首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Amphiuma red blood cells, the Na/H exchanger has been shown to play a central role in the regulation of cell volume following cell shrinkage (Cala, P. M. 1980. Journal of General Physiology. 76:683- 708.) The present study was designed to evaluate the existence of pH regulatory Na/H exchange in the Amphiuma red blood cell. The data illustrate that when the intracellular pHi was decreased below the normal value of 7.00, Na/H exchange was activated in proportion to the degree of acidification. Once activated, net Na/H exchange flux persisted until normal intracellular pH (6.9-7.0) was restored, with a half time of approximately 5 min. These observations established a pHi set point of 7.00 for the pH-activated Na/H exchange of Amphiuma red blood cell. This is in contrast to the behavior of osmotically shrunken Amphiuma red blood cells in which no pHi set point could be demonstrated. That is, when activated by cell shrinkage the Na/H exchange mediated net Na flux persisted until normal volume was restored regardless of pHi. In contrast, when activated by cell acidification, the Na/H exchanger functioned until pHi was restored to normal and cell volume appeared to have no effect on pH-activated Na/H exchange. Studies evaluating the kinetic and inferentially, the molecular equivalence of the volume and pHi-induced Amphiuma erythrocyte Na/H exchanger(s), indicated that the apparent Na affinity of the pH activated cells is four times greater than that of shrunken cells. The apparent Vmax is also higher (two times) in the pH activated cells, suggesting the involvement of two distinct populations of the transporter in pH and volume regulation. However, when analyzed in terms of a bisubstrate model, the same data are consistent with the conclusion that both pH and volume regulatory functions are mediated by the same transport protein. Taken together, these data support the conclusion that volume and pH are regulated by the same effector (Na/H exchanger) under the control of as yet unidentified, distinct and cross inhibitory volume and pH sensing mechanisms.  相似文献   

2.
Summary The role of transmembrane pH gradients on the ouabain, bumetanide and phloretin-resistant Na+ transport was studied in human red cells. Proton equilibration through the Jacobs-Stewart cycle was inhibited by the use of DIDS (125 m) and methazolamide (400 m). Red cells with different internal pH (pH i =6.4, 7.0 and 7.8) were prepared and Na+ influx was measured at different external pH (pH o =6.0, 7.0, 8.0). Na+ influx into acid-loaded cells (pH i =6.4) markedly increased when pH o was raised from 6.0 to 8.0. Amiloride, a well-known inhibitor of Na+/H+ exchange systems blocked about 60% of the H+-induced Na+ entry, while showing small inhibitory effects in the absence of pH gradients. When pH0 was kept at 8.0, the amiloride-sensitive Na+ entry was abolished as pH i was increased from 6.4 to 7.8. Moreover, measurements of H+ efflux into lightly buffered media indicated that the imposition of an inward Na+ gradient stimulated a net H+ efflux which was sensitive to the amiloride analog 5-N-methyl-N-butyl-amiloride. Furthermore, in the absence of a chemical gradient for Na+ (Na i + =Na 0 + =15mm,Em=+6.7 mV), an outward H+ gradient (pH i =6.4, pH0=8.0) promoted a net amiloride-sensitive Na+ uptake which was abolished at an external pH of 6.0. These findings are consistent with the presence of an amiloride-sensitive Na+/H+ exchange system in human red cells.  相似文献   

