首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The translocation of proteins to cyanobacterial cell envelope is made complex by the presence of a highly differentiated membrane system. To investigate the protein translocation in cyanobacterium Synechococcus PCC 7942 using the truncated ice nucleation protein (InpNC) from Pseudomonas syringae KCTC 1832, the green fluorescent protein (GFP) was fused in frame to the carboxyl-terminus of InpNC. The fluorescence of GFP was found almost entirely as a halo in the outer regions of cells which appeared to correspond to the periplasm as demonstrated by confocal laser scanning microscopy, however, GFP was not displayed on the outermost cell surface. Western blotting analysis revealed that InpNC-GFP fusion protein was partially degraded. The N-terminal domain of InpNC may be susceptible to protease attack; the remaining C-terminal domain conjugated with GFP lost the ability to direct translocation across outer membrane and to act as a surface display motif. The fluorescence intensity of cells with periplasmic GFP was approximately 6-fold lower than that of cells with cytoplasmic GFP. The successful translocation of the active GFP to the periplasm may provide a potential means to study the property of cyanobacterial periplasmic substances in response to environmental changes in a non-invasive manner.  相似文献   

2.
Summary The nucleotide sequence was determined for the bacterial ice nucleation gene, inaX, from Xanthomonas campestris pathovar translucens X56S. Comparison of the nucleotide sequence of inaX to the previously characterized ice nucleation genes, inaZ from Pseudomonas syringae S203, inaW from Pseudomonas fluorescens MS1650, and iceE from Erwinia herbicola M1 revealed a 65.8%, 67.8%, and 68.8% homology, respectively. Within the internal, repetitive domain of the translated product of inaX are 153 consecutive octapeptide repeat units.  相似文献   

3.
Certain plant-associating bacteria produce ice nucleation proteins (INPs) which allow the crystallization of water at high subzero temperatures. Many of these microbes are considered plant pathogens since the formed ice can damage tissues, allowing access to nutrients. Intriguingly, certain plants that host these bacteria synthesize antifreeze proteins (AFPs). Once freezing has occurred, plant AFPs likely function to inhibit the growth of large damaging ice crystals. However, we postulated that such AFPs might also serve as defensive mechanisms against bacterial-mediated ice nucleation. Recombinant AFP derived from the perennial ryegrass Lolium perenne (LpAFP) was combined with INP preparations originating from the grass epiphyte, Pseudomonas syringae. The presence of INPs had no effect on AFP activity, including thermal hysteresis and ice recrystallization inhibition. Strikingly, the ice nucleation point of the INP was depressed up to 1.9 °C in the presence of LpAFP, but a recombinant fish AFP did not lower the INP-imposed freezing point. Assays with mutant LpAFPs and the visualization of bacterially-displayed fluorescent plant AFP suggest that INP and LpAFP can interact. Thus, we postulate that in addition to controlling ice growth, plant AFPs may also function as a defensive strategy against the damaging effects of ice-nucleating bacteria.  相似文献   

4.
Summary The ice nucleation gene inaZ, from Pseudomonas syringae S203, was manipulated to produce a series of defined rearrangements in its coding sequence without changing the reading frame. The effects of these mutations on the ice nucleation phenotype were determined in a heterologous host, Escherichia coli K12. Deletions which disrupted the periodicity of 16 codons, in a repetitive region of inaZ, caused the frequencies of ice nuclei in the bacterial population to be significantly depressed; the nuclei with thresholds at warmer temperatures were most affected. In contrast, when the periodicity was left intact, deletions and duplications in the same region had only slight effects on nucleation activity. Deletions removing part or all of one of the nonrepetitive regions (that encoding the amino-terminal domain of the InaZ protein) did not abolish nucleation activity, but caused it to be limited to cooler threshold temperatures. In contrast, the non-repetitive carboxy-terminal domain of the InaZ protein was shown to be essential for ice nucleation at all temperatures. The differential requirements (for periodicity, and for the amino-terminus) in forming nuclei with different thresholds may be significant for understanding what determines the threshold temperature of an ice nucleus.  相似文献   

