首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rejection of the MHC class I negative 402AX teratocarcinoma is accompanied by induction of tumor cell-encoded H-2K and H-2D antigens by the genetically resistant host. To determine whether MHC antigen expression is required for 402AX rejection, we have prepared H-2Db-transfected 402AX cells (402AX/Db). Transfectants express high levels of H-2Db, most of which is not associated with beta 2-microglobulin. MHC syngeneic and allogeneic mice susceptible to 402AX are resistant to 402AX/Db, suggesting that MHC class I antigen expression is required for tumor rejection. Autologous 129 hosts, however, are susceptible to 402AX/Db. 402AX cells transfected with the H-2Kb gene (402AX/Kb) are also lethal in the autologous 129/J host, but rejected by MHC syngeneic and allogeneic mice. Non-129 strain 402AX-susceptible mice pre-immunized with 402AX/Db or simultaneously challenged with 402AX/Db plus 402AX are immune to 402AX. Mice immunized with 402AX/Db produce MHC class I induction factor. 402AX/Db and 402AX cells are lysed equally by natural killer cells, indicating that in 402AX cells the expression of class I antigens is unrelated to NK susceptibility. These studies confirm the requirement for class I expression in 402AX immunity, but demonstrate that in the autologous host immunity requires additional factors beyond class I antigen expression.  相似文献   

2.
Transfection of a functional major histocompatibility complex class I gene into certain tumor cells, induced by oncogenic viruses or chemical carcinogens, can effectively abrogate their tumorigenic activity. Since experimentally induced tumors possess strong tumor-specific transplantation antigens, expression of cell surface class I antigens may present the tumor cells to appropriate immune effector cells. Most spontaneously arising tumors do not possess tumor-specific transplantation antigens, and their tumorigenicity may not be affected by the expression of a transfected class I gene. We demonstrate that the poorly immunogenic B16-BL6 melanoma can be rendered nontumorigenic in syngeneic mice by the expression of the class I H-2K antigen but not the class II I-A antigen. Furthermore, the poorly tumorigenic, class I-expressing B16-BL6-transfected cells can effectively immunize syngeneic C57BL/6 mice against the highly tumorigenic, class I-deficient B16-BL6 parental cells. Our success in experimentally manipulating the tumorigenicity of a spontaneously derived neoplasm offers hope for a potential modality for the effective treatment of human cancer.  相似文献   

3.
Long-term syngeneic mouse cytolytic T lymphocyte (CTL) clones were obtained from DBA/2 (H2d) mice immunized with P815 (H2d) cells transfected with cloned human class I histocompatibility genes, HLA-CW3 or HLA-A24. Three distinct patterns of specificity were defined on P815 HLA transfectant target cells. One clone lysed HLA-CW3 but not -A24 transfectants, and a second lysed HLA-A24 but not -CW3 transfectant target cells. The third clone lysed P815 targets transfected with either HLA gene. None of the CTL clones lysed L cells (H2k) transfected with the same HLA genes or human targets that expressed these HLA specificities. Several lines of evidence indicated that recognition of HLA transfectants by these CTL clones was H2 restricted. First, lysis of P815 HLA transfectants could be inhibited by anti-H2Kd monoclonal antibody. In addition, the anti-P815-HLA CTL clones could lyse a (human X mouse) hybrid target that expressed both HLA class I and H2Kd antigens, but not a clonal derivative that no longer expressed H2Kd. The most direct evidence for H2-restricted recognition of P815-HLA transfectants by the syngeneic CTL clones was obtained by double transfection of mouse L cells (H2k) with both HLA and H2 class I genes. L cells transfected with HLA and H2Kd genes were susceptible to lysis by the same CTL clones that lysed the corresponding P815-HLA transfectant targets. Thus under certain conditions, CTL recognition of xenogeneic class I histocompatibility gene products can be restricted by other class I gene products.  相似文献   

