首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Using genetically pure BALB/c mice deficient in IL-4 (IL-4-/-) or IL-4 receptor alpha-chain (IL-4Ralpha-/-), we have observed different disease outcomes to Leishmania major infection depending on the parasite substrain. Infection with L. major LV39 caused progressive, nonhealing ulcers and uncontrolled parasite growth in both IL-4-/- and IL-4Ralpha-/- mice. In contrast, infection with L. major IR173 was partially controlled in IL-4-/- mice but efficiently controlled in IL-4Ralpha-/- mice. Both IL-4-/- and IL-4Ralpha-/- mice infected with either substrain displayed reduced Th2 responses. Surprisingly, IFN-gamma secretion was not up-regulated in the mutant mice, even in the IL-4Ralpha-/- mice, which were resistant to L. major IR173. The lack of increased IFN-gamma production suggests that cytokine cross-regulation may not be operating in this model and that the effective ratios of Th1/Th2 cytokines become more indicative of disease outcome. The partial vs complete resistance to IR173 in IL-4-/- or IL-4Ralpha-/- mice implies that, in addition to IL-4, IL-13 may be involved in disease progression during L. major infection. The results with LV39 infection indicate that yet another unidentified factor is capable of causing susceptibility to L. major in the absence of IL-4 or IL-4 signaling.  相似文献   

2.
Effector responses induced by polarized CD4+ T helper 2 (Th2) cells drive nonhealing responses in BALB/c mice infected with Leishmania major. Th2 cytokines IL-4 and IL-13 are known susceptibility factors for L. major infection in BALB/c mice and induce their biological functions through a common receptor, the IL-4 receptor alpha chain (IL-4Ralpha). IL-4Ralpha-deficient BALB/c mice, however, remain susceptible to L. major infection, indicating that IL-4/IL-13 may induce protective responses. Therefore, the roles of polarized Th2 CD4+ T cells and IL-4/IL-13 responsiveness of non-CD4+ T cells in inducing non-healer or healer responses have yet to be elucidated. CD4+ T cell-specific IL-4Ralpha (Lck(cre)IL-4Ralpha(-/lox)) deficient BALB/c mice were generated and characterized to elucidate the importance of IL-4Ralpha signaling during cutaneous leishmaniasis in the absence of IL-4-responsive CD4+ T cells. Efficient deletion was confirmed by loss of IL-4Ralpha expression on CD4+ T cells and impaired IL-4-induced CD4+ T cell proliferation and Th2 differentiation. CD8+, gammadelta+, and NK-T cells expressed residual IL-4Ralpha, and representative non-T cell populations maintained IL-4/IL-13 responsiveness. In contrast to IL-4Ralpha(-/lox) BALB/c mice, which developed ulcerating lesions following infection with L. major, Lck(cre)IL-4Ralpha(-/lox) mice were resistant and showed protection to rechallenge, similar to healer C57BL/6 mice. Resistance to L. major in Lck(cre)IL-4Ralpha(-/lox) mice correlated with reduced numbers of IL-10-secreting cells and early IL-12p35 mRNA induction, leading to increased delayed type hypersensitivity responses, interferon-gamma production, and elevated ratios of inducible nitric oxide synthase mRNA/parasite, similar to C57BL/6 mice. These data demonstrate that abrogation of IL-4 signaling in CD4+ T cells is required to transform non-healer BALB/c mice to a healer phenotype. Furthermore, a beneficial role for IL-4Ralpha signaling in L. major infection is revealed in which IL-4/IL-13-responsive non-CD4+ T cells induce protective responses.  相似文献   

