG receptor, PROG did not stimulate the P0 and PMP22 promoters, whereas the promoter region of the mouse mammary tumor virus was fully activated. Thus, the activation by PROG of promoter activity of two peripheral myelin protein genes is Schwann-cell specific.  相似文献   

5.
Charcot-Marie-Tooth disease (CMT) and hereditary neuropathy with liability to pressure palsies (HNPP) are two inherited peripheral neuropathies. The most prevalent mutations are a reciprocal 1.5-Mb duplication and 1.5-Mb deletion, respectively, at the CMT1A/HNPP locus on chromosome 17p11.2. Point mutations in the coding region of the myelin genes, peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ) or connexin 32 (Cx32) have been reported in CMT patients, including CMT type 1 (CMT1), CMT type 2 (CMT2) and Déjérine-Sottas neuropathy (DS) patients, and only in the coding region of PMP22 in HNPP families lacking a deletion. We have investigated point and small mutations in the MPZ, PMP22 and Cx32 genes in a series of patients of Spanish ancestry: 47 CMT patients without duplications, and 5 HNPP patients without deletions. We found 15 different mutations in 16 CMT patients (34%). Nine different mutations in ten patients were detected in the Cx32 gene, this being the most frequently involved gene in this series, whereas five mutations involved the MPZ gene and only one the PMP22 gene. Six out of nine nucleotide substitutions in the Cx32 gene involved two codons encoding arginine at positions 164 and 183, suggesting that these two codons may constitute two Cx32 regions prone to mutate in the Spanish population. Analysis of HNPP patients revealed a 5′ splicing mutation in intron 1 of the PMP22 gene in a family with autosomal dominance, which confirms allelic heterogeneity in HNPP. Ectopic mRNA analysis on leukocytes suggests that this mutation might behave as a null allele. Received: 25 July 1996 / Revised: 15 November 1996  相似文献   

6.
Charcot–Marie–Tooth disease type 1A (CMT1A) is a hereditary demyelinating neuropathy linked with duplication of the peripheral myelin protein 22 (PMP22) gene. Transgenic C22 mice, a model of CMT1A, display many features of the human disease, including slowed nerve conduction velocity and demyelination of peripheral nerves. How overproduction of PMP22 leads to compromised myelin and axonal pathology is not fully understood, but likely involves subcellular alterations in protein homoeostatic mechanisms within affected Schwann cells. The subcellular response to abnormally localized PMP22 includes the recruitment of the ubiquitin–proteasome system (UPS), autophagosomes and heat-shock proteins (HSPs). Here we assessed biochemical markers of these protein homoeostatic pathways in nerves from PMP22-overexpressing neuropathic mice between the ages of 2 and 12 months to ascertain their potential contribution to disease progression. In nerves of 3-week-old mice, using endoglycosidases and Western blotting, we found altered processing of the exogenous human PMP22, an abnormality that becomes more prevalent with age. Along with the ongoing accrual of misfolded PMP22, the activity of the proteasome becomes compromised and proteins required for autophagy induction and lysosome biogenesis are up-regulated. Moreover, cytosolic chaperones are consistently elevated in nerves from neuropathic mice, with the most prominent change in HSP70. The gradual alterations in protein homoeostatic response are accompanied by Schwann cell de-differentiation and macrophage infiltration. Together, these results show that while subcellular protein quality control mechanisms respond appropriately to the presence of the overproduced PMP22, with aging they are unable to prevent the accrual of misfolded proteins.  相似文献   

7.
Charcot-Marie-Tooth disease (CMT) and related peripheral neuropathies are the most commonly inherited neurological disorders in humans, characterized by clinical and genetic heterogeneity. The most prevalent clinical entities belonging to this group of disorders are CMT type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP). CMT1A and HNPP are predominantly caused by a 1.5 Mb duplication and deletion in the chromosomal region 17p11.2, respectively, and less frequently by other mutations in the peripheral myelin protein 22 (PMP22) gene. Despite being relatively common diseases, they haven't been previously studied in the Slovak population. Therefore, the aim of this study was to identify the spectrum and frequency of PMP22 mutations in the Slovak population by screening 119 families with CMT and 2 families with HNPP for causative mutations in this gene. The copy number determination of PMP22 resulted in the detection of CMT1A duplication in 40 families and the detection of HNPP deletion in 7 families, 6 of which were originally diagnosed as CMT. Consequent mutation screening of families without duplication or deletion using dHPLC and sequencing identified 6 single base changes (3 unpublished to date), from which only c.327C>A (Cys109X) present in one family was provably causative. These results confirm the leading role of PMP22 mutation analysis in the differential diagnosis of CMT and show that the spectrum and frequency of PMP22 mutations in the Slovak population is comparable to that seen in the global population.  相似文献   

