首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is the first to describe age-related changes in a large cohort of patients with Phelan–McDermid syndrome (PMS), also known as 22q13 deletion syndrome. Over a follow-up period of up to 12 years, physical examinations and structured interviews were conducted for 201 individuals diagnosed with PMS, 120 patients had a focused, high-resolution 22q12q13 array CGH, and 92 patients’ deletions were assessed for parent-of-origin. 22q13 genomic anomalies include terminal deletions of 22q13 (89 %), terminal deletions and interstitial duplications (9 %), and interstitial deletions (2 %). Considering different age groups, in older patients, behavioral problems tended to subside, developmental abilities improved, and some features such as large or fleshy hands, full or puffy eyelids, hypotonia, lax ligaments, and hyperextensible joints were less frequent. However, the proportion reporting an autism spectrum disorder, seizures, and cellulitis, or presenting with lymphedema or abnormal reflexes increased with age. Some neurologic and dysmorphic features such as speech and developmental delay and macrocephaly correlated with deletion size. Deletion sizes in more recently diagnosed patients tend to be smaller than those diagnosed a decade earlier. Seventy-three percent of de novo deletions were of paternal origin. Seizures were reported three times more often among patients with a de novo deletion of the maternal rather than paternal chromosome 22. This analysis improves the understanding of the clinical presentation and natural history of PMS and can serve as a reference for the prevalence of clinical features in the syndrome.  相似文献   

2.
Monosomy 1p36 results from a variety of chromosome rearrangements, including terminal deletions, interstitial deletions, derivative chromosomes, and complex rearrangements. Our previous molecular studies on a large cohort of monosomy 1p36 subjects suggest that a significant percentage of terminal deletions of 1p36 are stabilized by the acquisition of telomeric sequences from other chromosome ends, forming derivative chromosomes (i.e., telomere capture). However, the molecular mechanism(s) that results in and/or stabilizes terminal deletions of 1p36 by telomere capture is poorly understood. In this report, we have mapped the translocation breakpoints in three subjects with der(1)t(1;1)(p36;q44) chromosomes by fluorescence in situ hybridization (FISH). These results indicate that the breakpoint locations are variable in all three subjects, with no common 1p deletion or 1q translocation breakpoints. In addition, sequence analysis of the 1p and 1q breakpoint-containing clones did not identify homologous sequences or low-copy repeats in the breakpoint regions, suggesting that nonallelic homologous recombination did not play a role in mediating these rearrangements. Microsatellite marker analysis indicates that two of the three derivative chromosomes were formed by intra-chromosomal rearrangements. These data are consistent with a number of recent reports in other model organisms that suggest break-induced replication at the site of a double-strand break may act as a mechanism of telomere capture by generating nonreciprocal translocations from terminally deleted chromosomes. Alternative models are also discussed.  相似文献   

3.
Myung K  Kolodner RD 《DNA Repair》2003,2(3):243-258
The accumulation of gross chromosomal rearrangements (GCRs) is a characteristic of many types of cancer cells, although it is unclear what defects cause these rearrangements and how the different types of GCRs observed are formed. In the present study, we have used a Saccharomyces cerevisiae system for measuring GCRs to analyze the ability of a variety of DNA damaging agents to induce GCRs. The two most potent inducers of GCRs observed were methyl methane sulfonate (MMS) and HO-endonuclease-induced double strand breaks (DSBs). Bleomycin, camptothecan and gamma-irradiation induced intermediate levels of GCRs and cisplatin induced very low levels of GCRs whereas N-methyl-NPRIME;-nitro-N-nitrosoguanidine (MNNG) and ethyl methane sulfonate (EMS) primarily induced base substitution mutations. MMS treatment primarily induced rearrangements in which the end of a chromosome was deleted and a new telomere was added (telomere additions) and also induced translocations. Consistent with this GCR spectrum, the formation of MMS-induced GCRs was primarily dependent on telomere maintenance functions and were completely eliminated in mutants that were defective for both telomere maintenance functions and non-homologous end joining (NHEJ). In contrast, HO-endonuclease DSBs induced mostly translocations and interstitial deletions whereas few telomere additions were observed. Genetic analysis indicated that HO DSB-induced GCRs were suppressed by a number of pathways including the DNA damage checkpoints, DSB repair pathways and NHEJ.  相似文献   