3.
4.
目的 探讨香菇多糖(Lentinan,Lent)对急性弓形虫感染BALB/c小鼠CD4+ CD25+ Foxp3+调节性T细胞(Tregs)数量和功能的调节作用.方法 对RH强毒株感染的BALB/c小鼠进行不同时间点的Lent预处理,动态观察用药后各组感染小鼠的生存率;在感染后第0、3、5、8和10天提取小鼠的脾细胞,FACS检测Tregs细胞数量的动态变化,ELISA法检测脾细胞培养上清中IL-10的分泌水平.结果 感染前6 d 1 mg/kg Lent用药组与药物未处理组相比显著提高了弓形虫感染小鼠的生存率;具有免疫抑制功能的Tregs数量于感染后8d达峰值,同时免疫应答中关键细胞因子IL-10的分泌水平也于感染后8d和10d显著增加.结论 对急性弓形虫感染的BALB/c小鼠采用Lent预处理之后能有效的调节Tregs的数量和功能,从而调控Th1/Th2之间的动态平衡达到治疗弓形虫的作用,为弓形虫病的临床治疗提供的新的理论依据.  相似文献   

5.
CD4+CD25+ regulatory T cells can prevent and resolve intestinal inflammation in the murine T cell transfer model of colitis. Using Foxp3 as a marker of regulatory T cell activity, we now provide a comprehensive analysis of the in vivo distribution of Foxp3+CD4+CD25+ cells in wild-type mice, and during cure of experimental colitis. In both cases, Foxp3+CD4+CD25+ cells were found to accumulate in the colon and secondary lymphoid organs. Importantly, Foxp3+ cells were present at increased density in colon samples from patients with ulcerative colitis or Crohn's disease, suggesting similarities in the behavior of murine and human regulatory cells under inflammatory conditions. Cure of murine colitis was dependent on the presence of IL-10, and IL-10-producing CD4+CD25+ T cells were enriched within the colon during cure of colitis and also under steady state conditions. Our data indicate that although CD4+CD25+ T cells expressing Foxp3 are present within both lymphoid organs and the colon, subsets of IL-10-producing CD4+CD25+ T cells are present mainly within the intestinal lamina propria suggesting compartmentalization of the regulatory T cell response at effector sites.  相似文献   

6.
Products of arachidonic acid metabolism are important for mucosal homeostasis, because blockade of this pathway with an NSAID triggers rapid onset of severe colitis in the IL-10 knockout (IL-10(-/-)) model of IBD. Rag mice do not make T or B cells. This study determined whether reconstitution of Rag mice with T cells from IL-10(-/-) mice transferred NSAID colitis susceptibility. Rag mice were reconstituted by intraperitoneal injection with splenocytes from wild-type (WT) or IL-10(-/-) animals. Colitis was induced by using piroxicam and was graded histologically. Isolated lamina propria mononuclear cells (LPMC), lamina propria T cells, and LPMC depleted of T cells from reconstituted Rag mice were studied for cytokine production. Only animals reconstituted with IL-10(-/-) CD4(+) T cells and administered piroxicam developed severe colitis. LPMC from these colitic animals made IFN-gamma, whose production was dependent on T cells. Some IL-10 was produced but only from non-T cells. LPMC from the healthy Rag mice that were reconstituted with WT T cells and were piroxicam resistant made much more IL-10. This was mostly T cell dependent. In conclusion, only CD4(+) T cells from IL-10(-/-) animals leave Rag mice susceptible to NSAID-induced, Th1 colitis. Lamina propria T cells normally make large quantities of IL-10, suggesting that IL-10 from T cells may be protective.  相似文献   

7.
Cytokines are increasingly recognized as important components of the cellular immune responses to intracellular pathogens. In this study, we analyzed the production of TGF-β, IL-10 and IFN-γ by PBMC of unexposed naïve subjects and LCL patients after stimulation with live Leishmania guyanensis (L.g.). We demonstrated that IFN-γ is produced in controls and LCL patients, IL-10 only in LCL patients and TGF-β only in naïve subjects. Furthermore, in naive subjects, neutralization of TGF-β induced IL-10 production. IL-10 produced in naïve subjects when TGF-β is neutralized or in LCL patients did not modify the IFN-γ production but inhibit reactive nitrogen species production. Analysis of the phenotype of IL-10 producing cells in naive subjects when TGF-β is neutralized clearly showed that they are memory CD45RA CD8+ T cells. In LCL patients, IL-10 producing cells are both CD45RA CD4 and CD8+ T cells. The role of these IL-10 producing CD8+ T cells in the development of the diseases should be carefully evaluated.  相似文献   