4.
Various investigators have examined the relationship between tumor cell susceptibility to natural killer (NK) cell lysis and the expression of HLA class I antigens on the tumor cell. There is controversy as to whether or not an inverse relationship exists, and if so, the basis of the relationship between these two phenomena remains undefined. To address these questions, the genomic clones for two HLA antigens were transfected into the erythroleukemia cell line K562, a cell line that is used as the standard to assess human NK and major histocompatibility complex (MHC) nonrestricted cytolysis. Susceptibility to NK lysis was not affected by the de novo expression of HLA antigens on the K562 after DNA mediated gene transfer. Interferon-gamma (IFN-gamma) treatment of K562 induced levels of MHC class I antigen surface expression comparable to those found on the transfected cells; however, the IFN-gamma-treated cells were resistant to NK lysis. When very high levels of surface HLA antigens were induced on the transfectants, a potential effect of class I MHC expression on K562 lysis could be discerned that was distinct from the resistance to NK lysis induced by IFN-gamma-treatment.  相似文献   

5.
We have initiated the molecular definition of the antigens recognized by Gross MuLV-specific cytolytic T lymphocytes on the surface of Gross MuLV-induced tumor cells. A panel of target cells was obtained by the double transfection and expression of a retrovirus gene and a foreign H-2 gene in recipient mouse fibroblasts. Our results show that class I H-2 transplantation antigens have a directive influence in determining the antigenicity of proteins encoded by the gag and env MuLV genes. Genes not linked to H-2 influence the intensity and the specificity of the cytolytic T lymphocyte response to Gross MuLV-induced tumors. Finally, MuLV-induced antigens expressed by transfected fibroblasts induce tumor immunity and lead to accelerated tumor rejection in vivo.  相似文献   

6.
Non-self class I histocompatibility Ag can act as strong alloantigens and be recognized as distinct targets by CTL. To study the possibility of using allograft rejection to generate tumor-specific immunity, we have introduced an allogeneic class I histocompatibility gene, the H-2Kb gene, into a k haplotype tumor, K36.16, by DNA-mediated gene transfer. The K36.16 tumor grows readily and does not confer protective immunity in AKR mice. A total of 37 H-2Kb-transfected K36.16 clones (Kb/K36.16) was isolated and studied individually. The Kb/K36.16 clones were found to differ significantly in the amount of the exogenous H-2Kb antigens expressed on their cell surface. Moreover, as a result of the transfection, the level of expression of the endogenous H-2Dk Ag was also altered when compared to that of the parental K36.16 tumor cells. All the Kb/K36.16 clones that were positive for the H-2Kb Ag were rejected by the semisyngeneic AKR mice. Moreover, some of these Kb/K36.16 clones were also rejected by syngeneic (AKR x C57BL/10)F1 mice. In consequence of immunization with the Kb/K36.16 clones, the AKR and F1 mice were able to survive a subsequent challenge of the wild-type, unmodified, parental K36.16 tumor cells. More importantly, some of these Kb/K36.16 clones demonstrated an active and specific immunotherapeutic effect, and they were able to eradicate the growth of the parental K36.16 tumor cells in AKR mice. This observation therefore reinforces the feasibility of using DNA-mediated gene transfer as a molecular approach to abrogate tumor growth.  相似文献   