4.
Telomere fusion is an important mutational event that has the potential to lead to large-scale genomic rearrangements of the types frequently observed in cancer. We have developed single-molecule approaches to detect, isolate and characterize the DNA sequence of telomere fusion events in human cells. Using these assays, we have detected complex fusion events that include fusion with interstitial loci adjacent to fragile sites, intra-molecular rearrangements, and fusion events involving the telomeres of both arms of the same chromosome consistent with ring chromosome formation. All fusion events were characterized by the deletion of at least one of the telomeres extending into the sub-telomeric DNA up to 5.6 kb; close to the limit of our assays. The deletion profile indicates that deletion may extend further into the chromosome. Short patches of DNA sequence homology with a G:C bias were observed at the fusion point in 60% of events. The distinct profile that accompanies telomere fusion may be a characteristic of the end-joining processes involved in the fusion event.  相似文献   

5.
Kurahashi H  Inagaki H  Ohye T  Kogo H  Kato T  Emanuel BS 《DNA Repair》2006,5(9-10):1136-1145
Recently, it has emerged that palindrome-mediated genomic instability contributes to a diverse group of genomic rearrangements including translocations, deletions, and amplifications. One of the best studied examples is the recurrent t(11;22) constitutional translocation in humans that has been well documented to be mediated by palindromic AT-rich repeats (PATRRs) on chromosomes 11q23 and 22q11. De novo examples of the translocation are detected at a high frequency in sperm samples from normal healthy males, but not in lymphoblasts or fibroblasts. Cloned breakpoint sequences preferentially form a cruciform configuration in vitro. Analysis of the junction fragments implicates frequent double-strand-breaks (DSBs) at the center of both palindromic regions, followed by repair through the non-homologous end joining (NHEJ) pathway. We propose that the PATRR adopts a cruciform structure in male meiotic cells, creating genomic instability that leads to the recurrent translocation.  相似文献   

6.
Gong X  Jiang YW  Zhang X  An Y  Zhang J  Wu Y  Wang J  Sun Y  Liu Y  Gao X  Shen Y  Wu X  Qiu Z  Jin L  Wu BL  Wang H 《PloS one》2012,7(4):e34739
Intellectual disability (ID) is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC) test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%), while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT) or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development.  相似文献   

7.
Shaw CJ  Lupski JR 《Human genetics》2005,116(1-2):1-7
Several recurrent common chromosomal deletion and duplication breakpoints have been localized to large, highly homologous, low-copy repeats (LCRs). The mechanism responsible for these rearrangements, viz., non-allelic homologous recombination between LCR copies, has been well established. However, fewer studies have examined the mechanisms responsible for non-recurrent rearrangements with non-homologous breakpoint regions. Here, we have analyzed four uncommon deletions of 17p11.2, involving the Smith–Magenis syndrome region. Using somatic cell hybrid lines created from patient lymphoblasts, we have utilized a strategy based on the polymerase chain reaction to refine the deletion breakpoints and to obtain sequence data at the deletion junction. Our analyses have revealed that two of the four deletions are a product of Alu/Alu recombination, whereas the remaining two deletions result from a non-homologous end-joining mechanism. Of the breakpoints studied, three of eight are located in LCRs, and five of eight are within repetitive elements, including Alu and MER5B sequences. These findings suggest that higher-order genomic architecture, such as LCRs, and smaller repetitive sequences, such as Alu elements, can mediate chromosomal deletions via homologous and non-homologous mechanisms. These data further implicate homologous recombination as the predominant mechanism of deletion formation in this genomic interval.  相似文献   

8.
Repetitive DNA sequences constitute 30% of the human genome, and are often sites of genomic rearrangement. Recently, it has been found that several constitutional translocations, especially those that involve chromosome 22, take place utilizing palindromic sequences on 22q11 and on the partner chromosome. Analysis of translocation junction fragments shows that the breakpoints of such palindrome-mediated translocations are localized at the center of palindromic AT-rich repeats (PATRRs). The presence of PATRRs at the breakpoints indicates a palindrome-mediated mechanism involved in the generation of these constitutional translocations. Identification of these PATRR-mediated translocations suggests a universal pathway for gross chromosomal rearrangement in the human genome. De novo occurrences of PATRR-mediated translocations can be detected by PCR in normal sperm samples but not somatic cells. Polymorphisms of various PATRRs influence their propensity for adopting a secondary structure, which in turn affects de novo translocation frequency. We propose that the PATRRs form an unstable secondary structure, which leads to double-strand breaks at the center of the PATRR. The double-strand breaks appear to be followed by a non-homologous end-joining repair pathway, ultimately leading to the translocations. This review considers recent findings concerning the mechanism of meiosis-specific, PATRR-mediated translocations.  相似文献   

