首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Ca2+-regulated exocytosis of lysosomes has been recognized recently as a ubiquitous process, important for the repair of plasma membrane wounds. Lysosomal exocytosis is regulated by synaptotagmin VII, a member of the synaptotagmin family of Ca2+-binding proteins localized on lysosomes. Here we show that Ca2+-dependent interaction of the synaptotagmin VII C(2)A domain with SNAP-23 is facilitated by syntaxin 4. Specific interactions also occurred in cell lysates between the plasma membrane t-SNAREs SNAP-23 and syntaxin 4 and the lysosomal v-SNARE TI-VAMP/VAMP7. Following cytosolic Ca2+ elevation, SDS-resistant complexes containing SNAP-23, syntaxin 4, and TI-VAMP/VAMP7 were detected on membrane fractions. Lysosomal exocytosis was inhibited by the SNARE domains of syntaxin 4 and TI-VAMP/VAMP7 and by cleavage of SNAP-23 with botulinum neurotoxin E, thereby functionally implicating these SNAREs in Ca2+-regulated exocytosis of conventional lysosomes.  相似文献   

2.
The pancreatic acinar cell synthesises a variety of digestive enzymes. In transit through the secretory pathway, these enzymes are separated from constitutively secreted proteins and packaged into zymogen granules, which are localised in the apical pole of the cell. Stimulation of the cell by secretagogues such as acetylcholine and cholecystokinin, acting at receptors on the basolateral plasma membrane, causes the generation of an intracellular Ca(2+) signal. This signal, in turn, triggers the fusion of the zymogen granules with the apical plasma membrane, leading to the polarised secretion of the enzymes. This review describes recent advances in our understanding of the control of secretion in the acinar cell. In particular, we discuss the mechanisms underlying the sorting of digestive enzymes into the zymogen granules, the molecular components of the exocytotic "membrane fusion machine," the generation and propagation of the Ca(2+ signal and the development of new techniques for the visualisation of single granule fusion events.  相似文献   

3.
A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells   总被引:10,自引:0,他引:10  
Despite our general understanding that members of the SNARE superfamily participate in diverse intracellular docking/fusion events, the physiological role of the majority of SNAREs in the intact organism remains elusive. In this study, through targeted gene knockout in mice, we establish that VAMP8/endobrevin is a major player in regulated exocytosis of the exocrine pancreas. VAMP8 is enriched on the membrane of zymogen granules and exists in a complex with syntaxin 4 and SNAP-23. VAMP8-/- mice developed normally but showed severe defects in the pancreas. VAMP8 null acinar cells contained three times more zymogen granules than control acinar cells. Furthermore, secretagogue-stimulated secretion was abolished in pancreatic fragments derived from VAMP8-/- mice. In addition, VAMP8-/- mice were partially resistant to supramaximal caerulein-induced pancreatitis. These results suggest a major physiological role of VAMP8 in regulated exocytosis of pancreatic acinar cells by serving as a v-SNARE of zymogen granules.  相似文献   

4.
In this report, a novel live acinar exocytosis imaging technique is described. An adenovirus was engineered, encoding for an endogenous zymogen granule (ZG) protein (syncollin) fused to pHluorin, a pH-dependent green fluorescent protein (GFP). Short-term culture of mouse acini infected with this virus permits exogenous adenoviral protein expression while retaining acinar secretory competence and cell polarity. The syncollin-pHluorin fusion protein was shown to be correctly localized to ZGs, and the pH-dependent fluorescence of pHluorin was retained. Coupled with the use of a spinning disk confocal microscope, the syncollin-pHluorin fusion protein exploits the ZG luminal pH changes that occur during exocytosis to visualize exocytic events of live acinar cells in real-time with high spatial resolution in three dimensions. Apical and basolateral exocytic events were observed on stimulation of acinar cells with maximal and supramaximal cholecystokinin concentrations, respectively. Sequential exocytic events were also observed. Coupled with the use of transgenic mice and/or adenovirus-mediated protein expression, this syncollin-pHluorin imaging method offers a superior approach to studying pancreatic acinar exocytosis. This assay can also be applied to acinar disease models to elucidate the mechanisms implicated in pancreatitis.  相似文献   

