共查询到20条相似文献,搜索用时 31 毫秒
1.
Synaptic vesicle endocytosis is believed to require calcium and the GTPase dynamin. We now report a form of rapid endocytosis (RE) in dorsal root ganglion (DRG) neurons that, unlike previously described forms of endocytosis, is independent of calcium and dynamin. The RE is tightly coupled to calcium-independent but voltage-dependent secretion (CIVDS). Using FM dye and capacitance measurements, we show that membrane depolarization induces RE in the absence of calcium. Inhibition of dynamin function does not affect RE. The magnitude of RE is proportional to that of preceding CIVDS and stimulation frequency. Inhibitors of protein kinase A (PKA) suppress RE induced by high-frequency depolarization, while PKA activators enhance RE induced by low-frequency depolarization. Biochemical experiments demonstrate that depolarization directly upregulates PKA activity in calcium-free medium. These results reveal a calcium- and dynamin-independent form of endocytosis, which is controlled by neuronal activity and PKA-dependent phosphorylation, in DRG neurons. 相似文献
2.
The internalization of various cargo proteins and lipids from the mammalian cell surface occurs through the clathrin and lipid-raft endocytic pathways. Protein-lipid and protein-protein interactions control the targeting of signalling molecules and their partners to various specialized membrane compartments in these pathways. This functions to control the activity of signalling cascades and the termination of signalling events, and therefore has a key role in defining how a cell responds to its environment. 相似文献
3.
Delva E Jennings JM Calkins CC Kottke MD Faundez V Kowalczyk AP 《The Journal of biological chemistry》2008,283(26):18303-18313
Pemphigus vulgaris (PV) is a life-threatening autoimmune disease characterized by oral mucosal erosions and epidermal blistering. The autoantibodies generated target the desmosomal cadherin desmoglein-3 (Dsg3). Previous studies demonstrate that upon PV IgG binding, Dsg3 is internalized and enters an endo-lysosomal pathway where it is degraded. To define the endocytic machinery involved in PV IgG-induced Dsg3 internalization, human keratinocytes were incubated with PV IgG, and various tools were used to perturb distinct endocytic pathways. The PV IgG.Dsg3 complex failed to colocalize with clathrin, and inhibitors of clathrin- and dynamin-dependent pathways had little or no effect on Dsg3 internalization. In contrast, cholesterol binding agents such as filipin and nystatin and the tyrosine kinase inhibitor genistein dramatically inhibited Dsg3 internalization. Furthermore, the Dsg3 cytoplasmic tail specified sensitivity to these inhibitors. Moreover, inhibition of Dsg3 endocytosis with genistein prevented disruption of desmosomes and loss of adhesion in the presence of PV IgG. Altogether, these results suggest that PV IgG-induced Dsg3 internalization is mediated through a clathrin- and dynamin-independent pathway and that Dsg3 endocytosis is tightly coupled to the pathogenic activity of PV IgG. 相似文献
4.
Abbie E. Fearon Charlotte R. Gould Richard P. Grose 《The international journal of biochemistry & cell biology》2013,45(12):2832-2842
FGFs, in a complex with their receptors (FGFRs) and heparan sulfate (HS), are responsible for a range of cellular functions, from embryogenesis to metabolism. Both germ line and somatic FGFR mutations are known to play a role in a range of diseases, most notably craniosynestosis dysplasias, dwarfism and cancer. Because of the ability of FGFR signalling to induce cell proliferation, migration and survival, FGFRs are readily co-opted by cancer cells. Mutations in, and amplifications of, these receptors are found in a range of cancers with some of the most striking clinical findings relating to their contribution to pathogenesis and progression of female cancers. Here, we outline the molecular mechanisms of FGFR signalling and discuss the role of this pathway in women's cancers, focusing on breast, endometrial, ovarian and cervical carcinomas, and their associated preclinical and clinical data. We also address the rationale for therapeutic intervention and the need for FGFR-targeted therapy to selectively target cancer cells in view of the fundamental roles of FGF signalling in normal physiology. 相似文献
5.
