首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Our previous study (El-Hayek, R., Antoniu, B., Wang, J. P., Hamilton, S. L., and Ikemoto, N. (1995) J. Biol. Chem. 270, 22116-22118) suggested the hypothesis that skeletal muscle-type excitation-contraction coupling is regulated by two domains (activating and blocking) of the II-III loop of the dihydropyridine receptor alpha1 subunit. We investigated this hypothesis by examining conformational changes in the ryanodine receptor induced by synthetic peptides and by transverse tubular system (T-tubule) depolarization. Peptide A, corresponding to the Thr671-Leu690 region, rapidly changed the ryanodine receptor conformation from a blocked state (low fluorescence of the conformational probe, methyl coumarin acetamide, attached specifically to the ryanodine receptor) to an activated state (high methyl coumarin acetamide fluorescence) as T-tubule depolarization did. Peptide C, corresponding to the Glu724-Pro760 region, blocked both conformational changes induced by peptide A and T-tubule depolarization. Its ability to block peptide A-induced and depolarization-induced activation was considerably impaired by replacing the portion of peptide C corresponding to the Phe725-Pro742 region of the loop with cardiac muscle-type sequence. These results are consistent with the model that depolarization-induced activation of excitation-contraction coupling and blocking/repriming are mediated by the peptide A region and the peptide C region (containing the critical Phe725-Pro742 sequence) of the II-III loop, respectively.  相似文献   

2.
In vertebrate skeletal muscle, the voltage-dependent mechanism of rapid sarcoplasmic reticulum (SR) Ca2+ release, commonly referred to as excitation-contraction (EC) coupling, is believed to be mediated by physical interaction between the transverse (T)-tubule voltage-sensing dihydropyridine receptor (DHPR) and the SR ryanodine receptor (RyR)/Ca2+ release channel. In this study, differential T-tubule and SR membrane monovalent ion permeabilities were exploited with the use of an ion-replacement protocol to study T-tubule depolarization-induced SR 45Ca2+ release from rabbit skeletal muscle whole-cell homogenates. Specificity of Ca2+ release was ascertained with the use of the DHPR antagonists D888, nifedipine and PN200-110. In the presence of the "slow" complexing Ca2+ buffer EGTA, homogenates exhibited T-tubule depolarization-induced Ca2+ release comprised of an initial rapid phase followed by a slower release phase. During the rapid phase, approximately 20% of the total sequestered Ca2+ (approximately 30 nmol 45Ca2+/mg protein), corresponding to 100% of the caffeine-sensitive Ca2+ pool, was released within 50 ms. Rapid release could be inhibited fourfold by D888. Addition to release media of the "fast" complexing Ca2+ buffer BAPTA, at concentrations > or = 4 mM, nearly abolished rapid Ca2+ release, suggesting that most was Ca2+ dependent. Addition of millimolar concentrations of either Ca2+ or Mg2+ also greatly reduced rapid Ca2+ release. These results show that T-tubule depolarization-induced SR Ca2+ release from rabbit skeletal muscle homogenates is controlled by T-tubule membrane potential- and by Ca(2+)- dependent mechanisms.  相似文献   

3.
Radioligand binding experiments and single channel recordings demonstrate that verapamil interacts with the ryanodine receptor Ca2+ release channel of the sarcoplasmic reticulum of rabbit skeletal muscle. In isolated triads, verapamil decreased binding of [3H]Ryanodine with an IC50 of approximately 8 microM at an optimal pH 8.5 and pCa 4.3. Nitrendipine and d-cis-diltiazem did not interfere with binding of [3H]Ryanodine to triads, suggesting that the action of verapamil does not involve the dihydropyridine receptor. Single channel recordings showed that verapamil blocked Ca2+ release channels by decreasing open probability, duration of open events, and number of events per unit time. A direct interaction of verapamil with the ryanodine receptor peptide was demonstrated after purification of the approximately 400 kDa receptor protein from Chaps-solubilized triads. The purified receptor displayed high affinity for [3H]Ryanodine with a Kd of approximately 5 nM and a Bmax of approximately 400 pmol/mg. Verapamil and D600 decreased [3H]Ryanodine binding noncompetitively by reducing the Bmax. Thus the presence of binding sites for phenylalkylamines in the Ca2+ release channel was confirmed. Verapamil blockade of Ca2+ release channels may explain some of the paralyzing effects of phenylalkylamines observed during excitation-contraction coupling of skeletal muscle.  相似文献   

