首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of nuclear mutants of C. reinhardtii were identified that specifically lack translation of the chloroplast-encoded psbA mRNA, which encodes the photosystem II reaction center polypeptide D1. Two of these mutants are deficient in the 47-kD member (RB47) of the psbA RNA-binding complex, which has previously been identified both genetically and biochemically as a putative translational activator of the chloroplast psbA mRNA. RB47 is a member of the poly(A)-binding protein family, and binds with high affinity and specificity to the 5′ untranslated region of the psbA mRNA. The results presented here confirm RB47''s role as a message-specific translational activator in the chloroplast, and bring together genetic and biochemical data to form a cohesive model for light- activated translational regulation in the chloroplast.  相似文献   

2.
3.
In Chlamydomonas reinhardtii the oxygen evolving enhancer protein 1 (OEE1), which is part of the oxygen evolving complex of photosystem II (PS II), is coded for by a single nuclear gene (psb1). The nuclear mutant FuD44 specifically lacks the OEE1 polypeptide and is completely deficient in photosynthetic oxygen evolution. In this mutant a 5 kb DNA insertion into the 5' region of the psb1 gene results in the complete absence of OEE1 mRNA and protein. A revertant, FuD44-R 2, which is capable of 30% of the photosynthetic oxygen evolution of wild-type cells, has lost 4 kb of the 5 kb DNA insert, and accumulates both OEE1 mRNA and protein, although at levels somewhat less than those of wild-type cells. Absence of the OEE1 protein in the FuD44 mutant does not affect the accumulation of other nuclear encoded PS II peripheral polypeptides. OEE1 absence does, however, result in a more rapid turnover of the chloroplast encoded PS II core polypeptides, thus resulting in a substantial deficiency of PS II core polypeptides in FuD44 cells. These PS II core proteins again accumulate in revertant FuD44-R2 cells.  相似文献   

4.
A Danon  S P Mayfield 《The EMBO journal》1991,10(13):3993-4001
Genetic analysis has revealed a set of nuclear-encoded factors that regulate chloroplast mRNA translation by interacting with the 5' leaders of chloroplastic mRNAs. We have identified and isolated proteins that bind specifically to the 5' leader of the chloroplastic psbA mRNA, encoding the photosystem II reaction center protein D1. Binding of these proteins protects a 36 base RNA fragment containing a stem-loop located upstream of the ribosome binding site. Binding of these proteins to the psbA mRNA correlates with the level of translation of psbA mRNA observed in light- and dark-grown wild type cells and in a mutant that lacks D1 synthesis in the dark. The accumulation of at least one of these psbA mRNA-binding proteins is dependent upon chloroplast development, while its mRNA-binding activity appears to be light modulated in developed chloroplasts. These nuclear encoded proteins are prime candidates for regulators of chloroplast protein synthesis and may play an important role in coordinating nuclear-chloroplast gene expression as well as provide a mechanism for regulating chloroplast gene expression during development in higher plants.  相似文献   

5.
6.
Using spectroscopic, biophysical and immunological techniques, we assayed the relative abundance often chloroplast proteins and protein complexes in the marine haptophyte, Isochrysis galbana Green, grown at nine steady-state dilution rates in nitrogen-limited chemostats. The proteins included Photosystem I reaction center (RCI) chlorophyll protein, CP1; Photosystem II reaction center (RC II) protein, D1; two chlorophyll a-binding apoproteins, CP 43 and CP 47; 33 KDa oxygen evolving protein, OEC 33; α subunit of coupling factor, CF1α; large (LSU) and small subunits (SSU) of ribulose 1,5-bisphosphate carboxylase, RuBisCO; the chlorophyll a/c/fucoxanthin protein complex, LHCP; and cytochrome b6/f. Seven of the ten protein complexes are encoded in the chloroplast, two are encoded in the nucleus and one shares chloroplast and nuclear genomes. Over the range of dilution rates (0.96-0.18 d?1) cell N decreased 42% and cellular chlorophyll a decreased 50%; however, the stoichiometric proportion of RC II: cytochrome b6/f: RC I remained constant, averaging 1:3.3:0.8. In contrast, RuBisCO / PS II decreased by 58%. The light harvesting chlorophyll a/c/fucoxanthin protein complex increased relative to RC II; however, as cells became more nitrogen limited the fraction of total cell nitrogen contained in RuBisCO decreased from 21.3 to 6.7%, whereas that of the light harvesting complex remained relatively constant, averaging 6.8%. Our results generally support the hypothesis that in nitrogen limited cells, proteins encoded in the nuclear genome are synthesized preferentially over those encoded in the chloroplast.  相似文献   