8.
Malaria infections display variation patterns of clinical course and outcome. Although CD4+CD25+Foxp3+ regulatory T (Treg) cells play an essential role in immune homeostasis, the immune regulatory roles involved in malaria infection remains to be elucidated. Herein, we compared the disparity in Treg cells response during the course of blood stage Plasmodium chabaudi chabaudi AS (P. c chabaudi AS) infection in DBA/2 and BALB/c mice. BALB/c mice initiated a Th1/Th2 profile respond to P. c chabaudi AS infection, but DBA/2 mice failed to control P. c chabaudi AS infection and almost of them died post-peak parasitemia. At the peak parasitemia, we found that higher proportion of Treg cells with elevated Foxp3 expression in DBA/2 than in BALB/c mice. We used anti-CD25 mAb to deplete Treg cells and found that the survival time and rate were prolonged in DBA/2 mice treated with anti-CD25 mAb. Treatment with anti-CD25 mAb in vivo led to enhanced pro-inflammation responses and Foxp3 expression decline on Treg cells. In contrast, after DBA/2 was treatment with anti-IL-10R mAb, IL-10R blockade in vivo caused excessive pro-inflammation responses and Foxp3 expression loss on CD4+CD25+ T cells. Earlier death was found in all of DBA/2 mice with anti-IL-10R mAb. It suggested that IL-2 and IL-10 signal involved in maintaining Foxp3 expression on Treg cells. In all, the moderate suppressive activity of Treg cells may facilitate resistance to P. c chabaudi AS infection.  相似文献   

9.
CD4(+) T cells co-expressing CD25 (CD4(+)CD25(+) T cells) have been identified as immunoregulatory suppressors modulating autoimmune response. Beside that, autoimmune response was supposed to be associated with malaria infection. Based on these data, we hypothesised that CD4(+)CD25(+) T cells may influence protective immunity to malaria parasites, while suppressing autoimmune response arising throughout the course of malarial infection. To test this possibility, we evaluated the kinetics of CD4(+)CD25(+) T cells during malaria infection and investigated the influence of CD25 depletion by anti-mouse CD25 monoclonal antibody (PC61) on the infection, using a mouse model of premunition to Plasmodium berghei NK65 malaria. The results showed that, during exacerbation of P. berghei NK65 infection, the proportion of CD4(+)CD25(+) T cells among CD4(+) T cells decreased, although that of CD4(+) T cells increased. CD25 depletion clearly delayed the growth of parasitaemia during parasite challenge, particularly in immunised mice. These findings demonstrated that CD4(+)CD25(+) T cells are able to influence protective immunity underlying premunition to P. berghei NK65 parasites.  相似文献   

10.
In previous studies, we reported that a) the adoptive transfer of parasite-specific L3T4+ T cells enhanced rather than inhibited the development of lesions induced by Leishmania major in normal BALB/c mice, and b) the depletion in vivo of L3T4+ T cells by administration of anti-L3T4 monoclonal antibody reversed the susceptibility of BALB/c mice to L. major. To further assess the role of specific L3T4+ T cells in the development of lesions induced by L. major in BALB/c mice, the frequency of parasite-specific T cells capable of mediating specific delayed-type hypersensitivity (DTH) reactivity was determined, by limiting dilution analysis, in the lymph nodes draining the lesions of susceptible (BALB/c) and resistant (CBA) mice. The numbers of L. major-specific DTH-mediating T cells was found to be substantially increased in the lymph nodes of infected BALB/c mice as compared with CBA mice. Moreover in CBA mice, analysis of the cell surface phenotype of the L. major-specific DTH-mediating T cells showed that these cells were equally represented in the L3T4+, Lyt-2-, and L3T4- Lyt-2+ subsets, whereas the majority of these cells in BALB/c mice expressed the L3T4+ Lyt-2- surface phenotype.  相似文献   