3.
Lithium transport across the cell membrane is interesting in the light of general cell physiology and because of its alteration during numerous human diseases. The mechanism of Li+ transfer has been studied mainly in erythrocytes with a slow kinetics of ion exchange and therefore under the unbalanced ion distribution. Proliferating cultured cells with a rapid ion exchange have not been used practically in study of Li+ transport. In the present paper, the kinetics of Li+ uptake and exit, as well as its balanced distribution across the plasma membrane of U937 cells, were studied at minimal external Li+ concentrations and after the whole replacement of external Na+ for Li+. It is found that a balanced Li+ distribution attained at a high rate similar to that for Na+ and Cl? and that Li+/Na+ discrimination under balanced ion distribution at 1–10 mM external Li+ stays on 3 and drops to 1 following Na, K-ATPase pump blocking by ouabain. About 80% of the total Li+ flux across the plasma membrane under the balanced Li+ distribution at 5 mM external Li+ accounts for the equivalent Li+/Li+ exchange. The majority of the Li+ flux into the cell down the electrochemical gradient is a flux through channels and its small part may account for the NC and NKCC cotransport influxes. The downhill Li+ influxes are balanced by the uphill Li+ efflux involved in Li+/Na+ exchange. The Na+ flux involved in the countertransport with the Li+ accounts for about 0.5% of the total Na+ flux across the plasma membrane. The study of Li+ transport is an important approach to understanding the mechanism of the equivalent Li+/Li+/Na+/Na+ exchange, because no blockers of this mode of ion transfer are known and it cannot be revealed by electrophysiological methods. Cells cultured in the medium where Na+ is replaced for Li+ are recommended as an object for studying cells without the Na,K-ATPase pump and with very low intracellular Na+ and K+ concentration.  相似文献   

4.
Summary The sulfate and the chloride self-exchange fluxes were determined by measuring the rate of the tracer efflux from radioactively labeled human red blood cells and red blood cell ghosts. The concentration dependence and the pH-dependence of the sulfate self-exchange flux were studied. In addition, the effects of some monovalent and divalent anions on the sulfate and the chloride self-exchange fluxes were investigated.The sulfate self-exchange fluxes saturate, exhibiting a concentration maximum at sulfate concentrations between 100 and 300mm (25°C). The position of the concentration maximum depends upon pH. At high sulfate concentrations a self-inhibition of the flux becomes apparent. The apparent half-saturation constant and the apparent self-inhibition constant at pH 7.2 were 30mm and 400mm respectively. Within the pH range of 6.3–8.5, both constants decreased with increasing pH. No saturation of the sulfate self-exchange flux was observed if the sulfate concentration was raised by substituting sulfate for isoosmotic amounts of a second salt (NaCl, NaNO3, Na-acetate, Na-lactate, Na-succinate or Na2HPO4). Red blood cells and red blood cell ghosts display the same pattern of concentration responsiveness.The sulfate self-exchange flux exhibits a pH-maximum at about pH 6.2 (37°C). The location of the pH-maximum is little affected by variations of the sulfate concentration. The logarithmic plots (log vs. pH) revealed that the flux/pH relation can be approximated by two straight lines. The slopes of the alkaline branches of the flux/pH curves range from –0.55 to –0.86, the slopes of the branches of the curves range from 0.08 to 1.14 and were strongly affected by changes of the sulfate concentrations. The apparent pK's obtained from the alkaline and from the acidic branches of the flux/pH curves were about 7.0 and 6.0, respectively. Intact red blood cells and red blood cell ghosts display the same type of pH-dependency of the sulfate self-exchange flux.The sulfate self-exchange flux is competitively inhibited by nitrate, chloride, acetate, oxalate and phosphate. The chloride self-exchange flux is competitively inhibited by thiocyanate, nitrate, sulfate and phosphate. The inhibition constants for the various anion species increase in the given sequence.The results of our studies indicate that the sulfate self-exchange flux is mediated by a two-site transport mechanism consisting either of a mobile carrier or a two-site pore. The experiments reported in this paper do not permit distinguishing between both transport mechanisms. The similarities of the sulfate and the chloride self-exchange flux and the mutual competition between sulfate and chloride point to a common transport system for both anion species.  相似文献   