Major histocompatibility complex (MHC) class II molecules (MHC-II) function by binding antigenic peptides and displaying these peptides on the surface of antigen presenting cells (APCs) for recognition by peptide-MHC-II (pMHC-II)-specific CD4 T cells. It is known that cell surface MHC-II can internalize, exchange antigenic peptides in endosomes, and rapidly recycle back to the plasma membrane; however, the molecular machinery and trafficking pathways utilized by internalizing/recycling MHC-II have not been identified. We now demonstrate that unlike newly synthesized invariant chain-associated MHC-II, mature cell surface pMHC-II complexes internalize following clathrin-, AP-2-, and dynamin-independent endocytosis pathways. Immunofluorescence microscopy of MHC-II expressing HeLa-CIITA cells, human B cells, and human DCs revealed that pMHC enters Arf6(+)Rab35(+)EHD1(+) tubular endosomes following endocytosis. These data contrast the internalization pathways followed by newly synthesized and peptide-loaded MHC-II molecules and demonstrates that cell surface pMHC-II internalize and rapidly recycle from early endocytic compartments in tubular endosomes. 相似文献
6.
FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer. 相似文献
7.
Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae 下载免费PDF全文
Damm EM Pelkmans L Kartenbeck J Mezzacasa A Kurzchalia T Helenius A 《The Journal of cell biology》2005,168(3):477-488
Simian Virus 40 (SV40) has been shown to enter host cells by caveolar endocytosis followed by transport via caveosomes to the endoplasmic reticulum (ER). Using a caveolin-1 (cav-1)-deficient cell line (human hepatoma 7) and embryonic fibroblasts from a cav-1 knockout mouse, we found that in the absence of caveolae, but also in wild-type embryonic fibroblasts, the virus exploits an alternative, cav-1-independent pathway. Internalization was rapid (t1/2 = 20 min) and cholesterol and tyrosine kinase dependent but independent of clathrin, dynamin II, and ARF6. The viruses were internalized in small, tight-fitting vesicles and transported to membrane-bounded, pH-neutral organelles similar to caveosomes but devoid of cav-1 and -2. The viruses were next transferred by microtubule-dependent vesicular transport to the ER, a step that was required for infectivity. Our results revealed the existence of a virus-activated endocytic pathway from the plasma membrane to the ER that involves neither clathrin nor caveolae and that can be activated also in the presence of cav-1. 相似文献
8.
Wnts compromise a large family of secreted and hydrophobic glycoproteins that control a variety of developmental and adult processes in all metazoan organisms. Recent advances in the field of Wnt signalling have revealed that Wnt activates multiple intracellular cascades, resulting in the regulation of cellular proliferation, differentiation, migration and polarity. However, it is not clear how Wnt activates these pathways after it binds to the receptors. It has been shown that Wnt and its antagonist Dickkopf are internalized with their receptors. This review highlights distinct endocytic pathways correlate with specificity of Wnt signalling events. 相似文献
9.
Le Borgne R 《Current opinion in cell biology》2006,18(2):213-222
Cell-cell signalling is an essential process in the formation of multicellular organisms. Notch is the receptor of an evolutionarily conserved signalling pathway regulating numerous developmental decisions. Indeed, its misregulation is linked to multiple developmental and physiological disorders. Notch and its ligands are distributed widely throughout development, yet Notch activity is highly controlled and restricted in time and space. Recent advances have highlighted that endocytosis followed by endosomal sorting of both the Notch receptor and its ligands is an essential mechanism by which Notch-mediated signalling is developmentally controlled. 相似文献
10.
Recently, fibroblast growth factors are identified to play a vital role in the development and progression of human pancreatic cancer. FGF pathway is critical involved in numerous cellular processes through regulation of its downstream targets, including proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. In this review article, we describe recent advances of FGFR signalling pathway in pancreatic carcinogenesis and progression. Moreover, we highlight the available chemical inhibitors of FGFR pathway for potential treatment of pancreatic cancer. Furthermore, we discuss whether targeting FGFR pathway is a novel therapeutic strategy for pancreatic cancer clinical management. 相似文献
11.