5.
Wowk B  Fahy GM 《Cryobiology》2002,44(1):14-23
The simple linear polymer polyglycerol (PGL) was found to apparently bind and inhibit the ice nucleating activity of proteins from the ice nucleating bacterium Pseudomonas syringae. PGL of molecular mass 750 Da was added to a solution consisting of 1 ppm freeze-dried P. syringae 31A in water. Differential ice nucleator spectra were determined by measuring the distribution of freezing temperatures in a population of 98 drops of 1 microL volume. The mean freezing temperature was lowered from -6.8 degrees C (control) to -8.0,-9.4,-12.5, and -13.4 degrees C for 0.001, 0.01, 0.1, and 1% w/w PGL concentrations, respectively (SE < 0.2 degrees C). PGL was found to be an ineffective inhibitor of seven defined organic ice nucleating agents, whereas the general ice nucleation inhibitor polyvinyl alcohol (PVA) was found to be effective against five of the seven. The activity of PGL therefore seems to be specific against bacterial ice nucleating protein. PGL alone was an ineffective inhibitor of ice nucleation in small volumes of environmental or laboratory water samples, suggesting that the numerical majority of ice nucleating contaminants in nature may be of nonbacterial origin. However, PGL was more effective than PVA at suppressing initial ice nucleation events in large volumes, suggesting a ubiquitous sparse background of bacterial ice nucleating proteins with high nucleation efficiency. The combination of PGL and PVA was particularly effective for reducing ice formation in solutions used for cryopreservation by vitrification.  相似文献   

6.
The gene encoding chitinase 92 (Chi92) from Aeromonas hydrophila JP10 has been displayed on the cell surface of Escherichia coli using the N-terminal region of ice nucleation proteins (INPN) as an anchoring motif. Immunofluorescence microscopy confirmed that Chi92 was anchored on the cell surface. Western blot analysis further identified the synthesis of INP derivatives containing the N-terminal domain INPN-Chi92 fusion protein of the expected size (112 kDa). Whole cell enzyme assay indicated that the displayed Chi92 showed enhanced catalytic activity toward colloidal chitin. In addition, the Chi92-displayed cells exhibited inhibitory effects on the mycelial growth of phytopathogenic fungi, including Fusarium decemcellulare, Sclerotium rolfsii, Rhizoctonia solani kuhn, and Fusarium oxysporum f.sp. melonis. This study suggested that the INP-based display systems can be used to express a large protein (90 kDa Chi92) on the cell surface of E. coli without growth inhibition. In addition, the display of chitinase on the cell surface may provide an attractive method for the development of biocontrol agents against phytopathogenic fungi.  相似文献   

7.
冰核细菌在我国北方玉米上的消长动态规律   总被引:4,自引:0,他引:4  
研究证明,菠萝欧文氏菌(Erwinia ananas)为我国北方玉米上优势冰核细菌种类,占总体INA细菌95 %以上。采用定量定性和定期取样分离方法,首次研究INA细菌在玉米上的消长动态规律。结果表明:玉米不同生长发育阶段是影响INA细菌在玉米上数量分布和消长动态变化的重要因素,以抽雄至成熟期间分布INA细菌数量最多,高达10 7~10 8CFU/ g,比拔节至抽雄期高出2~3个数量级,比苗期至拔节期高出4~5个数量级;同时还指出,玉米不同播期,对INA细菌数量分布影响显著,差异很大,其中INA细菌分布数量消长变化,以正常播种(1.9×10 7CFU / g) >中期播种(7.9×10 5CFU/ g) >晚期播种(5 .0×10 4 CFU/ g) ;研究指出,处于抽雄至成熟期间的玉米上分布的INA细菌数量最多,因此期间(8月上旬至9月下旬) ,气温逐渐降低,昼夜温差大,田间结露多,加上玉米处于成熟阶段,抗INA细菌能力弱,这些因素有利于低温(5~2 0℃范围内生长)型INA细菌生长繁殖,故使INA细菌分布数量最多  相似文献   

8.
We generated a recombinant 96-residue polypeptide corresponding to a sequence Tyr176-Gly273 of ice nucleation protein from Pseudomonas syringae (denoted INP96). INP96 exhibited an ability to shape an ice crystal, whose morphology is highly similar to the hexagonal-bipyramid generally identified for antifreeze protein. INP96 also showed a non-linear, concentration-dependent retardation of ice growth. Additionally, circular dichroism and NMR measurements suggested a local structural construction in INP96, which undergoes irreversible thermal denaturation. These data imply that a part of INP constructs a unique structure so as to interact with the ice crystal surfaces.  相似文献   