5.
This study focused on the role of sodium-bicarbonate cotransporter (NBC1) in cAMP-stimulated ion transport in porcine vas deferens epithelium. Ion substitution experiments in modified Ussing chambers revealed that cAMP-mediated stimulation was dependent on the presence of Na(+), HCO, and Cl(-) for a full response. HCO-dependent current was unaffected by acetazolamide, bumetanide, or amiloride but was inhibited by basolateral 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Na(+)-driven, HCO-dependent, stilbene-inhibitable anion flux was observed across the basolateral membrane of selectively permeabilized monolayers. Results of radiotracer flux studies suggest a 4,4'-dinitrostilbene-2,2'-disulfonate-sensitive stoichiometry of 2 base equivalents per Na(+). Antibodies raised against rat kidney NBC epitopes (rkNBC; amino acids 338-391 and 928-1035) identified a single band of ~145 kDa. RT-PCR detected NBC1 message in porcine vas deferens epithelia. These results demonstrate that vas deferens epithelial cells possess the proteins necessary for the vectoral transport of HCO and that these mechanisms are maintained in primary culture. Taken together, the results indicate that vas deferens epithelia play an active role in male fertility and have implications for our understanding of the relationship between cystic fibrosis and congenital bilateral absence of the vas deferens.  相似文献   

6.
The successive methylations of phosphatidylethanolamine to form phosphatidylcholine were measured using exogenously added intermediates and membrane preparations from human red blood cells. The addition of phosphatidylethanolamine resulted in no increase in methylation rate over that with endogenous substrate; however, the addition of monomethylphosphatidylethanolamine (PME) and dimethylphosphatidylethanolamine (PDE) markedly increased the reaction rate and allowed studies into the kinetic mechanism for the second and third methylation reactions. The data are consistent with catalysis of the last two methylations being by a single enzyme with a random Bi-Bi sequential mechanism. Analysis of PDE:phosphatidylcholine product ratios indicates that the enzyme can conduct multiple methylations of enzyme-bound phospholipid. The nature of the acyl chain (16:0 versus 18:1) of the phospholipid had only a small effect on the value of the kinetic constants. The maximal velocities obtained with the 18:1 substrate were less than 5% lower than those obtained with the 16:0 substrate. The Km values for the two phospholipids were 20-45 and 10-14 microM for the methylation of PME and PDE, respectively. The Km for S-adenosylmethionine (AdoMet) was 5-9 microM with PME and 4 microM with PDE as substrates. Depending on the acyl chain and the phospholipid, the Ki(AdoMet) varied from 8 to 19 microM, the Ki(PME) from 41 to 82 microM, and the Ki(PDE) from 35 to 61 microM. The Ki for S-adenosylhomocysteine (AdoHcy) was between 1.0 and 1.4 microM depending upon the variable substrate. The endogenous concentrations of PME and PDE in red blood cell membranes were estimated to be 0.49 and 0.24 mumol/liter packed cells, respectively. The product from the utilization of AdoMet, S-adenosylhomocysteine (AdoHcy), was shown to be a competitive inhibitor of its precursor, AdoMet, and a noncompetitive inhibitor of the two phospholipid substrates.  相似文献   