7.
Recent reports suggested a correlation between decreased expression of tumor cell MHC class I Ag and increased susceptibility to NK cells. These studies led to the hypothesis that tumor cells displaying reduced levels of MHC class I Ag have reduced tumorigenicity in vivo because they are eliminated from the host by endogenous NK cells. The present studies use the murine hepatoma BW7756 and a spontaneous H-2Kb loss variant, Hepa-1, to test this hypothesis. The parental BW7756 tumor is highly malignant in syngeneic C57L/J hosts while Hepa-1 cells do not give rise to tumors, suggesting that the loss of H-2Kb Ag expression correlates with decreased tumorigenicity and NK susceptibility. Hepa-1 cells were therefore transfected with an H-2Kb gene to generate H-2Kb Ag expressing clones. The resulting clones were tested for tumorigenicity. Syngeneic or NK-deficient C57BL/6-beige/beige mice challenged with Hepa-1 or the H-2Kb transfectants rejected the cells, suggesting that reexpression of H-2Kb Ag does not restore tumorigenicity and that NK cells are not involved in Hepa-1 rejection. In vitro H-2Kb Ag-negative and -positive Hepa-1 cells are equally susceptible to tilorone-boosted NK cells, indicating that MHC class I Ag expression also does not affect in vitro NK susceptibility. Tumor challenged athymic nude and sublethally irradiated syngeneic mice develop tumors demonstrating that T cells are probably responsible for rejection of the Hepa-1 tumor, and that H-2Kb Ag expression has no effect on rejection. Inasmuch as the expression of H-2Kb Ag on Hepa-1 cells does not effect tumorigenicity or in vitro NK susceptibility, the previously reported association between reduced MHC class I Ag levels and increased NK susceptibility is not universally applicable.  相似文献   

8.
The specificities of cytotoxic T lymphocytes (CTL) were studied for the analysis of CTL against tumor-specific cell surface antigen(s) (TSSA) of non-virus-producing tumor cells induced by the Schmidt-Ruppin strain of Rous sarcoma virus (SR-RSV) in B10 congenic and recombinant mice. Eight CTL clones were established from immune spleen cells of B10.A(5R) mice. These clones demonstrated six patterns of cytotoxic reactivity in vitro: Two clones showed H-2 restriction in tumor cell lysis. Two other clones had the capacity to lyse syngeneic, H-2K-compatible B10 and H-2-incompatible B10.A(4R) tumor cells, but not YAC-1 cells. One clone had cytotoxic activity against syngeneic, H-2D-compatible B10.D2 tumor cells and YAC-1 cells, but not against H-2-incompatible tumor cells. One clone had cytotoxic activity against syngeneic and YAC-1 tumor cells, but not against either H-2-compatible or H-2-incompatible tumor cells. One clone had lytic activity to syngeneic, H-2-compatible, H-2-incompatible, and YAC-1 tumor cells. Another clone killed H-2-incompatible B10.A(4R) tumor and YAC-1 cells, but not syngeneic or H-2-compatible tumor cells. All these clones strongly expressed surface Thy-1.2 antigens, whereas the expression of Lyt-1.2 and Lyt-2.2 antigens was different from clone to clone. These results demonstrate heterogeneity of both lytic specificity and phenotype of CTL against RSV-induced mouse tumor cells, suggesting the existence of multiple antigenic sites on the RSV TSSA recognized by CTL populations.  相似文献   

9.
Retrovirus infection of murine fibroblasts was found to alter the expression of major histocompatibility complex (MHC) antigens. Fibroblasts infected with Moloney murine leukemia virus (M-MuLV) exhibited up to a 10-fold increase in cell surface expression of all three class I MHC antigens. Increases in MHC expression resulted in the increased susceptibility of M-MuLV-infected cells to lysis by allospecific cytotoxic T lymphocytes (CTL). M-MuLV appears to exert its effect at the genomic level, because mRNA specific for class I antigens, as well as beta 2-microglobulin, show a fourfold increase. Fibroblasts infected with the Moloney sarcoma virus (MSV):M-MuLV complex show no increase in MHC antigen expression or class I mRNA synthesis, suggesting that co-infection with MSV inhibits M-MuLV enhancement of MHC gene expression. Quantitative differences in class I antigen expression on virus-infected cells were also found to influence the susceptibility of infected cells to lysis by H-2-restricted, virus-specific CTL. Differential lysis of infected cells expressing varied levels of class I antigens by M-MuLV-specific bulk CTL populations and CTL clones suggests that individual clones may have different quantitative requirements for class I antigen expression. The MSV inhibition of MHC expression could be reversed by interferon-gamma. Treatment of MSV:M-MuLV-infected fibroblasts with interferon-gamma increased their susceptibility to lysis by both allogeneic and syngeneic CTL. The data suggest that interferon-gamma may function in the host's immune response to viral infections by enhancing MHC antigen expression, thereby increasing the susceptibility of virus-infected cells to lysis by H-2-restricted, virus-specific CTL.  相似文献   