5.
Protein secretion from acinar cells of the pancreas and parotid glands is controlled by G-protein coupled receptor activation and generation of the cellular messengers Ca2+, diacylglycerol and cAMP. Secretory granule (SG) exocytosis shares some common characteristics with nerve, neuroendocrine and endocrine cells which are regulated mainly by elevated cell Ca2+. However, in addition to diverse signaling pathways, acinar cells have large ∼1 μm diameter SGs (∼30 fold larger diameter than synaptic vesicles), respond to stimulation at slower rates (seconds versus milliseconds), demonstrate significant constitutive secretion, and in isolated acini, undergo sequential compound SG–SG exocytosis at the apical membrane. Exocytosis proceeds as an initial rapid phase that peaks and declines over 3 min followed by a prolonged phase that decays to near basal levels over 20–30 min. Studies indicate the early phase is triggered by Ca2+ and involves the SG proteins VAMP2 (vesicle associated membrane protein2), Ca2+-sensing protein synatotagmin 1 (syt1) and the accessory protein complexin 2. The molecular details for regulation of VAMP8-mediated SG exocytosis and the prolonged phase of secretion are still emerging. Here we review the known regulatory molecules that impact the sequential exocytic process of SG tethering, docking, priming and fusion in acinar cells.  相似文献   

6.
During exocytosis in the pancreatic acinar cell, zymogen granules fuse directly with the apical plasma membrane and also with granules that have themselves fused with the plasma membrane. Together, these primary and secondary fusion events constitute the process of compound exocytosis. It has been suggested that the sequential nature of primary and secondary fusion is a consequence of the requirement for plasma membrane soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors, such as syntaxin 2, to enter the membrane of the primary fused granule. We have tested this possibility by determining the location of syntaxin 2 in unstimulated and stimulated pancreatic acini. Syntaxin 2 was imaged by confocal immunofluorescence microscopy. Fused granules were detected both through their filling with the aqueous dye lysine-fixable Texas Red-dextran and through the decoration of their cytoplasmic surfaces with filamentous actin. In unstimulated cells, syntaxin 2 was exclusively present on the apical plasma membrane. In contrast, after stimulation, syntaxin 2 had moved into the membranes of fused granules, as judged by its location around dye-filled structures of 1-mum diameter that were coated with filamentous actin. At long times of stimulation (5 min), the majority (85%) of dye-filled granules were also positive for syntaxin 2. In contrast, at shorter times (1 min), more dye-filled granules (29%) were syntaxin 2-negative. We conclude that syntaxin 2 enters the membrane of a fused zymogen granule after the opening of the fusion pore, and we suggest that this movement might permit the onset of secondary fusion.  相似文献   

7.
Regulated secretion from pancreatic acinar cells occurs by exocytosis of zymogen granules (ZG) at the apical plasmalemma. ZGs originate from the TGN and undergo prolonged maturation and condensation. After exocytosis, the zymogen granule membrane (ZGM) is retrieved from the plasma membrane and ultimately reaches the TGN. In this study, we analyzed the fate of a low M(r) GTP-binding protein during induced exocytosis and membrane retrieval using immunoblots as well as light and electron microscopic immunocytochemistry. This 27-kD protein, identified by a monoclonal antibody that recognizes rab3A and B, may be a novel rab3 isoform. In resting acinar cells, the rab3-like protein was detected primarily on the cytoplasmic face of ZGs, with little labeling of the Golgi complex and no significant labeling of the apical plasmalemma or any other intracellular membranes. Stimulation of pancreatic lobules in vitro by carbamylcholine for 15 min, resulted in massive exocytosis that led to a near doubling of the area of the apical plasma membrane. However, no relocation of the rab3-like protein to the apical plasmalemma was seen. After 3 h of induced exocytosis, during which time approximately 90% of the ZGs is released, the rab3- like protein appeared to translocate to small vesicles and newly forming secretory granules in the TGN. No significant increase of the rab3-like protein was found in the cytosolic fraction at any time during stimulation. Since the protein is not detected on the apical plasmalemma after stimulation, we conclude that recycling may involve a membrane dissociation-association cycle that accompanies regulated exocytosis.  相似文献   

8.
Apactin is an 80-kDa type I membrane glycoprotein derived from pro-Muclin, a precursor that also gives rise to the zymogen granule protein Muclin. Previous work showed that apactin is efficiently removed from the regulated secretory pathway and targeted to the actin-rich apical plasma membrane of the pancreatic acinar cell. The cytosolic tail (C-Tail) of apactin consists of 16 amino acids, has Thr casein kinase II and Ser protein kinase C phosphorylation sites, and a C-terminal PDZ-binding domain. Secretory stimulation of acinar cells causes a decrease in Thr phosphorylation and an increase in Ser phosphorylation of apactin. Fusion peptides of the C-Tail domain pulldown actin, ezrin, and EBP50/NHERF in a phosphorylation-dependent manner. HIV TAT-C-Tail fusion peptides were used as dominant negative constructs on living pancreatic cells to study effects on the actin cytoskeleton. During secretory stimulation, TAT-C-Tail-Thr/Asp phosphomimetic peptide caused an increase in actin-coated zymogen granules at the apical surface, while TAT-C-Tail-S/D phosphomimetic peptide caused a broadening of the actin cytoskeleton. These data indicate that stimulation-mediated Thr dephosphorylation allows decreased association of apactin with EBP50/NHERF and fosters actin remodeling to coat zymogen granules. Stimulation-mediated Ser phosphorylation increases apactin association with the actin cytoskeleton, maintaining tight bundling of actin microfilaments at the apical surface. Thus, apactin is involved in remodeling the apical cytoskeleton during regulated exocytosis in a manner controlled by phosphorylation of the apactin C-Tail.  相似文献   