Suppressor of T-cell receptor signalling 1 and 2 differentially regulate endocytosis and signalling of receptor tyrosine kinases 总被引:2,自引:0,他引:2
Suppressor of T-cell receptor signalling 1 and 2 (Sts-1 and 2) negatively regulate the endocytosis of receptor tyrosine kinases. The UBA domain of Sts-2 and SH3-dependent Cbl-binding are required for this function. Sts-1 and -2 also possess a PGM domain, which was recently reported to exhibit tyrosine phosphatase activity. Here, we demonstrate that the PGM of Sts-1, but not of Sts-2, dephosphorylates the EGFR at multiple tyrosines thereby terminating its signalling and endocytosis. In contrast to Sts-2 the UBA of Sts-1 did not contribute significantly to receptor stabilization. Thus, although Sts-1 and Sts-2 are structurally highly homologous and both inhibit ligand-induced EGFR degradation, their mechanisms of action differ significantly. As a consequence, Sts-1-containing receptor complexes are inactive, whereas Sts-2-containing complexes are signalling competent. 相似文献
12.
Pelkmans L 《Current opinion in microbiology》2005,8(3):331-337
It is well known that mammalian viruses hijack the cellular signalling and internalization machineries to enter and to infect their host cells; however, only in the past six years have researchers started to follow individual virus particles and to investigate the events that they induce in living cells. The relative ease of imaging individual virus particles with time-lapse microscopy, despite being limited by light-diffraction, allows for specific and local kinetic analysis of individual events in signalling, cytoskeleton reorganization and endocytosis. Furthermore, virus infection is an easy-to-use endpoint readout, which is ideally suited for functional genomics approaches. The combined information from these studies will be crucial for the development of models that describe the underlying systems of cellular signalling, cytoskeleton reorganization and membrane trafficking during virus entry. 相似文献
13.
Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis 下载免费PDF全文
Notch is the receptor in a signalling pathway that operates in a diverse spectrum of developmental processes. Its ligands (e.g. Serrate) are transmembrane proteins whose signalling competence is regulated by the endocytosis-promoting E3 ubiquitin ligases, Mindbomb1 and Neuralized. The ligands also inhibit Notch present in the same cell (cis-inhibition). Here, we identify two conserved motifs in the intracellular domain of Serrate that are required for efficient endocytosis. The first, a dileucine motif, is dispensable for trans-activation and cis-inhibition despite the endocytic defect, demonstrating that signalling can be separated from bulk endocytosis. The second, a novel motif, is necessary for interactions with Mindbomb1/Neuralized and is strictly required for Serrate to trans-activate and internalise efficiently but not for it to inhibit Notch signalling. Cis-inhibition is compromised when an ER retention signal is added to Serrate, or when the levels of Neuralized are increased, and together these data indicate that cis-inhibitory interactions occur at the cell surface. The balance of ubiquitinated/unubiquitinated ligand will thus affect the signalling capacity of the cell at several levels. 相似文献
14.
15.
Recent studies show that Eph receptors act mainly through the regulation of actin reorganization. Here, we show a novel mode of action for EphB receptors. We identify synaptojanin 1 - a phosphatidylinositol 5'-phosphatase that is involved in clathrin-mediated endocytosis - as a physiological substrate for EphB2. EphB2 causes tyrosine phosphorylation in the proline-rich domain of synaptojanin 1, and inhibits both the interaction with endophilin and the 5'-phosphatase activity of synaptojanin 1. Treatment with the EphB ligand, ephrinB2, elevates the cellular level of phosphatidylinositol 4,5-bisphosphate and promotes transferrin uptake. A kinase inactive mutant of EphB2 and a phosphorylation site mutant of synaptojanin 1 both neutralize the increase of transferrin uptake after ephrinB2 treatment. These mutants also inhibit AMPA glutamate receptor endocytosis in hippocampal neurons. Interestingly, incorporated transferrin does not reach endosomes, suggesting dual effects of EphB signalling on the early and late phases of clathrin-mediated endocytosis. Our results indicate that ephrinB-EphB signalling regulates clathrin-mediated endocytosis in various cellular contexts by influencing protein interactions and phosphoinositide turnover through tyrosine phosphorylation of synaptojanin 1. 相似文献
16.