10.
Immunization of DBA/2 (H-2d) mice with syngeneic P815 tumor cell transfectants that express HLA class I genes elicits CTL that recognize HLA in the context of H-2Kd molecules. Anti-HLA-CW3 CTL cross-react to a variable extent on the related alleles A3 and A24. Using a panel of target cells expressing native or recombinant HLA genes, we could map the epitope recognized by a CTL clone specific for CW3 to the second external (alpha 2) domain of CW3. Moreover, the epitope recognized by this clone could be mimicked by incubating P815 (HLA negative) target cells with a synthetic peptide corresponding to the C-terminal 12 amino acids of the CW3 alpha 2 domain (residues 171 to 182). Other independent anti-CW3 CTL clones with different fine specificities recognized the same CW3 peptide. In contrast, CTL clones specific for HLA-A24 or HLA-A3 that did not lyse P815-CW3 transfectants did not recognize this peptide. The CW3 peptide could be recognized on other tumor cell targets that were also of H-2d origin, but not on those of H-2b or H-2k origin. The requirement for the expression of H-2Kd by the target cells was directly demonstrated using L cell Kd transfectants. Our results suggest that the CTL response of DBA/2 mice immunized with P815-CW3 transfectants is predominantly Kd restricted and focused on epitopes contained within the 12 C-terminal amino acids of the alpha 2 domain.  相似文献   

11.
Purpose To determine the clinical impact of human leukocyte antigen (HLA) class I expression in irradiated and non-irradiated rectal carcinomas. Experimental design Tumor samples in tissue micro array format were collected from 1,135 patients. HLA class I expression was assessed after immunohistochemical staining with two antibodies (HCA2 and HC10). Results Tumors were split into two groups: (1) tumors with >50% of tumor cells expressing HLA class I (high) and (2) tumors with ≤50% of tumor cells expressing HLA class I (low). No difference in distribution or prognosis of HLA class I expression was found between irradiated and non-irradiated patients. Patients with low expression of HLA class I (15% of all patients) showed an independent significantly worse prognosis with regard to overall survival and disease-free survival. HLA class I expression had no effect on cancer-specific survival or recurrence-free survival. Conclusions Down-regulation of HLA class I in rectal cancer is associated with poor prognosis. In contrast to our results, previous reports on HLA class I expression in colorectal cancer described a large population of patients with HLA class I negative tumors, having a good prognosis. This difference might be explained by the fact that a large proportion of HLA negative colon tumors are microsatellite instable (MSI). MSI tumors are associated with a better prognosis than microsatellite stable (MSS). As rectal tumors are mainly MSS, our results suggest that it is both, oncogenic pathway and HLA class I expression, that dictates patient’s prognosis in colorectal cancer. Therefore, to prevent confounding in future prognostic analysis on the impact of HLA expression in colorectal tumors, separate analysis of MSI and MSS tumors should be performed. Frank M. Speetjens and Elza C. de Bruin contributed equally to this work. Cornelis J.H. van de Velde is the Chairperson of the Total Mesorectal Excision Trial.  相似文献   

12.
The association between the level of class I major histocompatibility (MHC) antigen expression and the tumorigenic phenotype was determined for cells from a series of 15 lines of adenovirus type 2 (Ad2)-, Ad12-, and simian virus 40 (SV40)-transformed hamster cells and 16 lines of cells established from hamster tumors induced by SV40 mutants. These cells range from nontumorigenic to highly tumorigenic in both syngeneic and allogeneic adult hamsters. The Ad2-transformed cells--cells that were nontumorigenic in syngeneic adult hamsters--expressed either high levels or low levels of class I MHC antigens. The SV40-transformed cells--cells transformed in vitro that produced tumors with equal efficiency in both syngeneic and allogeneic adult hamsters--or cells derived from SV40-induced tumors expressed very high levels of class I MHC antigens. The Ad12-transformed cells uniformly expressed low levels of class I MHC antigens; these cells produced tumors 200- to 1,000-fold less efficiently in allogeneic adult hamsters than in syngeneic adult hamsters and produced tumors with about the same efficiency in immunoimmature newborns and immunocompetent syngeneic adult hamsters. We conclude that the expression of either high levels or low levels of class I MHC antigens is, at most, a minor factor in the differences observed among these adenovirus- and SV40-transformed cells in their tumor-inducing capacity in naive, immunocompetent hamsters.  相似文献   

