首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersal patterns can have a major impact on the dynamics and viability of populations, and understanding these patterns is crucial to the conservation and management of a species. In this study, patterns of sex-biased dispersal and waterway/overland dispersal are investigated in the endemic Australian platypus, Ornithorhynchus anatinus, a semi-aquatic monotreme. Analyses of over 750 individuals from south-eastern Australia at 13 microsatellite loci and two mitochondrial genes, cytochrome b and cytochrome oxidase subunit II, provide genetic insight into dispersal patterns. For the first time, platypuses of western Victoria are shown to be genetically distinct from other populations of the mainland. Despite distinct morphological differentiation either side of the Great Dividing Range, populations remain genetically similar between coastal and inland areas suggesting gene flow is likely to occur across these ranges. Landscape genetic analyses indicate variability in dispersal patterns between Victorian and Tasmanian platypuses with a greater avoidance of overland travel indicated in Victoria compared to Tasmania. Females appear to remain within their natal area or return to breed, maintaining greater genetic structure in maternally inherited mitochondrial DNA in comparison to nuclear DNA and sharing genetic similarity within a short river distance (i.e. ≤1.4 km). The results of this study provide a valuable spatial framework for the management of wild platypus populations within south-eastern Australia and a baseline for future monitoring of populations that are likely to be impacted by environmental and anthropogenic change.  相似文献   

2.
Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species'' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species'' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species'' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species'' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania.  相似文献   

3.
The platypus (Ornithorhynchus anatinus) is the sole survivor of a previously widely distributed and diverse lineage of ornithorhynchid monotremes. Its dependence on healthy water systems imposes an inherent sensitivity to habitat degradation and climate change. Here, we compare genetic diversity at the major histocompatibility complex (MHC) Class II-DZB gene and 3 MHC-associated microsatellite markers with diversity at 6 neutral microsatellite markers in 70 platypuses from across their range, including the mainland of Australia and the isolated populations of Tasmania, King Island, and Kangaroo Island. Overall, high DZB diversity was observed in the platypus, with 57 DZB β1 alleles characterized. Significant positive selection was detected within the DZB peptide-binding region, promoting variation in this domain. Low levels of genetic diversity were detected at all markers in the 2 island populations, King Island (endemic) and Kangaroo Island (introduced), with the King Island platypuses monomorphic at the DZB locus. Loss of MHC diversity on King Island is of concern, as the population may have compromised immunological fitness and reduced ability to resist changing environmental conditions.  相似文献   

4.
The toxic dinoflagellate Gymnodinium catenatum Graham has formed recurrent toxic blooms in southeastern Tasmanian waters since its discovery in the area in 1986. Current evidence suggests that this species might have been introduced to Tasmania prior to 1973, possibly in cargo vessel ballast water carried from populations in Japan or Spain, followed by recent dispersal to mainland Australia. To examine this hypothesis, cultured strains from G. catenatum populations in Australia, Spain, Portugal, and Japan were examined using allozymes and randomly amplified polymorphic DNA (RAPD). Allozyme screening detected very limited polymorphism and was not useful for population comparisons; however, Australian, Spanish, Portuguese, and Japanese strains showed considerable RAPD diversity, and all strains examined represented unique genotypes. Multidimensional scaling analysis (MDS) of RAPD genetic distances between strains showed clear separation of strains into three nonoverlapping regional clusters: Australia, Japan, and Spain/Portugal. Analysis of genetic distances between strains from the three regional populations indicated that Australian strains were almost equally related to both the Spanish/Portuguese population and the Japanese population. Analysis of molecular variance (AMOVA) found that genetic variation was partitioned mainly within populations (87%) compared to the variation between the regions (8%) and between populations within regions (5%). The potential source population for Tasmania’s introduced G. catenatum remains equivocal; however, strains from the recently discovered mainland Australian population (Port Lincoln, South Australia, 1996) clustered with Tasmanian strains, supporting the notion of a secondary relocation of Tasmanian G. catenatum populations to the mainland via a shipping vector. Geographic and temporal clustering of strains was evident among the Tasmanian strains, indicating that genetic exchange between neighboring estuaries is limited and that Tasmanian G. catenatum blooms are composed of localized, estuary-bound subpopulations.  相似文献   