4.
There is a considerable controversy about the postulated role of the Thr(671)-Leu(690) (peptide A) region of the dihydropyridine (DHP) receptor alpha1 II-III loop. Here we report that peptide A introduced the fluorescence probe methyl coumarin acetamido (MCA) in a well defined region of the ryanodine receptor (RyR), A-site, in a specific manner. Depolarization of the T-tubule moiety of the triad induced a rapid increase of the fluorescence intensity of the MCA attached to the A-site. Other RyR agonists, which activate the RyR without mediation of the DHP receptor (e.g. caffeine, polylysine, and peptide A), induced Ca(2+) release without producing such an MCA fluorescence increase. Both magnitudes of the fluorescence change and Ca(2+) release increased with the increase in the degree of T-tubule depolarization. MCA fluorescence increase at the A-site and subsequent sarcoplasmic reticulum Ca(2+) release were blocked by blocking of the DHP receptor-to-RyR communication. These results may be accounted for by two alternative models as follows. (a) Upon T-tubule depolarization a portion of the DHP receptor comes close to the RyR, forming a hydrophobic interface (within such an interface the A-site is located), or (b) T-tubule depolarization may produce a local conformational change in the A-site-containing region of the RyR that is not necessarily within the DHP receptor/RyR junction.  相似文献   

5.
The dihydropyridine receptor (DHPR) in the skeletal muscle plasmalemma functions as both voltage-gated Ca(2+) channel and voltage sensor for excitation-contraction (EC) coupling. As voltage sensor, the DHPR regulates intracellular Ca(2+) release via the skeletal isoform of the ryanodine receptor (RyR-1). Interaction with RyR-1 also feeds back to increase the Ca(2+) current mediated by the DHPR. To identify regions of the DHPR important for receiving this signal from RyR-1, we expressed in dysgenic myotubes a chimera (SkLC) having skeletal (Sk) DHPR sequence except for a cardiac (C) II-III loop (L). Tagging with green fluorescent protein (GFP) enabled identification of expressing myotubes. Dysgenic myotubes expressing GFP-SkLC or SkLC lacked EC coupling and had very small Ca(2+) currents. Introducing a short skeletal segment (alpha(1S) residues 720-765) into the cardiac II-III loop (replacing alpha(1C) residues 851-896) of GFP-SkLC restored both EC coupling and Ca(2+) current densities like those of the wild type skeletal DHPR. This 46-amino acid stretch of skeletal sequence was recently shown to be capable of transferring strong, skeletal-type EC coupling to an otherwise cardiac DHPR (Nakai, J., Tanabe, T., Konno, T., Adams, B., and Beam, K.G. (1998) J. Biol. Chem. 273, 24983-24986). Thus, this segment of the skeletal II-III loop contains a motif required for both skeletal-type EC coupling and RyR-1-mediated enhancement of Ca(2+) current.  相似文献   

6.
Ca(2+) release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca(2+) to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation-contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca(2+) release during excitation-contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca(2+) release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca(2+) release during excitation-contraction coupling in skeletal muscle.  相似文献   