9.
Padfield PJ 《FEBS letters》2000,484(2):129-132
The neurotoxin sensitivity of regulated exocytosis in the pancreatic acinar cell was investigated using streptolysin-O permeabilized pancreatic acini. Treatment of permeabilized acini with botulinum toxin B (BoNT/B) or botulinum toxin D (BoNT/D) had no detectable effect on Ca(2+)-dependent amylase secretion but did result in the complete cleavage of VAMP 2. In comparison, tetanus toxin (TeTx) treatment both significantly inhibited Ca(2+)-dependent amylase secretion and cleaved VAMP 2. These results indicate that regulated exocytosis in the pancreatic acinar cell requires a tetanus toxin sensitive protein(s) other than VAMP 2.  相似文献   

10.
11.
12.
For over a decade SNARE hypotheses have been proposed to explain the mechanism of membrane fusion, yet the field still lacks sufficient evidence to conclusively identify the minimal components of native fusion. Consequently, debate concerning the postulated role(s) of SNAREs in membrane fusion continues. The focus of this review is to revisit original literature with a current perspective. Our analysis begins with the earliest studies of clostridial toxins, leading to various cellular and molecular approaches that have been used to test for the roles of SNAREs in exocytosis. We place much emphasis on distinguishing between specific effects on membrane fusion and effects on other critical steps in exocytosis. Although many systems can be used to study exocytosis, few permit selective access to specific steps in the pathway, such as membrane fusion. Thus, while SNARE proteins are essential to the physiology of exocytosis, assay limitations often prevent definitive conclusions concerning the molecular mechanism of membrane fusion. In all, the SNAREs are more likely to function upstream as modulators or priming factors of fusion.  相似文献   

13.
It has been proposed that the cortical actin filament networks act as a cortical barrier that must be reorganized to enable docking and fusion of the synaptic vesicles with the plasma membranes. We identified a novel neuron-associated developmentally regulated protein, designated as Nadrin. Expression of Nadrin is restricted to neurons and correlates well with the differentiation of neurons. Nadrin has a unique structure; it contains a GTPase-activating protein (GAP) domain for Rho family GTPases, a potential coiled-coil domain, and a succession of 29 glutamines. In vitro the GAP domain activates RhoA, Rac1, and Cdc42 GTPases. Expression of Nadrin in NIH3T3 cells markedly reduced the number of the actin stress fibers and the formation of the ruffled membranes, suggesting that Nadrin regulates actin filament reorganization. In PC12 cells, Nadrin colocalized with synaptotagmin in the neurite termini and also with cortical actin filaments in the subplasmalemmal regions. Expression of Nadrin or its mutant composed of the coiled-coil and GAP domain enhanced Ca(2+)-dependent exocytosis of PC12 cells, but a mutant lacking the GAP domain inhibited exocytosis. These results suggest that Nadrin plays a role in regulating Ca(2+)-dependent exocytosis, most likely by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments.  相似文献   

14.
To understand the function of pancreatic zymogen granules, we performed a proteomics analysis to identify ZG membrane components. Here we report the identification of Rab27b through this proteomics study and validate its role in granule function. MALDI-MS peptide mass fingerprint was matched to rat Rab27b with 43% sequence coverage, and the identification was also confirmed by tandem mass spectrometry. The localization of Rab27b on ZGs was confirmed by Western blotting and immunocytochemistry. To examine the function of Rab27b in acinar secretion, we overexpressed wild type and mutant Rab27b protein in pancreatic acini using recombinant adenoviruses. Wild type Rab27b had no effect on amylase secretion, while Rab27b Q78L enhanced, and Rab27b N133I inhibited, CCK-induced amylase release by 92+/-13% and 53+/-8%, respectively. This enhancement and inhibition occurred at all points on the CCK dose-response curve and over a 30min time course. These results demonstrate that Rab27b is present on ZGs and plays an important role in regulating acinar exocytosis.  相似文献   