7.
8.
9.
10.
Rapid light-dependent turnover of the chloroplast-encoded D1 protein maintains photosystem II (PS II) functional over a wide range of light intensities. Following initiation of psbA mRNA translation, the elongating D1 is targeted, possibly by chloroplast signal recognition particle 54 (cpSRP54), to the thylakoid cpSecY translocation channel. Transmembrane domains of nascent D1 start interacting with other PS II core proteins already during the translocation process to ensure an efficient assembly of the multiprotein membrane complex. Here we review the progress recently made concerning the synthesis, targeting, membrane insertion and assembly to PS II of the chloroplast-encoded D1 protein and discuss the possible convergence of targeting and translocation of chloroplast- and nuclear-encoded thylakoid proteins.  相似文献   

11.
We have determined the sequence of the spinach (Spinacia oleracea) chloroplast genes for the photosystem II proteins, D2 and the 44 kd reaction-centre, chlorophyll a-binding protein, and for tRNASer (UGA). The 3' end of the D2 gene overlaps the first 50 bp of the 5' end of the gene for the 44 kd protein. Northern RNA hybridization analysis indicates the two genes are cotranscribed into a single 3.5 kb RNA. The predicted molecular weight of the 353-residue D2 protein is 39536 and that of the 473-residue 44 kd protein is 51816. Both proteins are hydrophobic containing at least five possible membrane-spanning domains. D2 shows significant homology to the 32 kd herbicide-binding protein (Zurawski et al., (1982) Proc. Natl. Acad. Sci. USA 79, 7699-7703), and parts of the 44 kd protein show obvious similarities to parts of the 51 kd reaction-centre, chlorophyll a-binding protein of photosystem II (Morris and Herrmann (1984) Nucleic Acids Res. 12, 2837-2850). The gene for tRNASer (UGA) which is on the opposite strand to and transcribed towards the photosystem II genes is 72% homologous with the corresponding Escherichia coli tRNASer.  相似文献   

12.
We have monitored the accumulation of photosynthetic proteins in developing pigment-deficient mutants of Zea mays. The proteins examined are the CO2-fixing enzymes, phoshoenolpyruvate carboxylase (E.C. 4.1.1.31) and ribulose-1,5-bisphosphate carboxylase (E.C.4.1.1.39), and three thylakoid membrane proteins, the light-harvesting chlorophyll a/b binding protein (LHCP) of photosystem II, the 65 kilodalton chlorophyll a binding protein of photosystem I and the alpha subunit polypeptide of coupling factor I. Using a sensitive protein-blot technique, we have compared the relative quantities of each protein in mutants and their normal siblings. Carboxylase accumulation was found to be independent of chlorophyll content, while the amounts of the thylakoid proteins increase at about the same time as chlorophyll in delayed-greening mutants. The relative quantity of LHCP is closely correlated with the relative quantity of chlorophyll at all stages of development in all mutants. Because pigment-deficient mutants are arrested at early stages in chloroplast development, these findings suggest that the processes of chloroplast development, chlorophyll synthesis and thylakoid protein accumulation are coordinated during leaf development but that carboxylase accumulation is controlled by different regulatory mechanisms. A white leaf mutant was found to contain low levels of LHCP mRNA, demonstrating that the accumulation of LHCP mRNA is not controlled exclusively by phytochrome.  相似文献   

13.
The effect of ultraviolet-B (UV-B) radiation on the amount of various Photosystem (PS) II subunits has been studied in the thalloid liverwort Conocephalum conicum. UV-B irradiation led to a drastic decrease of the reaction center proteins D1 and D2 and the outer light harvesting antenna (LHC II). A minor reduction was found in the levels of the CP 43 polypeptide of the inner antenna and the 33, 23 and 16 kDa extrinsic polypeptides of PS II. During UV-B irradiation, the extrinsic polypeptides accumulated in the soluble protein fraction, but D1 and D2 were not dedectable. Streptomycin, but not cycloheximide inhibited the repair process of PS II, indicating that only protein synthesis in the chloroplast is necessary for recovery. This indicates that the extrinsic proteins of PS II dissociate from the membrane during UV-B treatment and reassociate with PS II in the course of the repair process. We conclude that the reaction center core is a target of UV-B radiation in C. concicum. The extrinsic proteins of PS II are not directly affected by UV-B, but their release is the consequence of UV-B-induced degradation of the D1 and D2 proteins.  相似文献   

