首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the archaea, some tRNA precursors contain intron(s) not only in the anticodon loop region but also in diverse sites of the gene (intron-containing tRNA or cis-spliced tRNA). The parasite Nanoarchaeum equitans, a member of the Nanoarchaeota kingdom, creates functional tRNA from separate genes, one encoding the 5'-half and the other the 3'-half (split tRNA or trans-spliced tRNA). Although recent genome projects have revealed a huge amount of nucleotide sequence data in the archaea, a comprehensive methodology for intron-containing and split tRNA searching is yet to be established. We therefore developed SPLITS, which is aimed at searching for any type of tRNA gene and is especially focused on intron-containing tRNAs or split tRNAs at the genome level. SPLITS initially predicts the bulge-helix-bulge splicing motif (a well-known, required structure in archaeal pre-tRNA introns) to determine and remove the intronic regions of tRNA genes. The intron-removed DNA sequences are automatically queried to tRNAscan-SE. SPLITS can predict known tRNAs with single introns located at unconventional sites on the genes (100%), tRNAs with double introns (85.7%), and known split tRNAs (100%). Our program will be very useful for identifying novel tRNA genes after completion of genome projects. The SPLITS source code is freely downloadable at http://splits.iab.keio.ac.jp/.  相似文献   

3.

Background  

As in eukaryotes, precursor transfer RNAs in Archaea often contain introns that are removed in tRNA maturation. Two unrelated archaeal species display unique pre-tRNA processing complexity in the form of split tRNA genes, in which two to three segments of tRNAs are transcribed from different loci, then trans-spliced to form a mature tRNA. Another rare type of pre-tRNA, found only in eukaryotic algae, is permuted, where the 3' half is encoded upstream of the 5' half, and must be processed to be functional.  相似文献   

4.
The acidothermophilic crenarchaeon, Sulfolobus tokodaii strain7, was isolated from a hot spring in Beppu, Kyushu, Japan. Whole genomic data of this microorganism indicated that among 46 putative tRNA genes identified, 24 were interrupted tRNA genes containing an intron. A sequence comparison between the cDNA sequences for unspliced and spliced tRNAs indicated that all predicted tRNAs were expressed and all intron portions were spliced in this microorganism. However, the actual cleavage site in the splicing process was not determined for 13 interrupted tRNAs because of the presence of the same nucleotides at both 5′ and 3′ border regions of each intron. The cleavage sites for all the introns, which were determined by an in vitro cleavage experiment with recombinant splicing endonuclease as well as cDNA sequencing of the spliced tRNAs, indicated that non-canonical BHB structure motifs were also recognized and processed by the splicing machinery in this organism. This is the first report to empirically determine the actual cleavage and splice sites of introns in the whole set of archaeal tRNA genes, and reassigns the exon-intron borders with a novel and more plausible non-canonical BHB structure.  相似文献   

5.
More than 1200 introns have been documented at over 150 unique sites in the small and large subunit ribosomal RNA genes (as of February 2002). Nearly all of these introns are assigned to one of four main types: group I, group II, archaeal and spliceosomal. This sequence information has been organized into a relational database that is accessible through the Comparative RNA Web Site (http://www.rna.icmb.utexas.edu/) While the rRNA introns are distributed across the entire tree of life, the majority of introns occur within a few phylogenetic groups. We analyzed the distributions of rRNA introns within the three-dimensional structures of the 30S and 50S ribosomes. Most sites in rRNA genes that contain introns contain only one type of intron. While the intron insertion sites occur at many different coordinates, the majority are clustered near conserved residues that form tRNA binding sites and the subunit interface. Contrary to our expectations, many of these positions are not accessible to solvent in the mature ribosome. The correlation between the frequency of intron insertions and proximity of the insertion site to functionally important residues suggests an association between intron evolution and rRNA function.  相似文献   