11.
12.
13.
A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells   总被引:1,自引:0,他引:1  
The IL-2/IL-2R interaction is important for development and peripheral homeostasis of T regulatory (Treg) cells. IL-2- and IL-2R-deficient mice are not completely devoid of Foxp3+ cells, but rather lack population of mature CD4+CD25+Foxp3high Treg cells and contain few immature CD4+CD25-Foxp3low T cells. Interestingly, common gamma chain (gammac) knockout mice have been shown to have a near complete absence of Foxp3+ Treg cells, including the immature CD25-Foxp3low subset. Therefore, other gammac-cytokine(s) must be critically important during thymic development of CD4+CD25+Foxp3+ Treg cells apart from the IL-2. The present study was undertaken to determine whether the gammac-cytokines IL-7 or IL-15 normally contribute to expression of Foxp3 and Treg cell production. These studies revealed that mice double deficient in IL-2Rbeta and IL-7Ralpha contained a striking lack in the CD4+Foxp3+ population and the Treg cell defect recapitulated the gammac knockout mice. In the absence of IL-7R signaling, IL-15/IL-15R interaction is dispensable for the production of CD4+CD25+Foxp3+ Treg cells, indicating that normal thymic Treg cell production likely depends on signaling through both IL-2 and IL-7 receptors. Selective thymic reconstitution of IL-2Rbeta in mice double deficient in IL-2Rbeta and IL-7Ralpha established that IL-2Rbeta is dominant and sufficient to restore production of Treg cells. Furthermore, the survival of peripheral CD4+Foxp3low cells in IL-2Rbeta-/- mice appears to depend upon IL-7R signaling. Collectively, these data indicate that IL-7R signaling contributes to Treg cell development and peripheral homeostasis.  相似文献   

14.
The development and maintenance of T regulatory (Treg) cells critically depend on IL-2. This requirement for IL-2 might be due to specificity associated with IL-2R signal transduction or because IL-2 was uniquely present in the niche in which Treg cells reside. To address this issue, we examined the capacity of IL-7R-dependent signaling to support Treg cell production and prevent autoimmunity in IL-2Rbeta(-/-) mice. Expression of transgenic wild-type IL-7R or a chimeric receptor that consisted of the extracytoplasmic domain of the IL-7R alpha-chain and the cytoplasmic domain of IL-2R beta-chain in IL-2Rbeta(-/-) mice did not prevent autoimmunity. Importantly, expression of a chimeric receptor that consisted of the extracytoplasmic domain of the IL-2R beta-chain and the cytoplasmic domain of IL-7R alpha-chain in IL-2Rbeta(-/-) mice led to Treg cells production in the thymus and periphery and prevented autoimmunity. Signaling through the IL-2R or chimeric IL-2Rbeta/IL-7Ralpha in vivo or the culture of thymocytes from IL-2Rbeta(-/-) mice with IL-7 led to up-regulation of Foxp3 and CD25 on Treg cells. These findings indicate that IL-7R signal transduction is competent to promote Treg cell production, but this signaling requires triggering through IL-2 by binding to the extracytoplasmic portion of the IL-2R via this chimeric receptor. Thus, a major factor controlling the nonredundant activity of the IL-2R is selective compartmentalization of IL-2-producing cells with Treg cells in vivo.  相似文献   