9.
There is evidence accumulating to suggest that non-B DNA structures have a potential for genomic instability that induces genomic rearrangements including translocations and deletions. One of the best studied examples is the recurrent t(11;22) constitutional translocation in humans that is mediated by palindromic AT-rich repeats (PATRRs) on chromosomes 11q23 and 22q11. Cloned breakpoint sequences favor adopting a cruciform configuration in vitro. Analysis of the junction fragments implicates frequent double-strand-breaks at the center of both palindromic regions, followed by repair through the non-homologous end joining pathway. De novo examples of the translocation are detected at a substantial frequency in sperm samples from normal healthy males, but not in other normal somatic tissues or cell lines derived from human. Further our recent findings indicate that polymorphism of the PATRR affects the frequency of de novo translocation events and symmetrical alleles preferentially generate the translocation. We propose that the symmetric PATRR is likely to adopt a cruciform structure in male meiotic cells, creating genomic instability that leads to the recurrent translocation.  相似文献   

10.
Using a substrate measuring deletion or inversion of an I-SceI-excised fragment and both accurate and inaccurate rejoining, we determined the impact of non-homologous end-joining (NHEJ) on mammalian chromosome rearrangements. Deletion is 2- to 8-fold more efficient than inversion, independent of the DNA ends structure. KU80 controls accurate rejoining, whereas in absence of KU mutagenic rejoining, particularly microhomology-mediated repair, occurs efficiently. In cells bearing both the NHEJ and a homologous recombination (HR) substrate containing a third I-SceI site, we show that NHEJ is at least 3.3-fold more efficient than HR, and translocation of the I-SceI fragment from the NHEJ substrate locus into the HR-I-SceI site can occur, but 50- to 100-fold less frequently than deletion. Deletions and translocations show both accurate and inaccurate rejoining, suggesting that they correspond to a mix of KU-dependent and KU-independent processes. Thus these processes should represent prominent pathways for DSB-induced genetic instability in mammalian cells.  相似文献   

11.
Inverted duplications associated with terminal deletions are complex anomalies described in an increasing of chromosome ends. We report on the cytogenetic characterization of the first de novo inv dup del(4) with partial 4p duplication and 4q deletion in a girl with clinical signs consistent with “recombinant 4 syndrome”. This abnormality was suspected by banding, but high-resolution molecular cytogenetic investigations allowed us to define the breakpoints of the rearrangement. The terminal duplicated region extending from 4p15.1 to the telomere was estimated to be 29.27 Mb, while the size of the terminal deletion was 3.114 Mb in the 4q35.1 region. Until now, 10 patients with duplicated 4p14-p15 and deleted 4q35 chromosome 4 have been described. In all cases the abnormal chromosome 4 was derived from a pericentric inversion inherited from one of the parents. In conclusion, we have identified the first case of inv dup del(4) with normal parents suggesting that, often, terminal duplications or terminal deletions mask complex rearrangements.  相似文献   

12.
An Aegilops cylindrica chromosome induces terminal deletions of chromosomes in wheat as identified by C-banding. We are constructing high-density physical maps of wheat chromosomes and have detected additional chromosome rearrangements. Among 63 lines with chromosomal subarm deletions in group 7 chromosomes, 7 lines (11.1%) were shown to harbor additional chromosome rearrangements. Two other lines were also omitted from the physical mapping because of the nature of the breakpoint calculations. The presence or absence of chromosome-specific restriction fragment length polymorphism (RFLP) or random amplified polymorphic DNA (RAPD) markers indicated that additional interstitial deletions are present in 3 lines (4.8%) with deletions in the short chromosome arms and in 4 lines (6.3%) with deletions in the long chromosome arms. We also used chromosome pairing analysis of F1 plants of deletion lines with double ditelosomic lines of Chinese Spring wheat to detect small terminal deletions. The deletion of the most distal 1% of chromosome arm 7AL was associated with a pairing reduction of 60%.  相似文献   

13.
In the present article the frequency of anomalies in chromosome 9 among children with hematological neoplasias amounted to 25/112 in acute lymphoblastic leukemia (ALL), 10/83 in acute myeloid leukemia (AML), and 3/20 in myelodysplastic syndrome (MDS). In ALL, deletions are encountered more often than translocations. Deletions are found in both single anomalies and as an element in complex karyotypes. The rearrangements involve the bands 9q34 and 9q22 the most often. The translocation t(9;22)(q34; q11) is encountered in 7.1% of all cases of ALL. In AML, translocation are found more often than deletions. Structural rearrangements most often involved the long arm, at bands 9q22 and 9q34. Deletions, duplications, and translocations were recorded in MDS. No relationship with the initial hematological indicators, including blastosis, were found. The studies attest to different directions of the clinical prognosis in the course of acute leukemia (AL) where there are deletions. Multidrug resistance and the continuing progress of the disease in the course of chemotherapy is found in t(9;22)(q34; q11).  相似文献   