8.
Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous disease affecting the peripheral nervous system that is caused by either the demyelination of Schwann cells or degeneration of the peripheral axon. Currently, there are no treatment options to improve the degeneration of peripheral nerves in CMT patients. In this research, we assessed the potency of farnesol for improving the demyelinating phenotype using an animal model of CMT type 1A. In vitro treatment with farnesol facilitated myelin gene expression and ameliorated the myelination defect caused by PMP22 overexpression, the major causative gene in CMT. In vivo administration of farnesol enhanced the peripheral neuropathic phenotype, as shown by rotarod performance in a mouse model of CMT1A. Electrophysiologically, farnesol-administered CMT1A mice exhibited increased motor nerve conduction velocity and compound muscle action potential compared with control mice. The number and diameter of myelinated axons were also increased by farnesol treatment. The expression level of myelin protein zero (MPZ) was increased, while that of the demyelination marker, neural cell adhesion molecule (NCAM), was reduced by farnesol administration. These data imply that farnesol is efficacious in ameliorating the demyelinating phenotype of CMT, and further elucidation of the underlying mechanisms of farnesol’s effect on myelination might provide a potent therapeutic strategy for the demyelinating type of CMT.  相似文献   

9.
Autosomal dominant Charcot-Marie-Tooth type-1A neuropathy (CMT1A) is a demyelinating peripheral nerve disorder that is commonly associated with a submicroscopic tandem DNA duplication of a 1.5-Mb region of 17p11.2p12 that contains the peripheral myelin gene PMP22. Clinical features of CMT1A include progressive distal muscle atrophy and weakness, foot and hand deformities, gait abnormalities, absent reflexes, and the completely penetrant electrophysiologic phenotype of symmetric reductions in motor nerve conduction velocities (NCVs). Molecular and fluorescence in situ hybridization (FISH) analyses were performed to determine the duplication status of the PMP22 gene in four patients with rare cytogenetic duplications of 17p. Neuropathologic features of CMT1A were seen in two of these four patients, in addition to the complex phenotype associated with 17p partial trisomy. Our findings show that the CMT1A phenotype of reduced NCV is specifically associated with PMP22 gene duplication, thus providing further support for the PMP22 gene dosage mechanism for CMT1A. Received: 3 May 1995 / Revised: 1 August 1995  相似文献   

10.
11.
12.
13.
Dichloroacetate (DCA) is an investigational drug for genetic mitochondrial diseases whose use has been mitigated by reversible peripheral neuropathy. We investigated the mechanism of DCA neurotoxicity using cultured rat Schwann cells (SCs) and dorsal root ganglia (DRG) neurons. Myelinating SC-DRG neuron co-cultures, isolated SCs and DRG neurons were exposed to 1-20 mm DCA for up to 12 days. In myelinating co-cultures, DCA caused a dose- and exposure-dependent decrease of myelination, as determined by immunolabeling and immunoblotting for myelin basic protein (MBP), protein zero (P0), myelin-associated glycoprotein (MAG) and peripheral myelin protein 22 (PMP22). Partial recovery of myelination occurred following a 10-day washout of DCA. DCA did not affect the steady-state levels of intermediate filament proteins, but promoted the formation of anti-neurofilament antibody reactive whirls. In isolated SC cultures, DCA decreased the expression of P0 and PMP22, while it increased the levels of p75(NTR) (neurotrophin receptor), as compared with non-DCA-treated samples. DCA had modest adverse effects on neuronal and glial cell vitality, as determined by the release of lactate dehydrogenase. These results demonstrate that DCA induces a reversible inhibition of myelin-related proteins that may account, at least in part, for its clinical peripheral neuropathic effects.  相似文献   

14.
Myers JK  Mobley CK  Sanders CR 《Biochemistry》2008,47(40):10620-10629
Dominant mutations in the tetraspan membrane protein peripheral myelin protein 22 (PMP22) are known to result in peripheral neuropathies such as Charcot-Marie-Tooth type 1A (CMT1A) disease via mechanisms that appear to be closely linked to misfolding of PMP22 in the membrane of the endoplasmic reticulum (ER). To characterize the molecular defects in PMP22, we examined the structure and stability of two human disease mutant forms of PMP22 that are also the basis for mouse models of peripheral neuropathies: G150D ( Trembler phenotype) and L16P ( Trembler-J phenotype). Circular dichroism and NMR spectroscopic studies indicated that, when folded, the three-dimensional structures of these disease-linked mutants are similar to that of the folded wild-type protein. However, the folded forms of the mutants were observed to be destabilized relative to the wild-type protein, with the L16P mutant being particularly unstable. The rate of refolding from an unfolded state was observed to be very slow for the wild-type protein, and no refolding was observed for either mutant. These results lead to the hypothesis that ER quality control recognizes the G150D and L16P mutant forms of PMP22 as defective through mechanisms closely related to their conformational instability and/or slow folding. It was also seen that wild-type PMP22 binds Zn(II) and Cu(II) with micromolar affinity, a property that may be important to the stability and function of this protein. Zn(II) was able to rescue the stability defect of the Tr mutant.  相似文献   