9.
Intracellular ice formation (IIF) plays a central role in cell damage during cryopreservation. We are investigating the factors which trigger IIF in Xenopus oocytes, with and without aquaporin water channels. Here, we report differential scanning calorimeter studies of Xenopus control oocytes which do not express aquaporins. Stage I to VI oocytes (which increase progressively in size) were investigated with emphasis on stage I and II because they are translucent and can also be studied under the cryomicroscope. Measurements were made in 1, 1.5, and 2M ethylene glycol (EG) in frog Ringers plus SnoMax. A multistep freezing protocol was used in which the samples were cooled until extracellular ice formation (EIF) occurred, partially remelted, slowly recooled through the EIF temperature, and then rapidly (10 degrees C/min) cooled. EIF in the 1, 1.5, and 2M EG occurred at -6.4, -7.8, and -8.9 degrees C, respectively. Freezing exotherms of individual stage I-VI oocytes were readily visible. A general trend was observed in which the IIF temperature of the early stage oocytes (I-III) was well below T(EIF) while the later stages (IV-VI) froze at temperatures much closer to T(EIF). Thus, in 1.5M EG, T(IIF) was -21.1, -25, and -26.6 degrees C in stages I-III, but was -17 and -8.5 degrees C for stage IV and V-VI. Concurrently, the percentage of oocytes in which IIF was observed fell dramatically from a high of 40 to 72% in early stages (I-III) to a low of only 7% in stage V-VI because, particularly in the later stages, IIF was hidden in the EIF exotherm. We conclude that early stage oocytes are a good model system in which to investigate modulators of IIF, but that late stage oocytes are damaged during EIF and infrequently supercool.  相似文献   

10.
The frost sensitivity of Citrus sinensis in relation to the presence of biogenic ice nuclei was studied. In commercially managed citrus groves the ice nucleation active (INA) bacterium Pseudomonas syringae reached 6 × 104 colony forming units (CFU) leaf−1, a population sufficiently high to catalyze ice formation. However, a transient loss of bacterial nucleation activity was noticeable at subzero field temperatures, followed by resumption as temperatures rose. This loss was apparently due to a temporary transition of INA to ice nucleation inactive (INI) bacteria. Field application of Bordeaux mixture, copper hydroxide, streptomycin, and 2-hydroxypropylmethanethiolsulfonate (HPMTS), resulted in reduction of INA bacterial populations to detectability (≤ 102 CFU leaf−1) limits. However, the corresponding reduction in ice nucleation events in treated samples as compared to controls at nucleation temperature ≥−3°C was not as dramatic. It ranged from approximately 7% in samples treated with the bactericide HPMTS, to 35% in samples treated with chemicals possessing combined bactericidal - fungicidal action (coppers). Since a quantitative relationship exists between ice nucleation events on individual leaves and the INA bacterial populations harbored by these leaves, these results suggest the co-existence of a bacterial and a proteinaceous, yet non-bacterial ice nucleating source in citrus, both active at ≥−3°C.  相似文献   

11.
Maize is a typical C4 plant of the NADP-malic enzyme type, and its high productivity is supported by the C4 photosynthetic cycle, which concentrates atmospheric CO2 in the leaves. The plant exhibits superior photosynthetic ability under high light and high temperature, but under cold conditions the photosynthetic rate is significantly reduced. Pyruvate orthophosphate dikinase (PPDK), a key enzyme of the C4 pathway in maize, loses its activity below about 12 °C by dissociation of the tetramer and it is considered as one possible cause of the reduction in the photosynthetic rate of maize at low temperatures. To improve the cold stability of the enzyme, we introduced a cold-tolerant PPDK cDNA isolated from Flaveria brownii into maize by Agrobacterium-mediated transformation. We obtained higher levels of expression by using a double intron cassette and a chimeric cDNA made from F. bidentis and F. brownii with a maximum content of 1mg/g fresh weight. In leaves of transgenic maize, PPDK molecules produced from the transgene were detected in cold-tolerant homotetramers or in heterotetramers of intermediate cold susceptibility formed with the internal PPDK. Simultaneous introduction of an antisense gene for maize PPDK generated plants in which the ratio of heterolologous and endogenous PPDK was greatly improved. Arrhenius plot analysis of the enzyme extracted from one such plant revealed that the break point was shifted about 3 °C lower than that of the wild type.  相似文献   

12.
Survival of medium sized nymphal stages of redlegged earth mite Halotydeus destructor (Tucker) (mainly tritonymphs and deutonymphs) stored under low temperature (1.5°C) in sealed plastic boxes remained more than 50% after 12 days of storage, with some mites surviving for up to eight weeks. Adding fresh subclover leaves into the storage box increased the survival rate of mites from 12% to 28%, 19 days after the storage started. Mites stored for two weeks at low temperatures showed feeding activity in a screening experiment similar to mites collected directly from the field. This indicated that cold storage of redlegged earth mite can be used to build up mite numbers for large screening experiments, or to extend the period of availability of mites collected from the field. However, their reproductive ability was greatly reduced after three weeks at low temperature. Thus, care should be taken when using mites for experiments measuring reproduction. The implications of low temperatures for reducing field populations of mites in midwinter are also discussed.  相似文献   