13.
The discovery of tumor antigens recognized by T lymphocytes has stimulated the development of a variety of cancer treatment protocols aimed at enhancing antitumor-specific T cell responses and tumor rejection. However, immunotherapy-mediated regression of established tumors and clearly positive clinical response to such treatment has not been achieved yet despite the induction of T cells directed against tumor antigens. The failure of the modern immunotherapy protocols can be explained by different tumor escape mechanisms that have been defined in various types of malignancy. The loss or downregulation of MHC class I antigens in tumor cells is one of the best analyzed mechanisms. In this review, we show experimental evidence obtained in our laboratory on human tumors and in a mouse cancer model suggesting that the molecular mechanism responsible for the MHC class I alteration in tumor cells might have a crucial impact on tumor recovery of normal H-2/HLA expression during the natural history of tumor development or after immunotherapy. When the preexisting molecular lesion underlying tumor MHC class I alteration is reversible (regulatory or soft), class I expression can be recovered leading to regression of tumor lesion. In contrast, if the HLA class I alteration is irreversible in nature (structural or hard), the lesion will progress killing the host. This is a new vision of the role of MHC class I alteration in tumors that can explain the failure of immunotherapy in a variety of different clinical protocols.  相似文献   

14.
Summary Tumorigenicity in immunocompetent syngeneic mice and H-2 class I antigen expression of BPV1-transformed mouse cell lines had no correlation. H-2 expression was examined using monoclonal anti-(H-2Kb) and anti-(H-2Db) antibodies in immunofluorescence staining for flow cytometry analysis and by determining the sensitivity of the cells to cytolysis by allostimulated spleen cells. Nontumorigenic cell lines were as resistant as tumorigenic cell lines to natural killer activity. The results indicate that in our model defence by natural killer cells is not a decisive factor. The results also show that instead of or in addition to H-2 class I antigens other factors (e. g. the presence or absence of virus-specific antigens) are important in determining the tumorigenicity of BPV1-transformed cell lines.  相似文献   

15.
The cytolytic responses of either normal (non transgenic), HLA-B7 (single transgenic) or HLA-B7 x human beta 2 microglobulin (double transgenic) DBA/2 mice induced by transfected HLA-Cw3 P815 (H-2d) mouse mastocytoma cells were compared, to evaluate whether the expression of an HLA class I molecule in responder mice would favor the emergence of HLA-specific, H-2-unrestricted CTL. Only 8 of 300 HLA-Cw3-specific CTL clones tested could selectively lyse HLA-Cw3-transfected cells in an H-2-unrestricted manner, all having been isolated after hyperimmunization of double transgenic mice. These clones also lysed HLA-Cw3+ human cells. Unexpectedly, the lysis of the human but not that of the murine HLA-Cw3 cells was inhibited by Ly-2,3-specific mAb. Despite significant expression of HLA-B7 class I molecules on transgenic lymphoid cells, including thymic cells, limiting dilution analysis and comparative study of TCR-alpha and -beta gene rearrangements of the eight isolated clones (which suggested that they all derived from the same CTL precursor) indicated that the frequency of HLA-Cw3-specific H-2 unrestricted cytotoxic T lymphocytes remained low (even in HLA-B7 x human beta 2-microglobulin double transgenic mice). This suggests that coexpression of HLA class I H and L chain in transgenic mice is not the only requirement for significant positive selection of HLA class I-restricted cytotoxic mouse T lymphocytes.  相似文献   