5.
European fallow deer are an introduced species classified as partly protected wildlife in Tasmania, Australia. Current management practices are primarily governed under the Quality Deer Management regime, in which animals are harvested during designated hunting seasons. Among populations, prominent morphological differences have been reported; however, the genetic relationship of these populations has until now been poorly understood. Representative animals were sampled from three key areas across their range and genotyped at ten polymorphic microsatellite loci to investigate genetic diversity, population structure, and genetic bottlenecks. Allelic richness was low in all three populations and ranged between 2.20 and 2.49 alleles/locus. A genetic bottleneck was detected in two of the three populations (P < 0.001). Population differentiation was evident between Lake Echo and Benham (q = 0.122; P < 0.001) and Benham and Connorville (q = 0.110; P < 0.001), but not between Lake Echo and Connorville (q = 0.0235), with individuals being identified as belonging to two genetic clusters. The pattern of population differentiation from the three study populations suggests that deer from the western region of their range are genetically distinct to those from the eastern region. This correlates with morphological variation within Tasmanian fallow deer, in which differences between the regions maybe attributable to geographical barriers.  相似文献   

6.
The ectomycorrhizal fungus Laccaria sp. A is restricted to temperate rainforest of southeast Australia, associated with its host tree Nothofagus cunninghamii. Eight mitochondrial microsatellite markers were used to investigate the population genetic structure of L. sp. A across its distribution in Tasmania and Victoria. The highest allelic diversity was found in Tasmania, which appeared to contain a panmictic population, whereas the more fragmented Victorian populations were characterized by low allelic diversity and differentiation between east and west. There is evidence of glacial refugia in the west and the northeast of Tasmania, and in Victoria in the Otway Ranges and Central Highlands, with postglacial migration into the Strzelecki Ranges. Narrow host-specificity may have contributed to the presence of population structure in this fungus. Allelic diversity patterns in L. sp. A are largely congruent with diversity patterns already established in populations of its host, N. cunninghamii.  相似文献   

7.
Aim The distribution of genetic variation in the Australian dry sclerophyll plant Hardenbergia violacea (Fabaceae) is examined in the context of Pleistocene climate change in order to identify likely refugia. Particular consideration is given to the origin of range disjunctions in South Australia and Tasmania, and to determining whether the Tasmanian population is indigenous or recently introduced from mainland Australia. Location Southeastern Australian mainland and Tasmania. Methods A combination of chloroplast polymerase chain reaction–restriction fragment length polymorphism and genomic amplified fragment length polymorphism (AFLP) marker systems was used to examine the genetic structure of 292 individuals from 13 populations across the range of H. violacea in southeastern Australia. Results Hardenbergia violacea populations in Tasmania and southern Victoria were characterized by low, almost monotypic chloroplast diversity. New South Wales showed higher haplotype diversity and haplotype sharing among widely distributed populations. Principal coordinates analysis (PCoA) of the AFLP data found a strong latitudinal cline in AFLP variation from northern New South Wales south to Tasmania. The Tasmanian population formed an isolated and somewhat disjunct genetic cluster at one end of this cline. However, the South Australian population was an exception to the clinal variation shown by all other populations, forming a highly disjunct cluster in the PCoA. Within‐population genetic diversity was low in both disjunct populations. Main conclusions The genetic evidence indicates that the Tasmanian population is likely to be indigenous and probably the product of vicariance, which was followed by range contraction at the Last Glacial Maximum or an earlier glacial event. The deep phylogenetic disjunction in South Australia is evidence of a much earlier separation on mainland Australia. The chloroplast structure indicates that, during the Pleistocene, H. violacea underwent broad‐scale recolonization in southern Victoria and Tasmania, possibly from a large continental refugium in eastern New South Wales. We conclude that H. violacea, and presumably the sclerophyll communities in which it occurs, have undergone multiple range contractions to large continental refugia during different Pleistocene glaciations in southeastern Australia.  相似文献   