6.
7.
8.
Akama K  Junker V  Beier H 《Gene》2000,257(2):177-185
tRNA splicing endonuclease is essential for the correct removal of introns from precursor tRNA molecules of Archaea and Eucarya. The only well-characterized eucaryotic enzyme until now is the endonuclease from yeast (Saccharomyces cerevisiae). This protein has a heterotetrameric structure. Two of the four subunits, i.e. Sen34 and Sen44, contain the active sites for cleavage at the 3'- and 5'-splice sites, respectively. We have identified three novel genes from Arabidopsis thaliana, encoding putative subunits of tRNA splicing endonuclease. They are designated as AtSen1, AtSen2, and AtpsSen1. Both genes AtSen1 and AtSen2 seem to be functionally active, as deduced from corresponding cDNA sequences. Comparison of the amino acid sequences of the these two Arabidopsis proteins revealed 72% identity. However, AtpsSen1 is more similar to AtSen1, but is very likely a pseudogene, as concluded from extended stretches of deletions and the presence of in-frame stop codons. All putative proteins contain a conserved domain at their C-terminus common to counterparts from other organisms. Interestingly, they are more similar to the yeast catalytic subunit Sen44 than to Sen34. Southern analysis with various probes revealed that each gene is present as single copies in the nuclear genome. The evolutionary implications of these findings are discussed.  相似文献   

9.
By generating a specialized cDNA library from the archaeon Sulfolobus solfataricus, we have identified 57 novel small non-coding RNA (ncRNA) candidates and confirmed their expression by Northern blot analysis. The majority was found to belong to one of two classes, either antisense or antisense-box RNAs, where the latter only exhibit partial complementarity to RNA targets. The most prominent group of antisense RNAs is transcribed in the opposite orientation to the transposase genes, encoded by insertion elements (transposons). Thus, these antisense RNAs may regulate transposition of insertion elements by inhibiting expression of the transposase mRNA. Surprisingly, the class of antisense RNAs also contained RNAs complementary to tRNAs or sRNAs (small-nucleolar-like RNAs). For the antisense-box ncRNAs, the majority could be assigned to the class of C/D sRNAs, which specify 2'-O-methylation sites on rRNAs or tRNAs. Five C/D sRNAs of this group are predicted to target methylation at six sites in 13 different tRNAs, thus pointing to the widespread role of these sRNA species in tRNA modification in Archaea. Another group of antisense-box RNAs, lacking typical C/D sRNA motifs, was predicted to target the 3'-untranslated regions of certain mRNAs. Furthermore, one of the ncRNAs that does not show antisense elements is transcribed from a repeat unit of a cluster of small regularly spaced repeats in S. solfataricus which is potentially involved in replicon partitioning. In conclusion, this is the first report of stably expressed antisense RNAs in an archaeal species and it raises the prospect that antisense-based mechanisms are also used widely in Archaea to regulate gene expression.  相似文献   

10.
We describe a program, tRNAscan-SE, which identifies 99-100% of transfer RNA genes in DNA sequence while giving less than one false positive per 15 gigabases. Two previously described tRNA detection programs are used as fast, first-pass prefilters to identify candidate tRNAs, which are then analyzed by a highly selective tRNA covariance model. This work represents a practical application of RNA covariance models, which are general, probabilistic secondary structure profiles based on stochastic context-free grammars. tRNAscan-SE searches at approximately 30 000 bp/s. Additional extensions to tRNAscan-SE detect unusual tRNA homologues such as selenocysteine tRNAs, tRNA-derived repetitive elements and tRNA pseudogenes.  相似文献   

11.
A combination of experimental and computational approaches was employed to identify introns with noncanonical GC-AG splice sites (GC-AG introns) within euascomycete genomes. Evaluation of 2335 cDNA-confirmed introns from Neurospora crassa revealed 27 such introns (1.2%). A similar frequency (1.0%) of GC-AG introns was identified in Fusarium graminearum, in which 3 of 292 cDNA-confirmed introns contained GC-AG splice sites. Computational analyses of the N. crassa genome using a GC-AG intron consensus sequence identified an additional 20 probable GC-AG introns in this fungus. For 8 of the 47 GC-AG introns identified in N. crassa a GC donor site is also present in a homolog from Magnaporthe grisea, F. graminearum, or Aspergillus nidulans. In most cases, however, homologs in these fungi contain a GT-AG intron or no intron at the corresponding position. These findings have important implications for fungal genome annotation, as the automated annotations of euascomycete genomes incorrectly identified intron boundaries for all of the confirmed and probable GC-AG introns reported here.  相似文献   