14.
The variable fluorescence and polypeptide and carotenoid compositions of the chlorophyll b-deficient mutant C-48 of the unicellular green alga Chlamydomonas reinhardtii and its double mutants without chlorophyll b and with inactive photosystem II were compared with those of the wild-type algal cells. Studying variable fluorescence demonstrated the alterations at the donor side (AC-121), the acceptor side (AC-234) or immediately in the photosystem II reaction centre (AC-184, AC-864). Gel electrophoresis showed that the absence of chlorophyll b in all mutants was due to the lack of 26, 28 and 31 kDa polypeptides in the light-harvesting chlorophyll a/b-protein complex II (LHC II). As a result of the second mutation, the chlorophyll a-protein complex of photosystem II did not form in chloroplast membranes. The disassembly of this complex in the mutants AC-121, AC-234 and AC-864 was related to the deficiency of both polypeptides of the reaction centre (30 and 32 kDa) and polypeptides of the water-oxidizing system (18, 23 and 34 kDa). Besides the loss of these polypeptides, the contents of polypeptides with molecular masses of 47 and 51 kDa decreased in the double mutant AC-184. Substantial changes were revealed in the carotenoid composition of the double mutants. We observed the considerable accumulation of carotenes that accompanied alterations in the donor (mutant AC-121) or acceptor (mutant AC-234) sides of PS II. In the first case, beta-carotene predominantly accumulated (87%); in the second case, it was alpha-carotene (52%). Alterations in the PS II reaction centre (mutants AC-184, AC-864) caused accumulation of xanthophylls, mainly lutein (38-41%). We suppose that alterations in different parts of the PS II chloroplast membrane lead to substantial changes in the carotenoid composition.  相似文献   

15.
L B Smart  S L Anderson    L McIntosh 《The EMBO journal》1991,10(11):3289-3296
We describe the first complete segregation of a targeted inactivation of psaA encoding one of the P700-chlorophyll a apoproteins of photosystem (PS) I. A kanamycin resistance gene was used to interrupt the psaA gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Selection of a fully segregated mutant, ADK9, was performed under light-activated heterotrophic growth (LAHG) conditions; complete darkness except for 5 min of light every 24 h and 5 mM glucose. Under these conditions, wild-type cells showed a 4-fold decrease in chlorophyll (chl) per cell, primarily due to a decrease of PS I reaction centers. Evidence for the absence of PS I in ADK9 includes: the lack of EPR (electron paramagnetic resonance) signal I, from P700+; undetectable P700-apoprotein; greatly reduced whole-chain photosynthesis rates; and greatly reduced chl per cell, resulting in a turquoise blue phenotype. The PS I peripheral proteins PSA-C and PSA-D were not detected in this mutant. ADK9 does assemble near wild-type levels of functional PS II per cell, evidenced by: EPR signal II from YD+; high rates of oxygen evolution with 2,6-dichloro-p-benzoquinone (DCBQ), an electron acceptor from PS II; and accumulation of D1, a PS II core polypeptide. The success of this transformation indicates that this cyanobacterium may be utilized for site-directed mutagenesis of the PS I core.  相似文献   

16.
The reaction center core of photosystem II, a multiprotein membrane bound complex, is composed of a heterodimer of two proteins, D1 and D2. A random mutagenesis technique was used to isolate a photosystem II deficient mutant, CP6t16, of the unicellular cyanobacterium, Synechocystis sp. PCC 6803. Nucleotide sequence analysis showed that the primary lesion in CP6t16 is an ochre mutation introducing a translational stop codon in the psbE gene, encoding the alpha-subunit of cytochrome b559, an integral component of the PSII complex. Analysis of the protein composition of CP6t16 thylakoid membranes isolated in the presence of serine protease inhibitors revealed that, in the absence of cytochrome b559, the D2 protein is also absent. However, the D1 protein is stably incorporated in these membranes, suggesting that the synthesis and integration of D1 are independent of those of D2 and cytochrome b559.  相似文献   