8.
Little is known about the population ecology of the recently described bottlenose dolphin species Tursiops australis. The classification of this species is still under debate, but this putative species is thought to be comprised of small and genetically distinct populations (including sub-populations under increasing anthropogenic threats) and is likely endemic to coastal southern Australia. Mitochondrial DNA (mtDNA) control region sequences and microsatellite loci were used to assess genetic variation and hierarchical population structure of coastal T. cf. australis across a range of spatial scales and environmental discontinuities between southern Western Australia (WA) and central South Australia (SA). Overall, genetic diversity was similar to that typically found for bottlenose dolphins, although very low mtDNA diversity was found in Gulf St. Vincent (GSV) dolphins. We found historical genetic subdivision and likely differences in colonisation between GSV and Spencer Gulf, outer- and inner-gulf locations, and SA/WA and previously identified Victorian/Tasmanian populations. A hierarchical metapopulation structure was revealed along southern Australia, with at least six genetic populations occurring between Esperance, WA and southern Tasmania. In addition, fine-scale genetic subdivision was observed within each SA/WA population. In general, contemporary migration was limited throughout southern Australia, but an important gene flow pathway was identified eastward along the Great Australian Bight. Management strategies that promote gene flow among populations should be implemented to assist with the maintenance of the inferred metapopulation structure. Further research into the population ecology of this species is needed to facilitate well-informed management decisions.  相似文献   

9.
The eastern barred bandicoot, Perameles gunnii, has undergone a dramatic decline in distribution and abundance on the mainland of Australia during the twentieth century. In 1988 a captive breeding program was initiated to reduce the chance of extinction. With the extinction of the last wild mainland population in the early 1990s, reintroductions from captive-bred P. gunnii have met limited success, and currently only two extant populations persist in predator proof enclosures in the State of Victoria. With ~20 years of breeding, there are concerns that the genetic diversity within the breeding program has declined and may inhibit current and future success of the program. We have used ten nuclear microsatellite loci and sequencing of two partial mitochondrial genes (cytochrome oxidase I and ATPase 6) to determine genetic diversity within current Victorian P. gunnii. These diversity estimates are compared with historic samples from the captive breeding program dating back to 1995, historic samples from the last wild mainland population found at Hamilton in 1992 and contemporary Tasmanian wild populations. Results indicate that the captive P. gunnii population in the State of Victoria has lost significant genetic diversity through time. Genetic diversity is also reduced in populations at Hamilton Community Parklands and Mount Rothwell. Samples from the last wild population at Hamilton collected in 1992, along with samples from Tasmanian P. gunnii, had significantly greater genetic diversity than contemporary mainland populations. The results are discussed with reference to management options for maintaining genetic diversity within Victorian P. gunnii, including crossing Victorian and Tasmanian P. gunnii to increase genetic diversity, adaptability and evolutionary potential.  相似文献   

10.
The southern rock lobster, Jasus edwardsii, shows clear phenotypic differences between shallow water (red coloured) and deeper water (pale coloured) individuals. Translocations of individuals from deeper water to shallower waters are currently being trialled as a management strategy to facilitate a phenotypic change from lower value pale colouration, common in deeper waters, to the higher value red colouration found in shallow waters. Although panmixia across the J. edwardsii range has been long assumed, it is critical to assess the genetic variability of the species to ensure that the level of population connectivity is appropriately understood and translocations do not have unintended consequences. Eight microsatellite loci were used to investigate genetic differentiation between six sites (three shallow, three deep) across southern Tasmania, Australia, and one from New Zealand. Based on analyses the assumption of panmixia was rejected, revealing small levels of genetic differentiation across southern Tasmania, significant levels of differentiation between Tasmania and New Zealand, and high levels of asymmetric gene flow in an easterly direction from Tasmania into New Zealand. These results suggest that translocation among Tasmanian populations are not likely to be problematic, however, a re-consideration of panmictic stock structure for this species is necessary.  相似文献   