7.
8.
9.
10.
The red cell Na/K pump is known to continue to extrude Na when both Na and K are removed from the external medium. Because this ouabain-sensitive flux occurs in the absence of an exchangeable cation, it is referred to as uncoupled Na efflux. This flux is also known to be inhibited by 5 mM Nao but to a lesser extent than that inhibitable by ouabain. Uncoupled Na efflux via the Na/K pump therefore can be divided into a Nao-sensitive and Nao-insensitive component. We used DIDS-treated, SO4-equilibrated human red blood cells suspended in HEPES-buffered (pHo 7.4) MgSO4 or (Tris)2SO4, in which we measured 22Na efflux, 35SO4 efflux, and changes in the membrane potential with the fluorescent dye, diS-C3 (5). A principal finding is that uncoupled Na efflux occurs electroneurally, in contrast to the pump's normal electrogenic operation when exchanging Nai for Ko. This electroneutral uncoupled efflux of Na was found to be balanced by an efflux of cellular anions. (We were unable to detect any ouabain-sensitive uptake of protons, measured in an unbuffered medium at pH 7.4 with a Radiometer pH-STAT.) The Nao-sensitive efflux of Nai was found to be 1.95 +/- 0.10 times the Nao-sensitive efflux of (SO4)i, indicating that the stoichiometry of this cotransport is two Na+ per SO4=, accounting for 60-80% of the electroneutral Na efflux. The remainder portion, that is, the ouabain-sensitive Nao-insensitive component, has been identified as PO4-coupled Na transport and is the subject of a separate paper. That uncoupled Na efflux occurs as a cotransport with anions is supported by the result, obtained with resealed ghosts, that when internal and external SO4 was substituted by the impermeant anion, tartrate i,o, the efflux of Na was inhibited 60-80%. This inhibition could be relieved by the inclusion, before DIDS treatment, of 5 mM Cli,o. Addition of 10 mM Ko to tartrate i,o ghosts, with or without Cli,o, resulted in full activation of Na/K exchange and the pump's electrogenicity. Although it can be concluded that Na efflux in the uncoupled mode occurs by means of a cotransport with cellular anions, the molecular basis for this change in the internal charge structure of the pump and its change in ion selectivity is at present unknown.  相似文献   

11.
We looked for the presence of prorenin in erythrocytes from normal subjects (n = 8), hypertensive patients (n = 8), and pregnant women (n = 8). Angiotensin I generation was measured at 37 degrees C, pH 5.7, in the presence of homologous substrate (1400 ng/mL) before and after trypsin activation (100 micrograms/mL) in (A) haemolyzed erythrocytes, (B) supernatants of haemolyzed erythrocytes, and (C) in the sixth washing of erythrocytes diluted 1:1 with a 0.1 M Tris buffer containing 0.5% bovine serum albumin and protease inhibitors. Haemolyzed erythrocytes generated angiotensin I only after trypsin treatment, and the rate of generation was the same (A) before and (B) after centrifugation at 20,000g, indicating the absence of prorenin bound to the cell membranes. When aliquots of the last washing of erythrocytes (C) were tested for angiotensin I generation before and after trypsin, they did not generate angiotensin I, indicating that residual prorenin from the plasma was no longer present in our preparation. Angiotensin I generation by trypsin-treated A and B was completely abolished by preincubation with anti-renin serum. The level of prorenin was not significantly different in the erythrocytes from normal, hypertensive, and pregnant subjects (68 +/- 10, 58 +/- 7 and 107 +/- 17 pg angiotensin I.mL-1.h-1, ns) in spite of their very different plasma levels (21 +/- 2.5, 17 +/- 2.4 and 110 +/- 12 ng angiotensin I.mL-1.h-1, p less than 0.01 for pregnant women compared with both normal and hypertensive subjects). Our data show that prorenin is present in human erythrocytes in fairly constant and clearly detectable amounts, thus suggesting a possible intracellular role for it.  相似文献   

12.
This paper describes the kinetics and stoichiometry of a tightly coupled Na-Li exchange transport system in human red cells. The system is inhibited by phloretin and furosemide but not by ouabain. Li influx by this system increases and saturates with increasing concentrations of external Li and internal Na and is inhibited competitively by external Na. Comparable functions relate Li efflux and Na efflux to internal and external Li and Na concentrations. Analysis of these relations yields the following values for the ion concentrations required to half-maximally activate the transport system: internal Na and Li 9.0 and 0.5 mM, respectively, external Na and Li 25 and 1.5 mM, respectively. The system performs a 1:1 exchange of Na and Li moving in opposite directions across the red cell membrane. We found no evidence for a simultaneous transport of more than one Na and Li by the system. The maximum transport rate of Na-dependent Li transport varied between 0.1 and 0.37 mmol/(liter of cells X h) in the red cells of the five normal male subjects studied. No significant variations between individual subjects were observed for bicarbonate-stimulated Li transport and for the residual Li fluxes which occur in the absence of bicarbonate and in the presence of ouabain plus phloretin.  相似文献   