12.
The tRNA molecule has an important role in translation, thefunction of which is to carry amino acids to the ribosomes.It is known that tRNA is transcribed from tRNA genes, some ofwhich, in Eukarya and Archaea, contain introns. A computationalanalysis of the complete genome of Aeropyrum pernix K1 predictedthe presence of 14 intron-containing tRNA genes. To elucidatewhether these introns are actually processed in living cellsand what mechanism detects the intron regions, cDNAs for prematureand mature forms of the tRNA molecules transcribed from theintron-containing tRNA genes in the model aerobic acidothermophiliccrenarchaeon, A. pernix K1 were identified and analyzed. A comparisonbetween the nucleotide sequences of these two types of cDNAsindicated that the intron regions of the tRNA molecules wereindeed processed in A. pernix K1 living cells. Some cDNA clonesshowed that the actual splicing positions were different fromthose predicted by computational analysis. However, the bulge–helix–bulgestructure, which has been previously identified in exon–intronboundaries of archaeal tRNA genes, was evident in all boundaryregions confirmed in this work. These results indicate thatthe generally described mechanism for tRNA processing in Archaeais utilized for processing the intron region of the tRNA moleculesin A. pernix K1.  相似文献   

13.
tRNA splicing endonucleases, essential enzymes found in Archaea and Eukaryotes, are involved in the processing of pre-tRNA molecules. In Archaea, three types of splicing endonuclease [homotetrameric: α(4), homodimeric: α(2), and heterotetrameric: (αβ)(2)] have been identified, each representing different substrate specificity during the tRNA intron cleavage. Here, we discovered a fourth type of archaeal tRNA splicing endonuclease (ε(2)) in the genome of the acidophilic archaeon Candidatus Micrarchaeum acidiphilum, referred to as ARMAN-2 and its closely related species, ARMAN-1. The enzyme consists of two duplicated catalytic units and one structural unit encoded on a single gene, representing a novel three-unit architecture. Homodimeric formation was confirmed by cross-linking assay, and site-directed mutagenesis determined that the conserved L10-pocket interaction between catalytic and structural unit is necessary for the assembly. A tRNA splicing assay reveal that ε(2) endonuclease cleaves both canonical and non-canonical bulge-helix-bulge motifs, similar to that of (αβ)(2) endonuclease. Unlike other ARMAN and Euryarchaeota, tRNAs found in ARMAN-2 are highly disrupted by introns at various positions, which again resemble the properties of archaeal species with (αβ)(2) endonuclease. Thus, the discovery of ε(2) endonuclease in an archaeon deeply branched within Euryarchaeota represents a new example of the coevolution of tRNA and their processing enzymes.  相似文献   