14.
DNA double strand breaks (DSBs) are usually repaired through either non-homologous end-joining (NHEJ) or homologous recombination (HR). While HR is basically error-free repair, NHEJ is a mutagenic pathway that leads to deletion. NHEJ must be precisely regulated to maintain genomic integrity. To clarify the role of NHEJ, we investigated the genetic consequences of NHEJ repair of DSBs in human cells. Human lymphoblastoid cell lines TSCE5 and TSCE105 have, respectively, single and double I-SceI endonuclease sites in the endogenous thymidine kinase gene (TK) located on chromosome 17q. I-SceI expression generated DSBs at the TK gene. We used the novel transfection system (Amaxa Nucleofector) to introduce an I-SceI expression vector into the cells and randomly isolated clones. We found mutations involved in the DSBs in the TK gene in 3% of TSCE5 cells and 30% of TSCE105 cell clones. Most of the mutations in TSCE5 were small (1-30bp) deletions with a 0-4bp microhomology at the junction. The others consisted of large (>60) bp deletions, an insertion, and a rearrangement. Mutants resulting from interallelic HR also occurred, but infrequently. Most of the mutations in TSCE105, on the other hand, were deletions that encompassed the two I-SceI sites generated by NHEJ at DSBs. The sequence joint was similar to that found in TSCE5 mutants. Interestingly, some mutants formed a new I-SceI site by perfectly joining the two original I-SceI sites without deletion of the broken-ends. These results support the idea that NHEJ for repairing I-SceI-induced DSBs mainly results in small or no deletions. Thus, NHEJ must help maintain genomic integrity in mammalian cells by repairing DSBs as well as by preventing many deleterious alterations.  相似文献   

15.
Haber JE 《DNA Repair》2006,5(9-10):998-1009
Much of what we know about the molecular mechanisms of repairing a broken chromosome has come from the analysis of site-specific double-strand breaks (DSBs). Such DSBs can be generated by conditional expression of meganucleases such as HO or I-SceI or by the excision of a DNA transposable element. The synchronous creation of DSBs in nearly all cells of the population has made it possible to observe the progress of recombination by monitoring both the DNA itself and proteins that become associated with the recombining DNA. Both homologous recombination mechanisms and non-homologous end-joining (NHEJ) mechanisms of recombination have been defined by using these approaches. Here I focus on recombination events that lead to alterations of chromosome structure: transpositions, translocations, deletions, DNA fragment capture and other small insertions. These rearrangements can occur from ectopic gene conversions accompanied by crossing-over, break-induced replication, single-strand annealing or non-homologous end-joining.  相似文献   

16.
Kuo HF  Olsen KM  Richards EJ 《Genetics》2006,173(1):401-417
We investigated genome dynamics at a chromosome end in the model plant Arabidopsis thaliana through a study of natural variation in 35 wild accessions. We focused on the single-copy subtelomeric region of chromosome 1 north (approximately 3.5 kb), which represents the relatively simple organization of subtelomeric regions in this species. PCR fragment-length variation across the subtelomeric region indicated that the 1.4-kb distal region showed elevated structural variation relative to the centromere-proximal region. Examination of nucleotide sequences from this 1.4-kb region revealed diverse DNA rearrangements, including an inversion, several deletions, and an insertion of a retrotransposon LTR. The structures at the deletion and inversion breakpoints are characteristic of simple deletion-associated nonhomologous end-joining (NHEJ) events. There was strong linkage disequilibrium between the distal subtelomeric region and the proximal telomere, which contains degenerate and variant telomeric repeats. Variation in the proximal telomere was characterized by the expansion and deletion of blocks of repeats. Our sample of accessions documented two independent chromosome-healing events associated with terminal deletions of the subtelomeric region as well as the capture of a scrambled mitochondrial DNA segment in the proximal telomeric array. This natural variation study highlights the variety of genomic events that drive the fluidity of chromosome termini.  相似文献   