11.
Genetic diversity generally underpins population resilience and persistence. Reductions in population size and absence of gene flow can lead to reductions in genetic diversity, reproductive fitness, and a limited ability to adapt to environmental change increasing the risk of extinction. Island populations are typically small and isolated, and as a result, inbreeding and reduced genetic diversity elevate their extinction risk. Two island populations of the platypus, Ornithorhynchus anatinus, exist; a naturally occurring population on King Island in Bass Strait and a recently introduced population on Kangaroo Island off the coast of South Australia. Here we assessed the genetic diversity within these two island populations and contrasted these patterns with genetic diversity estimates in areas from which the populations are likely to have been founded. On Kangaroo Island, we also modeled live capture data to determine estimates of population size. Levels of genetic diversity in King Island platypuses are perilously low, with eight of 13 microsatellite loci fixed, likely reflecting their small population size and prolonged isolation. Estimates of heterozygosity detected by microsatellites (H(E)= 0.032) are among the lowest level of genetic diversity recorded by this method in a naturally outbreeding vertebrate population. In contrast, estimates of genetic diversity on Kangaroo Island are somewhat higher. However, estimates of small population size and the limited founders combined with genetic isolation are likely to lead to further losses of genetic diversity through time for the Kangaroo Island platypus population. Implications for the future of these and similarly isolated or genetically depauperate populations are discussed.  相似文献   

12.
The Australian platypus, Ornithorhynchus anatinus, is one of three extant genera of the order monotremata. Given the divergent evolutionary lineage of monotremes in relation to more commonly studied animals, it was of interest to determine first, whether platypuses possess endogenous biological pacemakers and, second, general parameters of aquatic activity rhythms under artificial and natural light–dark (LD) cycles. Using a novel recording device, aquatic activity rhythms were measured in three platypuses: a paired male and female studied together, and a single female studied in isolation from other platypuses. Under a constant photic environment, some evidence was found for persistent and free-running rhythmicity, indicating the presence of an endogenous circadian pacemaker in the platypus. Under artificial LD cycles the paired animals exhibited a nocturnal pattern of entrainment, although in the single female considerable variability in entrained phase-relations was found under natural LD cycles. Evidence for a circadian pacemaker in the hypothalamic region of platypuses is also discussed.  相似文献   

13.
The fungal disease mucormycosis has affected Tasmanian platypuses for nearly three decades. We investigated the influences of mucormycosis on the hematologic, plasma biochemical, and other indicators of health in free-living platypuses across 18 Tasmanian river catchments. Live trapping enabled sampling of 161 (apparently) healthy and six ulcerated, mucormycosis-affected platypuses in 75 rivers and streams between January 2008 and June 2009. There were no obvious differences in any hematologic or biochemical measures between healthy and mucormycosis-affected platypuses. However, multivariate analysis revealed that ulceration was associated with living at higher altitudes, low tail fat content (high tail fat index), and low trypanosome load. There was evidence of overall lymphocytosis and monocytosis in animals from areas currently affected by mucormycosis, which suggests that some level of immune response to the introduced fungus is now widespread in disease-affected catchments. Animals from currently, historically, and possibly disease-affected catchments had lower neutrophil counts, mean cell volumes, plasma alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase levels, and higher plasma gamma-glutamyl transpeptidase and platelet counts compared to animals from catchments with no evidence of infection. Reference intervals were generated for all hematologic and biochemical measurements. Since this is the most comprehensive, systematic, and large-scale assessment of the health of the Tasmanian platypus to date, these references intervals should act as the standard against which future studies of platypuses in Tasmania should be compared.  相似文献   