16.
c-myc down-regulates class I HLA expression in human melanomas   总被引:19,自引:4,他引:15       下载免费PDF全文
Expression of class I HLA antigen has been shown to be reduced in a number of human tumours. Here we show that in a panel of 11 melanoma cell lines with variable class I HLA expression an inverse correlation exists between the mRNA levels of c-myc and class I HLA. This suggests that high expression of the c-myc oncogene might inhibit the class I HLA expression. To test this hypothesis a melanoma cell line with a low c-myc and high class I HLA mRNA expression was transfected with a c-myc expression vector. All clones expressing the transfected c-myc gene show reduced class I HLA mRNA and beta 2-microglobulin mRNA expression. Reduced class I HLA mRNA levels result in a lowered class I protein expression on the cell surface. Treatment with gamma-interferon fully restores the class I HLA and beta 2-microglobulin expression in these cells. This effect is preceded by a transient decrease of the c-myc mRNA level. These results show that the class I HLA expression is modulated by the level of c-myc expression, thus opening up the possibility that high expression of this oncogene influences the interaction of melanoma cells with the immune system.  相似文献   

17.
Many AKR spontaneous thymomas are reported to express different amounts of the major histocompatibility complex class I H-2Kk molecules. Moreover, H-2Kk-deficient AKR tumor cells are found to be more malignant when compared to tumor cells that express abundant levels of the H-2Kk molecules. To corroborate further the role of H-2Kk in tumorigenesis of AKR leukemia, we have, in this study, expressed antisense H-2Kk RNA in a high-H-2Kk-expressing and poorly tumorigenic AKR thymoma cell line 369. The down-regulation of H-2Kk molecules in the transfected 369 clones rendered them more tumorigenic in syngeneic AKR/J mice. The increase in oncogenicity correlates well with a concomitant reduction in their susceptibility to tumor-specific cytotoxic T lymphocytes in vitro. These results suggest the relevance of H-2Kk molecules in the immune surveillance of AKR tumors.  相似文献   

18.
19.
Amyloid precursor-like protein 2 (APLP2) is a ubiquitously expressed protein. The previously demonstrated functions for APLP2 include binding to the mouse major histocompatibility complex (MHC) class I molecule H-2Kd and down regulating its cell surface expression. In this study, we have investigated the interaction of APLP2 with the human leukocyte antigen (HLA) class I molecule in human tumor cell lines. APLP2 was readily detected in pancreatic, breast, and prostate tumor lines, although it was found only in very low amounts in lymphoma cell lines. In a pancreatic tumor cell line, HLA class I was extensively co-localized with APLP2 in vesicular compartments following endocytosis of HLA class I molecules. In pancreatic, breast, and prostate tumor lines, APLP2 was bound to the HLA class I molecule. APLP2 was found to bind to HLA-A24, and more strongly to HLA-A2. Increased expression of APLP2 resulted in reduced surface expression of HLA-A2 and HLA-A24. Overall, these studies demonstrate that APLP2 binds to the HLA class I molecule, co-localizes with it in intracellular vesicles, and reduces the level of HLA class I molecule cell surface expression.  相似文献   

20.
The murine 402AX teratocarcinoma is a MHC class I antigen negative tumor of 129 strain origin. Host resistance to the 402AX tumor is genetically controlled. When passed intraperitoneally in genetically resistant mice, the tumor cells are induced to express MHC Class I antigens of the 129 genotype. When passed in genetically susceptible mice, the tumor cells remain MHC class I antigen negative. Earlier studies have demonstrated that resistance to the tumor and regulation of tumor cell MHC class I antigen expression are under the control of the host's immune system. The present studies indicate that splenic Lyt 1-, Lyt 2-, and L3T4-expressing cells regulate tumor cell MHC class I antigen expression, and that these cells require a genetically resistant host environment in which to differentiate. Splenic T cells primed to the 402AX tumor and transferred into genetically susceptible 129 mice give rise to GVHD, suggesting that immunity to the tumor involves reactivity to 129 minor histocompatibility antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号