15.
It is well established that CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) play a crucial role in the course of different infectious diseases. However, contradictory results have been published regarding to malaria infection. In this study, we report that specific ablation of Foxp3(+) Tregs in Plasmodium yoelii-infected DEREG-BALB/c mice leads to an increase in T cell activation accompanied by a significant decrease in parasitemia. To better understand how Foxp3(+) Tregs orchestrate this phenotype, we used microarrays to analyze CD4(+)CD25(+)Foxp3(+) Tregs and CD4(+)CD25(-)Foxp3(-) T cells in the course of P. yoelii infection. Using this approach we identified genes specifically upregulated in CD4(+)CD25(+)Foxp3(+) Tregs in the course of infection, such as G-protein-coupled receptor 83 and Socs2. This analysis also revealed that both CD4(+)CD25(+)Foxp3(+) Tregs and CD4(+)CD25(-)Foxp3(-) T cells upregulate CTLA-4, granzyme B, and, more strikingly, IL-10 during acute blood infection. Therefore, we aimed to define the function of T cell-derived IL-10 in this context by Cre/loxP-mediated selective conditional inactivation of the IL-10 gene in T cells. Unexpectedly, IL-10 ablation in T cells exerts only a minor effect on parasite clearance, even though CD8(+) T cells are more strongly activated, the production of IFN-γ and TNF-α by CD4(+)CD25(-) T cells is increased, and the suppressive activity of CD4(+)CD25(+) Tregs is reduced upon infection. In summary, these results suggest that CD4(+)Foxp3(+) Tregs modulate the course of P. yoelii infection in BALB/c mice. Moreover, CD4(+) T cell-derived IL-10 affects T effector function and Treg activity, but has only a limited direct effect on parasite clearance in this model.  相似文献   

16.
The outcome of malaria infection is determined, in part, by the balance of pro-inflammatory and regulatory immune responses. Failure to develop an effective pro-inflammatory response can lead to unrestricted parasite replication, whilst failure to regulate this response leads to the development of severe immunopathology. IL-10 and TGF-beta are known to be important components of the regulatory response, but the cellular source of these cytokines is still unknown. Here we have examined the role of natural and adaptive regulatory T cells in the control of malaria infection and find that classical CD4+CD25(hi) (and Foxp3+) regulatory T cells do not significantly influence the outcome of infections with the lethal (17XL) strain of Plasmodium yoelii (PyL). In contrast, we find that adaptive IL-10-producing, CD4+ T cells (which are CD25-, Foxp3-, and CD127- and do not produce Th1, Th2, or Th17 associated cytokines) that are generated during both PyL and non-lethal P. yoelii 17X (PyNL) infections are able to down-regulate pro-inflammatory responses and impede parasite clearance. In summary, we have identified a population of induced Foxp3- regulatory (Tr1) T cells, characterised by production of IL-10 and down regulation of IL-7Ralpha, that modulates the inflammatory response to malaria.  相似文献   

17.
Susceptibility and development of Th2 cells in BALB/c mice infected with Leishmania major result from early IL-4 production by Vbeta4Valpha8 CD4+ T cells in response to the Leishmania homolog of mammalian RACK1 Ag. A role for CD4+CD25+ regulatory T cells in the control of this early IL-4 production was investigated by depleting in vivo this regulatory T cell population. Depletion induced an increase in the early burst of IL-4 mRNA in the draining lymph nodes of BALB/c mice, and exacerbated the course of disease with higher levels of IL-4 mRNA and protein in their lymph nodes. We further showed that transfer of 10(7) BALB/c spleen cells that were depleted of CD4+CD25+ regulatory T cells rendered SCID mice susceptible to infection and allowed Th2 differentiation while SCID mice reconstituted with 10(7) control BALB/c spleen cells were resistant to infection with L. major and developed a Th1 response. Treatment with a mAb against IL-4 upon infection with L. major in SCID mice reconstituted with CD25-depleted spleen cells prevented the development of Th2 polarization and rendered them resistant to infection. These results demonstrate that CD4+CD25+ regulatory T cells play a role in regulating the early IL-4 mRNA and the subsequent development of a Th2 response in this model of infection.  相似文献   

18.
19.
Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.  相似文献   

20.
Recent publications by Zaph et al. have highlighted the distinct requirements for generating and maintaining different subpopulations of CD4(+) memory T cells after infection with Leishmania major in mice. These studies have advanced the understanding of the nature of long-lasting immunity to Leishmania and, when considered within the context of previous work on both murine and human leishmaniasis, will aid the design of effective vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号