13.
This study focused on the role ofsodium-bicarbonate cotransporter (NBC1) in cAMP-stimulated iontransport in porcine vas deferens epithelium. Ion substitutionexperiments in modified Ussing chambers revealed that cAMP-mediatedstimulation was dependent on the presence of Na+,HCO, and Cl for a full response.HCO-dependent current was unaffected byacetazolamide, bumetanide, or amiloride but was inhibited bybasolateral 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid.Na+-driven, HCO-dependent,stilbene-inhibitable anion flux was observed across the basolateralmembrane of selectively permeabilized monolayers. Results ofradiotracer flux studies suggest a4,4'-dinitrostilbene-2,2'-disulfonate-sensitive stoichiometry of 2 baseequivalents per Na+. Antibodies raised against rat kidneyNBC epitopes (rkNBC; amino acids 338-391 and 928-1035)identified a single band of ~145 kDa. RT-PCR detected NBC1 message inporcine vas deferens epithelia. These results demonstrate that vasdeferens epithelial cells possess the proteins necessary for thevectoral transport of HCO and that these mechanismsare maintained in primary culture. Taken together, the results indicatethat vas deferens epithelia play an active role in male fertility andhave implications for our understanding of the relationship betweencystic fibrosis and congenital bilateral absence of the vas deferens.

  相似文献   

14.
1.
1. Efflux of glucose from human red blood cells under zero-trans conditions has been measured at 20°.  相似文献   

15.
Dog red cell membranes contain two distinct volume-sensitive transporters: swelling-activated K-Cl cotransport and shrinkage- activated Na/H exchange. Cells were prepared with intracellular salt concentration and weight percentage of cell water (%cw) varied independently by transient permeabilization of the cell membrane to cations. The dependence of transporter-mediated Na and K influxes upon %cw and upon extracellular salt concentration (c(ext)) was measured in cells so prepared. It was found that the critical value of %cw at which transporters are activated, called the set point, is similar for the two transporters, and that the set points for the two transporters decrease similarly with increasing extracellular salt concentration. These findings suggest a common mechanism of regulation of these two transporters. Cellular Na, K, and Cl concentrations were measured as functions of %cw and c(ext). Using these data together with data from the literature for other solute concentrations, empirical expressions were developed to describe the dependence of the intracellular concentrations of all significant small molecule electrolytes, and therefore the intracellular ionic strength, upon %cw and c(ext). A mechanistic model for the dependence of the set point of an individual transporter upon intracellular ionic strength is proposed. According to this model, the set point represents a critical extent of association between the transporter and a postulated soluble regulatory protein, called regulator. Model functions are presented for the calculation of the thermodynamic activity of regulator, and hence extent of regulator- transporter association, as a function of total intracellular protein concentration (or %cw) and ionic strength. The experimentally observed dependence of set point %cw on c(ext) are simulated using these functions and the empirical expressions described above, together with reasonable but not uniquely determined values of model parameters.  相似文献   

16.
17.
18.
Hypertrophy of vascular smooth muscle cells (VSMC) is a pathogenic feature of hypertension which may contribute to abnormal vessel tone and function. As a consequence of the increase in cell size associated with hypertrophy, it is likely that alterations in the mechanisms that regulate VSMC intracellular volume occur. Because the Na+/H+ exchanger plays an important role in volume regulation and because we previously observed long term alterations in Na+/H+ exchange and pHi in response to angiotensin-II-induced (ang II) hypertrophy, we studied cell-acidifying mechanisms. To do this, we measured alkaline recovery from NH4Cl-mediated alkalinization, using the fluorescent dye, 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. VSMC were growth-arrested (0.4% calf serum for 24 h) or hypertrophied (100 nM ang II in 0.4% calf serum for 24 h). Ang II-treated cells exhibited a 107% increase in alkaline recovery over control cells (13.86 +/- 1.87 versus 6.68 +/- 1.01 mmol H+/min/liter cells). The increase in alkaline recovery was not a result of increased Cl-/HCO-3 exchange becaue it was not HCO-3 dependent nor inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid. Studies with bumetanide and the sterically inhibited substrate N(CH3)4+ showed that the alkaline recovery was mediated by NH4+ transport via the Na/K/2Cl cotransporter. Ang II-treated cells exhibited a 334% increase in bumetanide-sensitive alkaline recovery over control cells (9.16 +/- 1.90 versus 2.11 +/- 1.46 mmol H+/min/liter cells). Ang II-treated cells also exhibited a 90% increase in bumetanide-sensitive 86Rb uptake over control cells. These findings demonstrate that Na/K/2Cl cotransport activity is specifically induced in ang II-hypertrophied VSMC and establish this transporter as a component of the hypertrophic growth response.  相似文献   