17.
We have used a panel of 13 DNA markers in the distal region of chromosome 14q to characterize deletions in three patients determined cytogenetically to have a ring or terminally deleted chromosome 14. We have characterized one patient with a ring chromosome 14 [r (14) (p13q32.33)] and two with terminal deletions [del (14) (pterq32.3:)]. The two patients with cytogenetically identical terminal deletions of chromosome 14 were found to differ markedly when characterized with molecular markers. In one patient, none of the markers tested were deleted, indicating that the apparent terminal deletion is actually due to either an undetected interstitial deletion or a cryptic translocation event. In the other patient, the deletion was consistent with the cytogenetic observations. The deleted chromosome was shown to be of paternal origin. The long-arm breakpoint of the ring chromosome was mapped to within a 350-kb region of the immunoglobulin heavy chain gene cluster (IGH). This breakpoint was used to localize markers D14S20 and D14S23, previously thought to lie distal to IGH, to a more proximal location. The ring chromosome represents the smallest region of distal monosomy 14q yet reported.  相似文献   

18.
Previous work showed that treatment of plateau-phase Chinese hamster ovary cells with the radiomimetic double-strand cleaving agent bleomycin induced very small deletions as well as interchromosomal reciprocal translocations, both of which could be ascribed to errors in end joining of DNA double-strand breaks. In an attempt to assess the possible role of TP53 in suppressing such repair errors, bleomycin-induced mutagenesis at the HPRT locus was examined in immortalized 184B5 human mammary epithelial cells (TP53(+)), and in a TP53-defective derivative, 184B5-E6tfxc6. For both cell lines, the most frequent bleomycin-induced mutations were base substitutions, with no apparent targeting to major bleomycin lesions. However, both lines also sustained single-base deletions that were targeted to expected sites of double-strand breaks, suggesting that they arose by end-joining repair of the breaks. Surprisingly, only a few large deletions or rearrangements, and no interchromosomal events involving the HPRT locus were detected among the mutants. The results suggest that in both cell lines, errors in double-strand break repair resulting in heritable large deletions and rearrangements are rare. Spectral karyotyping of bleomycin-treated 184B5 cells showed that a significant number of translocations were present shortly after bleomycin exposure, but their frequency decreased upon continued culture of the cells. Thus, for these cells, the lack of induced interchromosomal rearrangements can be explained in part by selection against such events as the cells proliferate.  相似文献   

19.
Chromosome 11 abnormalities in leukemic bone marrow cells were observed in 14.0% of the cases of acute lymphoblastic leukemia (ALL), in 18.7% of acute myeloid leukemia (AML) cases, and in 16.7% of refractory anemia (RA) cases. Bands 11pl3, 11pl4, 11pl5 on the short arm and 11ql4, 11q21, 11q23 on the long arm of chromosome 11 were involved in these rearrangements. Rearrangements of band 11q23 were detected most often. Reciprocal translocations were found with the highest frequency, while para-and pericentic inversions and deletions, both terminal and interstitial, occurred less often. In RA cases only deletions were observed. Comparison of clinical features showed no correlation with age and major hematological indexes such as the number of blast cells in the initial period. These results show that the prognosis is poor in cases of abnormalities at both 11q21 and 11q23 in acute leukemia (AL) as well as in 11pl3 and 11pl5 in AML. This is the first observation of these phenomena.  相似文献   

20.
The mechanisms involved in the formation of subtelomeric rearrangements are now beginning to be elucidated. Breakpoint sequencing analysis of 1p36 rearrangements has made important contributions to this line of inquiry. Despite the unique architecture of segmental duplications inherent to human subtelomeres, no common mechanism has been identified thus far and different nonexclusive recombination–repair mechanisms seem to predominate. In order to gain further insights into the mechanisms of chromosome breakage, repair, and stabilization mediating subtelomeric rearrangements in humans, we investigated the constitutional rearrangements of 1p36. Cloning of the breakpoint junctions in a complex rearrangement and three non-reciprocal translocations revealed similarities at the junctions, such as microhomology of up to three nucleotides, along with no significant sequence identity in close proximity to the breakpoint regions. All the breakpoints appeared to be unique and their occurrence was limited to non-repetitive, unique DNA sequences. Several recombination- or cleavage-associated motifs that may promote non-homologous recombination were observed in close proximity to the junctions. We conclude that NHEJ is likely the mechanism of DNA repair that generates these rearrangements. Additionally, two apparently pure terminal deletions were also investigated, and the refinement of the breakpoint regions identified two distinct genomic intervals ~25-kb apart, each containing a series of 1p36 specific segmental duplications with 90–98% identity. Segmental duplications can serve as substrates for ectopic homologous recombination or stimulate genomic rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号