首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Sonic hedgehog (Shh) is an indispensable, extrinsic cue that regulates progenitor and stem cell behavior in the developing and adult mammalian central nervous system. Here, we investigate the link between the Shh signaling pathway and Hes1, a classical Notch target. We show that Shh-driven stabilization of Hes1 is independent of Notch signaling and requires the Shh effector Gli2. We identify Gli2 as a primary mediator of this response by showing that Gli2 is required for Hh (Hedgehog)-dependent up-regulation of Hes1. We also show using chromatin immunoprecipitation that Gli2 binds to the Hes1 promoter, which suggests that Hes1 is a Hh-dependent direct target of Gli2 signaling. Finally, we show that Shh stimulation of progenitor proliferation and cell diversification requires Gli2 and Hes1 activity. This paper is the first demonstration of the mechanistic and functional link between Shh, Gli, and Hes1 in the regulation of progenitor cell behavior.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Qiu N  Cao L  David V  Quarles LD  Xiao Z 《PloS one》2010,5(12):e15240
Pkd1 localizes to primary cilia in osteoblasts and osteocytes. Targeted deletion of Pkd1 in osteoblasts results in osteopenia and abnormalities in Runx2-mediated osteoblast development. Kif3a, an intraflagellar transport protein required for cilia function, is also expressed in osteoblasts. To assess the relationship between Pkd1 and primary cilia function on bone development, we crossed heterozygous Pkd1- and Kif3a-deficient mice to create compound Pkd1 and Kif3a-deficient mice. Pkd1 haploinsufficiency (Pkd1(+/Δ)) resulted in osteopenia, characterized by decreased bone mineral density, trabecular bone volume, and cortical thickness. In addition, deficiency of Pkd1 resulted in impaired osteoblastic differentiation and enhanced adipogenesis in both primary osteoblasts and/or bone marrow stromal cell cultures. These changes were associated with decreased Runx2 expression, increased PPARγ expression, and impaired hedgehog signaling as evidenced by decreased Gli2 expression in bone and osteoblast cultures. In contrast, heterozygous Kif3a(+/Δ) mice display no abnormalities in skeletal development or osteoblast function, but exhibited decreased adipogenic markers in bone and impaired adipogenesis in vitro in association with decreased PPARγ expression and upregulation of Gli2. Superimposed Kif3a deficiency onto Pkd1(+/Δ) mice paradoxically corrected the effects of Pkd1 deficiency on bone mass, osteoblastic differentiation, and adipogenesis. In addition, Runx2, PPARγ and Gli2 expression in bone and osteoblasts were normalized in compound double Pkd1(+/Δ) and Kif3a(+/Δ) heterozygous mice. The administration of sonic hedgehog, overexpression of Gli2, and the PC1 C-tail construct all increased Gli2 and Runx2-II expression, but decreased PPARγ2 gene expression in C3H10T1/2 cells. Our findings suggest a role for Pkd1 and Kif3a to counterbalance the regulation of osteogenesis and adipogenesis through differential regulation of Runx2 and PPARγ by Gli2.  相似文献   

14.
15.
16.
Gli1 can rescue the in vivo function of Gli2.   总被引:6,自引:0,他引:6  
In mice, three Gli genes are thought to mediate sonic hedgehog (Shh) signaling collectively. Mis-expression studies and analysis of null mutants for each gene have indicated that the Gli proteins have different functions. In particular, Gli1 appears to be a constitutive activator, and Gli2 and Gli3 have repressor functions. To determine the precise functional differences between Gli1 and Gli2, we have expressed Gli1 in place of Gli2 from the endogenous Gli2 locus in mice. Strikingly, a low level of Gli1 can rescue all the Shh signaling defects in Gli2 mutants; however, only in the presence of a wild-type Shh gene. These studies demonstrate that only the activator function of Gli2 is actually required, and indicates that in specific situations, Shh can modulate the ability of Gli1 to activate target genes. Furthermore, expression of both copies of Gli1 in place of Gli2 does not disrupt spinal cord patterning, but does result in new gain-of-function defects that lead to lethality. We show that the defects are enhanced when Gli3 function is reduced, demonstrating that an important difference between Gli1 and Gli2 is the ability of Gli1 to antagonize Gli3 function.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号