14.
The genetic diversity within and among populations of Hepatacodium miconioides collected at three different altitudes in Tiantai Mountain, Zhejiang Province and its relationships to environmental factors were analyzed by random amplified polymorphic DNA (RAPD) technique. Amplification using 12 random primers of 60 plants and 122 repetitive loci were produced. The percentage of polymorphic loci of three populations ranged from 18.85% to 23.77% with an average of 21.86%, indicating the relatively low genetic diversity of H. miconioides. The average Shannon index of phenotypic diversity (0.1329) and Nei index (0.0925) within populations were relatively low. A distinct genetic differentiation existed among populations of H. miconioides in spite of the relatively small geographical distribution. The average genetic diversity within populations of H. miconioides accounted for 33.58% of the total genetic diversity while the genetic diversity among populations accounted for 66.42% as estimated by the Shannon index of phenotypic diversity, The genetic differentiation among populations of H. miconioides was 0.6546, as estimated by Nei index. The gene flow estimated from G ST was only 0.2656 and it indicated that gene flow among populations of H. miconioides was relatively low. The mean value of the genetic identity among populations of H. miconioides was 0.7126 and the average of genetic distance of H. miconioides was 0.3412. The genetic identity between populations at the elevation of 990 m and at the elevation of 780 m was the highest. The genetic identity between population at the elevation 500 m and other two populations was relatively low. The correlation analysis showed that the genetic diversity within populations was significantly related with the soil total nitrogen. __________ Translated from Journal of Zhejiang University (science Edition) 2005, 32 (4)[译81EA;: 浙江大学学报(理学版), 2005,32(4)]  相似文献   

15.
The wasp Vespula germanica is a highly successful invasive pest. This study examined the population genetic structure of V. germanica in its introduced range in Australia. We sampled 1320 workers and 376 males from 141 nests obtained from three widely separated geographical areas on the Australian mainland and one on the island of Tasmania. The genotypes of all wasps were assayed at three polymorphic DNA microsatellite markers. Our analyses uncovered significant allelic differentiation among all four V. germanica populations. Pairwise estimates of genetic divergence between populations agreed with the results of a model-based clustering algorithm which indicated that the Tasmanian population was particularly distinct from the other populations. Within-population analyses revealed that genetic similarity declined with spatial distance, indicating that wasps from nests separated by more than approximately 25 km belonged to separate mating pools. We suggest that the observed genetic patterns resulted from frequent bottlenecks experienced by the V. germanica populations during their colonization of Australia.  相似文献   

16.
The Eastern Barred Bandicoot Perameles gunnii has declined in abundance within mainland south-eastern Australia, to a relict wild population of less than 100 individuals in Hamilton, Victoria. It is more common, but is also declining in Tasmania. Genomic DN A variability was compared within and between surviving populations of P. gunnii using variable number of tandem repeat (VNTR) markers in one of two ways. First, average percentage differences (APDs) were determined between profiles for two VNTR probe—endonuclease combinations. Secondly, because one of these combinations revealed two multiallelic VNTR loci, genotypes were assigned and analysed for homogeneity of allele frequencies among subpopulations, for deviation of heterozygosity from Hardy-Weinberg equilibrium within populations and for genetic structuring among individuals from different subpopulations. The results of both the APD and defined locus approaches showed consistent trends within and between populations. Genetic variability was higher among mainland P. gunnii than in Tasmanian populations (higher APDs, number of alleles, and heterozygosity at one locus), despite the known decline and subdivision of the Hamilton population. Eleven per cent of the variability detected in Hamilton was attributed to genetic differentiation between east and west subdivisions of the population. Departure from random mating indicating local inbreeding within collecting localities was evident for one locus in both north and south Tasmania, particularly at one locality. AH alleles at both loci were unique to either Hamilton or Tasmanian P. gunnii. The initial captive colony contains high heterozygosity for these loci. It is concluded that VNTR markers can be of benefit for use in studies of population differentiation and for conservation management.  相似文献   

17.
Migration rates among nine populations of the endemic Lake Malawi cichlid Melanochromis auratus were estimated along a 42-km stretch of habitat in the southern end of the lake. Allele frequencies were surveyed at four simple sequence repeat (SSR) loci. The data suggest migration rates among populations are quite low. Exact tests indicate that statistically detectable allele frequency differences exist between many adjacent populations in the study. The FST value among all populations was estimated to be 0.151 (P < 0.0002). A biogeographic survey suggests that the highest levels of genetic differentiation exist between populations separated by stretches of deep water. Migration is more common between populations separated by shallower water or with shoreline dispersal routes. Reduced allelic diversity was observed at more recently created habitat patches, suggesting that either bottlenecks are associated with the colonization of new habitat patches or that these shallower sites were all founded by genetically depauperate ancestral populations. The extreme philopatry of M. auratus, coupled with the patchy distribution and transient nature of its preferred habitat, provides opportunities for both selection and genetic drift to produce genetic differentiation among populations. Both processes may be important to the evolution of taxonomic diversity in the East African cichlid species flocks.  相似文献   