17.
Sun X  Peng L  Guo J  Chi W  Ma J  Lu C  Zhang L 《The Plant cell》2007,19(4):1347-1361
The widely distributed DEGP proteases play important roles in the degradation of damaged and misfolded proteins. Arabidopsis thaliana contains 16 DEGP-like proteases, four of which are located in the chloroplast. Here, we show that DEG5 and DEG8 form a hexamer in the thylakoid lumen and that recombinant DEG8 is proteolytically active toward both a model substrate (beta-casein) and photodamaged D1 protein of photosystem II (PSII), producing 16-kD N-terminal and 18-kD C-terminal fragments. Inactivation of DEG5 and DEG8 resulted in increased sensitivity to photoinhibition. Turnover of newly synthesized D1 protein in the deg5 deg8 double mutant was impaired, and the degradation of D1 in the presence of the chloroplast protein synthesis inhibitor lincomycin under high-light treatment was slowed in the mutants. Thus, DEG5 and DEG8 are important for efficient turnover of the D1 protein and for protection against photoinhibition in vivo. The deg5 deg8 double mutant showed increased photosensitivity and reduced rates of D1 degradation compared with single mutants of deg5 and deg8. A 16-kD N-terminal degradation fragment of the D1 protein was detected in wild-type plants but not in the deg5 deg8 mutant following in vivo photoinhibition. Therefore, our results suggest that DEG5 and DEG8 have a synergistic function in the primary cleavage of the CD loop of the PSII reaction center protein D1.  相似文献   

18.
D J McCormac  A Barkan 《The Plant cell》1999,11(9):1709-1716
To elucidate mechanisms that regulate chloroplast translation in land plants, we sought nuclear mutations in maize that disrupt the translation of subsets of chloroplast mRNAs. Evidence is presented for a nuclear gene whose function is required for the translation of the chloroplast atpB/E mRNA. A mutation in atp1 results in a failure to accumulate the chloroplast ATP synthase complex due to reduced synthesis of the AtpB subunit. This decrease in AtpB synthesis does not result from a change in atpB mRNA structure or abundance. Instead, the atpB mRNA is associated with abnormally few ribosomes in atp1-1 mutants, indicating that atp1 function is required during translation initiation or early in elongation. Previously, only one nuclear gene that is required for the translation of specific chloroplast mRNAs had been identified in a land plant. Thus, atp1 will be a useful tool for dissecting mechanisms of translational control in chloroplasts.  相似文献   

19.
The chlorina-f2 mutant of barley (Hordeum vulgare L.) contains no chlorophyll b in its light-harvesting antenna, whereas the chlorina-103 mutant contains approximately 10% of the chlorophyll b found in wild-type. The absolute chlorophyll antenna size for Photosystem-II in wild-type, chlorina-103 and chlorina-f2 mutant was 250, 58 and 50 chlorophyll molecules, respectively. The absolute chlorophyll antenna size for Photosystem-I in wild-type, chlorina-103 and chlorina-f2 mutant was 210, 137 and 150 chlorophyll molecules, respoectively. In spite of the smaller PS I antenna size in the chlorina mutants, immunochemical analysis showed the presence of polypeptide components of the LHC-I auxiliary antenna with molecular masses of 25, 19.5 and 19 kDa. The chlorophyll a-b-binding LHC-II auxiliary antenna of PS II contained five polypeptide subunits in wild-type barley, termed a, b, c, d and e, with molecular masses of 30, 28, 27, 24 and 21 kDa, respectively. The polypeptide composition of the LHC-II auxiliary antenna of PS II was found to be identical in the two mutants, with only the 24 kDa subunit d present at an equal copy number per PS II in each of the mutants and in the wild-type barley. This d subunit assembles stably in the thylakoid membrane even in the absence of chlorophyll b and exhibits flexibility in its complement of bound chlorophylls. We suggest that polypeptide subunit d binds most of the chlorophyll associated with the residual PS II antenna in the chlorina mutants and that is proximal to the PS II-core complex.Abbreviations CP chlorophyll-protein - LHC the chlorophyll a-b binding light-harvesting complex - LHC-II subunit a the Lhcb4/5 gene product - subunit b the Lhcb1 gene product - subunit c Lhcb2 the gene product - subunit d the Lhcb3 gene product - subunit e the Lhcb6 gene product - PMSF phenylmethane sulphonyl fluoride - RC reaction center - QA the primary quinone electron acceptor of Photosystem-II - P700 the reaction center of PS I  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号