Interplay between FGFR2b‐induced autophagy and phagocytosis: role of PLCγ‐mediated signalling 下载免费PDF全文
Monica Nanni Danilo Ranieri Salvatore Raffa Maria Rosaria Torrisi Francesca Belleudi 《Journal of cellular and molecular medicine》2018,22(1):668-683
Signalling of the epithelial splicing variant of the fibroblast growth factor receptor 2 (FGFR2b) induces both autophagy and phagocytosis in human keratinocytes. Here, we investigated, in the cell model of HaCaT keratinocytes, whether the two processes might be related and the possible involvement of PLCγ signalling. Using fluorescence and electron microscopy, we demonstrated that the FGFR2b‐induced phagocytosis and autophagy involve converging autophagosomal and phagosomal compartments. Moreover, the forced expression of FGFR2b signalling mutants and the use of specific inhibitors of FGFR2b substrates showed that the receptor‐triggered autophagy requires PLCγ signalling, which in turn activates JNK1 via PKCδ. Finally, we found that in primary human keratinocytes derived from light or dark pigmented skin and expressing different levels of FGFR2b, the rate of phagocytosis and autophagy and the convergence of the two intracellular pathways are dependent on the level of receptor expression, suggesting that FGFR2b signalling would control in vivo the number of melanosomes in keratinocytes, determining skin pigmentation. 相似文献
17.
The sites of targeted therapy are limited and need to be expanded. The FGF‐FGFR signalling plays pivotal roles in the oncogenic process, and FGF/FGFR inhibitors are a promising method to treat FGFR‐altered tumours. The VEGF‐VEGFR signalling is the most crucial pathway to induce angiogenesis, and inhibiting this cascade has already got success in treating tumours. While both their efficacy and antitumour spectrum are limited, combining FGF/FGFR inhibitors with VEGF/VEGFR inhibitors are an excellent way to optimize the curative effect and expand the antitumour range because their combination can target both tumour cells and the tumour microenvironment. In addition, biomarkers need to be developed to predict the efficacy, and combination with immune checkpoint inhibitors is a promising direction in the future. The article will discuss the FGF‐FGFR signalling pathway, the VEGF‐VEGFR signalling pathway, the rationale of combining these two signalling pathways and recent small‐molecule FGFR/VEGFR inhibitors based on clinical trials. 相似文献
18.
Madeline Hayes Sebastian Guettler Ian Clarke Frank Sicheri Peter Dirks Brian Ciruna Daniela Rotin 《The EMBO journal》2011,30(16):3259-3273
Fibroblast growth factor receptor 1 (FGFR1) has critical roles in cellular proliferation and differentiation during animal development and adult homeostasis. Here, we show that human Nedd4 (Nedd4‐1), an E3 ubiquitin ligase comprised of a C2 domain, 4 WW domains, and a Hect domain, regulates endocytosis and signalling of FGFR1. Nedd4‐1 binds directly to and ubiquitylates activated FGFR1, by interacting primarily via its WW3 domain with a novel non‐canonical sequence (non‐PY motif) on FGFR1. Deletion of this recognition motif (FGFR1‐Δ6) abolishes Nedd4‐1 binding and receptor ubiquitylation, and impairs endocytosis of activated receptor, as also observed upon Nedd4‐1 knockdown. Accordingly, FGFR1‐Δ6, or Nedd4‐1 knockdown, exhibits sustained FGF‐dependent receptor Tyr phosphorylation and downstream signalling (activation of FRS2α, Akt, Erk1/2, and PLCγ). Expression of FGFR1‐Δ6 in human embryonic neural stem cells strongly promotes FGF2‐dependent neuronal differentiation. Furthermore, expression of this FGFR1‐Δ6 mutant in zebrafish embryos disrupts anterior neuronal patterning (head development), consistent with excessive FGFR1 signalling. These results identify Nedd4‐1 as a key regulator of FGFR1 endocytosis and signalling during neuronal differentiation and embryonic development. 相似文献
19.