19.
Summary A kinetic analysis of anion self-exchange in human red blood cells, in the presence of an irreversible inhibitor, is presented and applied to the study of the inactivation of sulfate transport by three isothiocyanates: 3-isothiocyano-1,5-naphthalenedisulfonic acid, disodium salt (INDS), 1-isothiocyano-4-naphthalene sulfonic acid, sodium salt, monohydrate (INS), and 1-isothiocyano-4-benzenesulfonic acid, sodium salt, monohydrate (IBS). The time dependence of the inhibition of sulfate transport by the isothiocyanates used could be described by a single exponential and could be shown to contain a reversible and an irreversible component. In each case a portion of sulfate efflux was found to be resistant to inactivation. The residual portion of the sulfate efflux varied with inhibition: 4% for INS, 16% for INDS, and 34% for IBS. INS showed the largest reversible inhibitory effect (12% of the flux remaining at 0.2mm inhibitor concentration), while INDS showed the weakest effect (92% of the flux remaining at 0.3mm inhibitor concentration). IBS had the highest rate of inactivation while INDS had the lowest. The kinetic analysis further suggests that all three isothiocyanates bind reversibly to an inhibitory site on the membrane before they bind covalently, and therefore irreversibly, to the same site on the membrane. The equilibrium constant for the dissociation of the reversibly-bound complex,K i, and the rate of irreversible inactivation after all membrane sites are reversibly bound,k max, have been computed for all three inhibitors: INDS (K i=420m,k max=5.04 hr–1), INS (K i=148 m,k max=6.48 hr–1), and IBS (K i=208 m,k max=8.11 hr–1).  相似文献   

20.
Although it is beyond doubt that mammary cells accumulate iodide via a Na+-dependent transport mechanism, it is not clear if this is the only pathway for iodide transport in mammary tissue. In view of this, experiments were designed to test for the presence of an anion-exchange pathway which could mediate the transport of iodide into mammary cells; thus, the effect of external iodide on sulfate efflux from rat mammary tissue has been investigated. Iodide trans-stimulated sulfate efflux from mammary tissue explants in a dose-dependent manner: 0.1, 1.0 and 10.0 mM iodide stimulated the fractional release of iodide by 56 +/- 2.2, 166.5 +/- 17.5, and 302.9 +/- 29.8%, respectively. The stimulation of sulfate efflux by external iodide was completely inhibited by DIDS (4.4'-diisothiocyanatostilbene 2,2'-disulfonic acid). Perchlorate (1 mM) also trans-stimulated sulfate efflux in a manner that was inhibited by DIDS. Furthermore, iodide trans-accelerated sulfate efflux from rat mammary acini via a DIDS-sensitive mechanism. The results are consistent with the presence of a DIDS-sensitive anion-exchange mechanism which can accept iodide as a substrate. It appears that the iodide-sulfate exchange mechanism is independent from the sodium-dependent iodide transporter given that sulfate is not a substrate of the latter system. The iodide-sulfate exchanger may operate in parallel with the sodium-dependent iodide transporter to mediate iodide uptake into mammary cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号