14.
The complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.  相似文献   

15.
Understanding the mechanistic basis of the disruption of tRNA genes, as manifested in the intron-containing and split tRNAs found in Archaea, will provide considerable insight into the evolution of the tRNA molecule. However, the evolutionary processes underlying these disruptions have not yet been identified. Previously, a composite genome of the deep-branching archaeon Caldiarchaeum subterraneum was reconstructed from a community genomic library prepared from a C. subterraneum-dominated microbial mat. Here, exploration of tRNA genes from the library reveals that there are at least three types of heterogeneity at the tRNA(Thr)(GGU) gene locus in the Caldiarchaeum population. All three involve intronic gain and splitting of the tRNA gene. Of two fosmid clones found that encode tRNA(Thr)(GGU), one (tRNA(Thr-I)) contains a single intron, whereas another (tRNA(Thr-II)) contains two introns. Notably, in the clone possessing tRNA(Thr-II), a 5' fragment of the tRNA(Thr-I) (tRNA(Thr-F)) gene was observed 1.8-kb upstream of tRNA(Thr-II). The composite genome contains both tRNA(Thr-II) and tRNA(Thr-F), although the loci are >500 kb apart. Given that the 1.8-kb sequence flanked by tRNA(Thr-F) and tRNA(Thr-II) is predicted to encode a DNA recombinase and occurs in six regions of the composite genome, it may be a transposable element. Furthermore, its dinucleotide composition is most similar to that of the pNOB8-type plasmid, which is known to integrate into archaeal tRNA genes. Based on these results, we propose that the gain of the tRNA intron and the scattering of the tRNA fragment occurred within a short time frame via the integration and recombination of a mobile genetic element.  相似文献   

16.
17.
18.
Here we report on the occurrence and position of introns found in three genes of rotifers. A region of the gene for the TATA-box binding protein was examined in three species of Bdelloidea and one of Monogononta. There are two introns in both copies of this gene present in each of the three bdelloids examined – one at a position where introns occur in other eukaryotes and the other at a novel position; the monogonont has no introns in the region examined. A region of the gene encoding the 82 kD heat shock protein was examined in 10 species, with every rotifer class represented. Introns were found in only two species, both bdelloids: one of the species has an intron in all three copies of the gene; the other has an intron in only one of the three copies. Both introns occur at novel positions. The gene for triosephosphate isomerase was examined in one bdelloid. Both copies of the gene in this species contain introns, all at conserved positions: one copy contains five introns, the other copy three. These observations demonstrate the presence of introns in bdelloid rotifers, some in conserved positions, others apparently newly arisen during bdelloid evolution.  相似文献   

19.
Nomura N  Morinaga Y  Kogishi T  Kim EJ  Sako Y  Uchida A 《Gene》2002,295(1):43-50
Some archaeal ribosomal DNA (rDNA) introns carry homing endonuclease-like genes and are therefore assumed to propagate by "intron homing". A previous study demonstrated that three introns are located within the rRNA operon (arnSL) of Aeropyrum pernix strain K1, two of which, Ialpha and Igamma, harbor open reading frames (ORFs) encoding putative LAGLIDADG-type endonucleases. In an effort to understand further the rDNA intron distribution in natural A. pernix populations, 11 A. pernix strains were isolated from marine hydrothermal biotopes, and comparative nucleotide sequence analysis of the arnSL alleles was performed. Of the 11 isolates, eight contained multiple introns, and three patterns of intron insertion were found. Three novel introns, Idelta (62 bp in length), Ivarepsilon (122 bp) and Izeta (57 bp) were identified. They were all ORF-less, but their predicted RNA secondary structure at the exon-intron junctions was consistent with the bulge-helix-bulge motif. The insertion positions and the terminal inverted repeat sequences of Idelta and Izeta were in agreement with those of Ialpha and Igamma, respectively. This suggests that these intron variants were generated by large indels (insertions/deletions) during their evolution.  相似文献   

20.
Summary Nucleotide sequences of four tRNA genes from the archaebacteriumSulfolobus solfataricus have been determined. Based upon DNA sequence analysis, three of the four genes contain presumptive intervening sequences (introns) in their anticodon loops. The three introns can form similar, but not identical, secondary structures. The cleavage site at the 3 end of all three introns occurs in a three-base bulge loop. All four genes lack an encoded 3 CCA terminus and are flanked by A+T-rich DNA sequences. Two of the genes are located on antiparallel DNA strands, with their 3 termini separated by 414 bp of sequence. Including two previously published sequences, a total of five introns have now been detected among sixS. solfataricus tRNA genes. Occurrence of introns at corresponding locations in both archaebacterial and eukaryotic tRNA genes suggests that the intron/exon form of gene structure predates the evolutionary divergence of the archaebacteria and the eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号