15.
Charcot-Marie-Tooth disease (CMT) with deafness is clinically distinct among the genetically heterogeneous group of CMT disorders. Molecular studies in a large family with autosomal dominant CMT and deafness have not been reported. The present molecular study involves a family with progressive features of CMT and deafness, originally reported by Kousseff et al. Genetic analysis of 70 individuals (31 affected, 28 unaffected, and 11 spouses) revealed linkage to markers on chromosome 17p11.2-p12, with a maximum LOD score of 9.01 for marker D17S1357 at a recombination fraction of .03. Haplotype analysis placed the CMT-deafness locus between markers D17S839 and D17S122, a approximately 0.6-Mb interval. This critical region lies within the CMT type 1A duplication region and excludes MYO15, a gene coding an unconventional myosin that causes a form of autosomal recessive deafness called DFNB3. Affected individuals from this family do not have the common 1.5-Mb duplication of CMT type 1A. Direct sequencing of the candidate peripheral myelin protein 22 (PMP22) gene detected a unique G-->C transversion in the heterozygous state in all affected individuals, at position 248 in coding exon 3, predicted to result in an Ala67Pro substitution in the second transmembrane domain of PMP22.  相似文献   

16.
Peripheral myelin protein-22 (PMP22) is primarily expressed in the compact myelin of the peripheral nervous system. Levels of PMP22 have to be tightly regulated since alterations of PMP22 levels by mutations of the PMP22 gene are responsible for >50 % of all patients with inherited peripheral neuropathies, including Charcot–Marie–Tooth type-1A (CMT1A) with trisomy of PMP22, hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of PMP22, and CMT1E with point mutations of PMP22. While overexpression and point-mutations of the PMP22 gene may produce gain-of-function phenotypes, deletion of PMP22 results in a loss-of-function phenotype that reveals the normal physiological functions of the PMP22 protein. In this article, we will review the basic genetics, biochemistry and molecular structure of PMP22, followed by discussion of the current understanding of pathogenic mechanisms involving in the inherited neuropathies with mutations in PMP22 gene.  相似文献   

17.
18.
Protein zero (P0) and peripheral myelin protein 22 (PMP22) are most prominently expressed by myelinating Schwann cells as components of compact myelin of the peripheral nervous system (PNS), and mutants affecting P0 and PMP22 show severe defects in myelination. Recent expression studies suggest a role of P0 and PMP22 not only in myelination but also during embryonic development. Here we show that, in dorsal root ganglia (DRG) and differentiated neural crest cultures, P0 is expressed in the glial lineage whereas PMP22 is also detectable in neurons. In addition, however, P0 and PMP22 are both expressed in a multipotent cell type isolated from early DRG. Like neural crest stem cells (NCSCs), this P0/PMP22-positive cell gives rise to glia, neurons and smooth-muscle-like cells in response to instructive extracellular cues. In cultures of differentiating neural crest, a similar multipotent cell type can be identified in which expression of P0 and PMP22 precedes the appearance of neural differentiation markers. Intriguingly, this P0/PMP22-positive progenitor exhibits fate restrictions dependent on the cellular context in which it is exposed to environmental signals. While single P0/PMP22-positive progenitor cells can generate smooth muscle in response to factors of the TGF-(beta) family, communities of P0/PMP22-positive cells interpret TGF-(beta) factors differently and produce neurons or undergo increased cell death instead of generating smooth-muscle-like cells. Our data are consistent with a model in which cellular association of postmigratory multipotent progenitors might be involved in the suppression of a non-neural fate in forming peripheral ganglia.  相似文献   

19.
Among 57 mutations in the peripheral myelin protein 22 gene (PMP22) identified so far in patients affected by Charcot-Marie-Tooth disease (CMT), only 8 have been shown to segregate with a mixed phenotype of CMT and hearing impairment. In this study, we report a new Ser1 12Arg mutation in thePMP22 gene, identified in a patient with early-onset CMT and slowly progressive hearing impairment beginning in the second decade of life. We suggest that the Ser1 12Arg mutation in thePMP22 gene might have a causative role in the early-onset CMT with hearing impairment. Thus, our study extends the spectrum of CMT phenotypes putatively associated withPMP22 gene mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号