13.
Summary An analysis of the progeny of primary transgenic pea plants in terms of transmission of the transferred DNA, fertility and morphology is presented. A transformation system developed for pea that allows the regeneration of fertile transgenic pea plants from calli selected for antibiotic resistance was used. Expiants from axenic shoot cultures were co-cultivated with a nononcogenic Agrobacterium tumefaciens strain carrying a gene encoding hygromycin phosphotransferase as selectable marker, and transformed callus could be selected on callus-inducing media containing 15 mg/l hygromycin. After several passages on regeneration medium, shoot organogenesis could be reproducibly induced on the hygromycin resistant calli, and the regenerated shoots could subsequently be rooted and transferred to the greenhouse, where they proceeded to flower and set seed. The transmission of the introduced gene into the progeny of the regenerated transgenic plants was studied over two generations, and stable transmission was shown to take place. The transgenic nature of the calli and regenerated plants and their progeny was confirmed by DNA and RNA analysis. The DNA and ploidy levels of the progeny plants and primary regenerants were studied by chromosome analysis, and the offspring of the primary transformants were evaluated morphologically.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - BA 6-ben-zyladenine - hpt hygromycin phosphotransferase gene - IAA indole acetic acid, kin, kinetin - NAA -naphtalene acetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

14.
The expression of a bacterial cytokinin biosynthesis gene (PI-II-ipt) in Nicotiana plumbaginifolia Viviani plants has been correlated with enhanced resistance to Manduca sexta and Myzus persicae. We expressed the PI-II-ipt gene in N. tabacum and Lycopersicon esculentum and observed similar antifeedent effects with the transgenic tobacco but not tomato. A 30 to 50 % reduction in larval weight gain was observed with some of the tomato plants but these results could not be repeated consistently. Leaf surface extracts from transgenic N. plumbaginifolia leaves killed 100 % of M. sexta second instars at concentrations of 0.05 % (w/v) whereas the N. tabacum extracts were at least 20 times less active. Extract suspensions were stable for up to 2 days at ambient temperatures below 42 °C and for at least 3 months at 4 °C when stored in the dark. HPLC analysis of the N. plumbaginifolia extracts yielded an active fraction that reduced hatching of M. sexta eggs by 30 % and killed first, second and third instars within 24, 48 and 72 hours of exposure, respectively. The activity appears to be associated with oxygen-containing aliphatic compounds, possibly diterpenes, as analyzed by TLC, UV absorption and fragmentation with EIMS. Based on the partial characterization of this activity, the production, secretion or accumulation of secondary metabolites in leaves of cytokinin producing PI-II-ipt N. plumbagini-folia plants appears to be responsible for the observed insect resistance.  相似文献   

15.
The deposition of surface(farinose)fiavonoids on aerial parts of some Primula species is a well-documented but poorly understood phenomenon.Here,we show thatfiavonoid deposition on the leaves and winter buds may contribute strongly to preventing freezing damage in these plants.The ice nucleation temperature of fairy primrose(Primula malacoides)leaves covered with naturalfiavone was approximately 6°C lower compared to those that had theirfiavone artificially removed.Additionally,farinosefiavonoids on the leaves reduced subsequent electrolyte leakage(EL)from the cells exposed to freezing temperatures.Interestingly,exogenous application offiavone at4 mg/g fresh weight to P.malacoides leaves,which had the originalfiavone mechanically removed,restored freezing tolerance,and diminished EL from the cells to pretreatment values.Our results suggest that farinosefiavonoids may function as mediators of freezing tolerance in P.malacoides,and exogenous application offiavone could be used to reduce freezing damage during sudden but predictable frost events in other plant species.  相似文献   

16.
Plasmid DNA (pBI-P5CS), containing the selectable neomycin phosphotransferase-II `npt II' gene for kanamycin resistance and the reporter -glucuronidase `gus' gene as well as the Vigna aconitifolia 1-pyrroline-5-carboxylate synthetase `P5CS' cDNA that encodes enzymes required for the biosynthesis of proline, was delivered into wheat plants using Agrobacterium-mediated gene transfer via indirect pollen system. Southern, northern and western blot analysis demonstrated that the foreign gene had been transferred, expressed and integrated into wheat chromosomal DNA. Salinity test indicated that proline acts as an osmoprotectant and its overproduction in transgenic wheat plants results in the increased tolerance to salt.  相似文献   