15.
Mast cells play a pivotal role in allergic responses. Antigen stimulation causes elevation of the intracellular Ca(2+) concentration, which triggers the exocytotic release of inflammatory mediators such as histamine. Recent research, including our own, has revealed that SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins such as syntaxin-3, -4, SNAP-23, and VAMP-8 are involved in exocytosis. Although exocytosis in mast cells is Ca(2+) dependent, the target molecule that interacts with Ca(2+) is not clear. Synaptotagmin is a Ca(2+) sensor and regulates exocytosis in neuronal cells. However, the role of synaptotagmin 2, a member of the synaptotagmin family, in exocytosis in mast cells remains controversial. In this study, we investigated the role of synaptotagmin 2 by a liposome-based fusion assay. SNARE proteins (SNAP-23, syntaxin-3, VAMP-8) and synaptotagmin 2 were expressed in Escherichia coli and purified as GST-tagged or His-tagged fusion proteins. These SNARE proteins were incorporated by a detergent dialysis method. Membrane fusion between liposomes was monitored by fluorescence resonance energy transfer between fluorescent-labeled phospholipids. In the presence of Ca(2+), low synaptotagmin 2 concentration inhibited membrane fusion between SNARE-containing liposomes, while high synaptotagmin 2 concentration enhanced membrane fusion. This enhancement required phosphatidylserine as a membrane component. These results suggest that synaptotagmin 2 regulates membrane fusion of SNARE-containing liposomes involved in exocytosis in mast cells, and that this regulation is dependent on synaptotagmin 2 concentration, Ca(2+), and phosphatidylserine.  相似文献   

16.
17.
The paradigm for soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) function in mammalian cells has been built on advancements in our understanding of structural and biochemical aspects of synaptic vesicle exocytosis, involving specifically synaptobrevin, syntaxin 1 and SNAP25. Interestingly, a good number of SNAREs which are not directly involved in neurotransmitter exocytosis, are either brain-enriched or have distinct neuron-specific functions. Syntaxins 12/13 regulates glutamate receptor recycling via its interaction with neuron-enriched endosomal protein of 21 kDa (NEEP21). TI-VAMP/VAMP7 is essential for neuronal morphogenesis and mediates the vesicular transport processes underlying neurite outgrowth. Ykt6 is highly enriched in the cerebral cortex and hippocampus and is targeted to a novel compartment in neurons. Syntaxin 16 has a moderate expression level in many tissues, but is rather enriched in the brain. Here, we review and discuss the neuron-specific physiology and possible pathology of these and other (such as SNAP-29 and Vti1a-beta) members of the SNARE family.  相似文献   

18.
In the past decade, there have been remarkable advances in our understanding of the calcium messenger system that mediates the effects of various agonists. The purpose of the present article is to describe two areas of current interest in the calcium signaling field--quantal calcium release and calcium entry into the cell--using the pancreatic acinar cell as a model. Proposed mechanisms describing these phenomena and the role they play in the kinetics of calcium movements in the cell are discussed.  相似文献   

19.
M Singh 《Life sciences》1979,25(3):247-257
The present study utilized ionophore A23187 to determine the role of Ca2+ in pancreatic acinar cell metabolism. The ionophore A23187 in the presence of EGTA increased efflux of Ca2+ from the rat pancreatic fragments. Ionophore and CCK-PZ were equally effective in the presence of extracellular Ca2+ in stimulating 14C-labeled protein secretion. The ionophore decreased synthesis of new protein more effectively than CCK-PZ in the presence of extracellular Ca2+. The effect of ionophore and CCK-PZ in combination was greater than either agent alone. Phospholipid labeling was not stimulated by A23187 in the presence of extracellular Ca2+ in contrast to CCK-PZ. With CCK-PZ, the effect was dependent on the concentration of extracellular Ca2+. Protein phosphorylation was stimulated ~ 109% by CCK-PZ and ~ 39% by ionophore. CCK-PZ stimulated protein phosphorylation in the 100,000 g supernatant whereas A23187 was ineffective. Ionophore A23187 inhibited glucose oxidation whereas CCK-PZ stimulated glucose oxidation. These data suggest that more than one kinase system might be involved in metabolic responses to hormonal stimulation of the pancreas viz. a phosphorylase kinase may be directly activated by Ca2+ causing protein discharge whereas other kinase system may require binding of the hormone to receptor leading to other events besides protein discharge.  相似文献   

20.
Despite our general understanding of membrane traffic, the molecular machinery at the immunological synapse (IS) that regulates exocytosis of lytic granules from cytotoxic T lymphocytes (CTLs) remains elusive. The identification of disease-causing mutations in the small GTPase Rab27a, priming factor Munc13-4 and fusion protein syntaxin11 has defined an important role for these proteins in CTL exocytosis. In addition, the demonstration of a direct interaction in vitro between Rab27a and Munc13-4 suggests the possibility that the Rab27a-Munc13-4 cascade might regulate CTL exocytosis by engaging SNAREs such as syntaxin11. We propose that these SNAREs are likely to mediate the fusion of lytic granules with the plasma membrane of the IS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号