18.
Recent studies suggest that populations of the pest moth Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) may be genetically differentiated over short distances and time periods within Queensland, Australia. To test for genetic structure in another region of Australia, we characterized population differentiation in Victorian samples of H. armigera using eight microsatellite loci. We found no evidence of genetic structure among samples from different locations or among samples collected at different times. Moreover, Victorian samples were not differentiated from other samples of H. armigera from Queensland and New Zealand. All samples showed substantial deviations from Hardy–Weinberg equilibrium, suggesting a high frequency of null alleles typically found in microsatellites of Lepidoptera. These results indicate that populations of H. armigera are not strongly structured among regions in south‐eastern Australia.  相似文献   

19.
Conservation management can be aided by knowledge of genetic diversity and evolutionary history, so that ecological and evolutionary processes can be preserved. The Button Wrinklewort daisy (Rutidosis leptorrhynchoides) was a common component of grassy ecosystems in south-eastern Australia. It is now endangered due to extensive habitat loss and the impacts of livestock grazing, and is currently restricted to a few small populations in two regions >500 km apart, one in Victoria, the other in the Australian Capital Territory and nearby New South Wales (ACT/NSW). Using a genome-wide SNP dataset, we assessed patterns of genetic structure and genetic differentiation of 12 natural diploid populations. We estimated intrapopulation genetic diversity to scope sources for genetic management. Bayesian clustering and principal coordinate analyses showed strong population genetic differentiation between the two regions, and substantial substructure within ACT/NSW. A coalescent tree-building approach implemented in SNAPP indicated evolutionary divergence between the two distant regions. Among the populations screened, the last two known remaining Victorian populations had the highest genetic diversity, despite having among the lowest recent census sizes. A maximum likelihood population tree method implemented in TreeMix suggested little or no recent gene flow except potentially between very close neighbours. Populations that were more genetically distinctive had lower genetic diversity, suggesting that drift in isolation is likely driving population differentiation though loss of diversity, hence re-establishing gene flow among them is desirable. These results provide background knowledge for evidence-based conservation and support genetic rescue within and between regions to elevate genetic diversity and alleviate inbreeding.Subject terms: Ecological genetics, Population genetics  相似文献   

20.
Five polymorphic microsatellites (simple sequence repeat; SSR) markers were used to estimate the levels of genetic variation within and among natural populations from different islands of the endangered endemic from the Canary Islands Sambucus palmensis Link (Sambucaceae). Genetic data were used to infer potential evolutionary processes that could have led to present genetic differentiation among islands. The levels of genetic variability of S. palmensis were considerably high; proportion of polymorphic loci (P = 100%), mean number of alleles per locus (A = 6.8), average expected heterozygosity (He = 0.499). In spite of its small population size and endemic character, 58 different multilocus genotypes were detected within the 165 individuals analyzed. All samples located in different islands always presented different multilocus genotypes. Principal Coordinates Analysis, genetic differentiation analysis (F ST and G ST ) and Bayesian Cluster Analysis revealed significant genetic differences among populations located in different islands. However, this genetic differentiation was not recorded among Tenerife and La Gomera populations, possibly revealing the uncontrolled transfer of material between both islands. AMOVA analysis attributed 77% of the variance to differences within populations, whereas 8% was distributed between islands. The levels of genetic differentiation observed among populations, and the genetic diversity distribution within populations in S. palmensis, indicate that management should aim to conserve as many of the small populations as possible. Concentrating conservation efforts only on the few large populations would result in the likelihood of loss of genetic variability for the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号