17.
Prenylated polyphenols are secondary metabolites beneficial for human health because of their various biological activities. Metabolic engineering was performed using Streptomyces and Sophora flavescens prenyltransferase genes to produce prenylated polyphenols in transgenic legume plants. Three Streptomyces genes, NphB, SCO7190, and NovQ, whose gene products have broad substrate specificity, were overexpressed in a model legume, Lotus japonicus, in the cytosol, plastids or mitochondria with modification to induce the protein localization. Two plant genes, N8DT and G6DT, from Sophora flavescens whose gene products show narrow substrate specificity were also overexpressed in Lotus japonicus. Prenylated polyphenols were undetectable in these plants; however, supplementation of a flavonoid substrate resulted in the production of prenylated polyphenols such as 7-O-geranylgenistein, 6-dimethylallylnaringenin, 6-dimethylallylgenistein, 8-dimethylallynaringenin, and 6-dimethylallylgenistein in transgenic plants. Although transformants with the native NovQ did not produce prenylated polyphenols, modification of its codon usage led to the production of 6-dimethylallylnaringenin and 6-dimethylallylgenistein in transformants following naringenin supplementation. Prenylated polyphenols were not produced in mitochondrial-targeted transformants even under substrate feeding. SCO7190 was also expressed in soybean, and dimethylallylapigenin and dimethylallyldaidzein were produced by supplementing naringenin. This study demonstrated the potential for the production of novel prenylated polyphenols in transgenic plants. In particular, the enzymatic properties of prenyltransferases seemed to be altered in transgenic plants in a host species-dependent manner.  相似文献   

18.

1. 1.Although body ice content is an important variable affecting freeze tolerance, present calorimetric methods for its measurement necessarily require the termination of a freezing protocol.

2. 2.A simple iterative model, based on the colligative properties of solutions and requiring precise measurements of only equilibrium freezing point (of the unfrozen organism) and of core body temperature, allows estimation of the percentage of body water frozen at any time during a freezing episode.

3. 3.This model can also predict the lethal temperature for a freezing ectotherm, assuming that death occurs due to osmotic dehydration when 67% (of any other known lethal fraction) of the body water is frozen.

4. 4.The basic model is easily extended to evaluate the effects of variables such as: body mass, initial body water content, initial osmotic concentration, and test chamber microenvironment.

5. 5.This model is not intended to supplant existing more exact biophysical models of freezing kinetics. Rather it is proposed as a first approximation which is generally supported by published data and which should be of significant practical value for investigators of freeze tolerant organisms.

Author Keywords: Freezing model; freeze tolerance; ice content; supercooling; cold tolerance; calorimetry  相似文献   


19.
Cvrcková F  Rivero F  Bavlnka B 《Protoplasma》2004,224(1-2):15-31
Summary. The actin cytoskeleton plays a central part in the dynamic organization of eukaryotic cell structure. Nucleation of actin filaments is a crucial step in the establishment of new cytoskeletal structures or modification of existing ones, providing abundant targets for regulatory processes. A substantial part of our understanding of actin nucleation derives from studies on yeast and metazoan cells. However, recent advances in structural and functional genome analysis in less traditional models, such as plants or Dictyostelium discoideum, provide an emerging picture of an evolutionarily conserved core of at least two actin nucleation mechanisms, one mediated by the Arp2/3 complex and the other one by the formin-based module. A considerable degree of conservation is found also in the systems controlling the balance between filamentous and globular actin (profilin, actin-depolymerizing factor/cofilin) and even in certain regulatory aspects, such as the involvement of Rho-related small GTPases. Identification of such conserved elements provides a prerequisite for the characterization of evolutionarily variable aspects of actin regulation which may be responsible for the rich morphological diversity of eukaryotic cells.Correspondence and reprints: Department of Plant Physiology, Faculty of Sciences, Charles University, Vininá 5, 128 44 Praha 2, Czech Republic.  相似文献   

20.
Transformation of plants is a popular tool for modifying various desirable traits. Marker genes, like those encoding for bacterial β-glucuronidase (GUS), firefly luciferase (LUC) or jellyfish green fluorescent protein (GFP) have been shown to be very useful for establishing of efficient transformation protocols. Due to favourable properties such as no need of exogenous substrates and easy visualization, GFP has been found to be superior in to other markers in many cases. However, the use of GFP fluorescence is associated with some obstacles, mostly related to the diminishing of green fluorescence in older tissues, variation in fluorescence levels among different tissues and organs, and occasional interference with other fluorescing compounds in plants. This paper briefly summarizes basic GFP properties and applications, and describes in more detail the contribution of GFP to the establishment, evaluation and improvement of transformation procedures for plants. Moreover, features and possible obstacles associated with monitoring GFP fluorescence are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号