7.
S100A1, a 21-kDa dimeric Ca2+-binding protein, is an enhancer of cardiac Ca2+ release and contractility and a potential therapeutic agent for the treatment of cardiomyopathy. The role of S100A1 in skeletal muscle has been less well defined. Additionally, the precise molecular mechanism underlying S100A1 modulation of sarcoplasmic reticulum Ca2+ release in striated muscle has not been fully elucidated. Here, utilizing a genetic approach to knock out S100A1, we demonstrate a direct physiological role of S100A1 in excitation-contraction coupling in skeletal muscle. We show that the absence of S100A1 leads to decreased global myoplasmic Ca2+ transients following electrical excitation. Using high speed confocal microscopy, we demonstrate with high temporal resolution depressed activation of sarcoplasmic reticulum Ca2+ release in S100A1-/- muscle fibers. Through competition assays with sarcoplasmic reticulum vesicles and through tryptophan fluorescence experiments, we also identify a novel S100A1-binding site on the cytoplasmic face of the intact ryanodine receptor that is conserved throughout striated muscle and corresponds to a previously identified calmodulin-binding site. Using a 12-mer peptide of this putative binding domain, we demonstrate low micromolar binding affinity to S100A1. NMR spectroscopy reveals this peptide binds within the Ca2+-dependent hydrophobic pocket of S100A1. Taken together, these data suggest that S100A1 plays a significant role in skeletal muscle excitation-contraction coupling, primarily through specific interactions with a conserved binding domain of the ryanodine receptor. This warrants further investigation into the use of S100A1 as a therapeutic target for the treatment of both cardiac and skeletal myopathies.  相似文献   

8.
Calmodulin (CaM) binds to the ryanodine receptor/calcium release channel of skeletal muscle (RyR1), both in the absence and presence of Ca(2+), and regulates the activity of the channel activity by activating and inhibiting it, respectively. Using cryo-electron microscopy and three-dimensional reconstruction, we found that one apoCaM binds per RyR1 subunit along the sides of the cytoplasmic assembly of the receptor. This location is distinct from but close to the location found for Ca(2+)-CaM, providing a structural basis for efficient switching of CaM between these two positions with the oscillating intracellular Ca(2+) concentration that generates muscle relaxation/contraction cycles. The locations of apoCaM and Ca(2+)-CaM at a critical region for RYR1-dihydropyridine receptor interaction are suggestive of a direct role for CaM in the mechanism of excitation-contraction coupling.  相似文献   

9.
The type 1 isoform of the ryanodine receptor (RYR1) is the Ca(2+) release channel of the sarcoplasmic reticulum (SR) that is activated during skeletal muscle excitation-contraction (EC) coupling. Mutations in the RYR1 gene cause several rare inherited skeletal muscle disorders, including malignant hyperthermia and central core disease (CCD). The human RYR1(I4898T) mutation is one of the most common CCD mutations. To elucidate the mechanism by which RYR1 function is altered by this mutation, we characterized in vivo muscle strength, EC coupling, SR Ca(2+) content, and RYR1 Ca(2+) release channel function using adult heterozygous Ryr1(I4895T/+) knock-in mice (IT/+). Compared with age-matched wild-type (WT) mice, IT/+ mice exhibited significantly reduced upper body and grip strength. In spite of normal total SR Ca(2+) content, both electrically evoked and 4-chloro-m-cresol-induced Ca(2+) release were significantly reduced and slowed in single intact flexor digitorum brevis fibers isolated from 4-6-mo-old IT/+ mice. The sensitivity of the SR Ca(2+) release mechanism to activation was not enhanced in fibers of IT/+ mice. Single-channel measurements of purified recombinant channels incorporated in planar lipid bilayers revealed that Ca(2+) permeation was abolished for homotetrameric IT channels and significantly reduced for heterotetrameric WT:IT channels. Collectively, these findings indicate that in vivo muscle weakness observed in IT/+ knock-in mice arises from a reduction in the magnitude and rate of RYR1 Ca(2+) release during EC coupling that results from the mutation producing a dominant-negative suppression of RYR1 channel Ca(2+) ion permeation.  相似文献   

10.
The skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel or ryanodine receptor (RyR1) binds four molecules of FKBP12, and the interaction of FKBP12 with RyR1 regulates both unitary and coupled gating of the channel. We have characterized the physiologic effects of previously identified mutations in RyR1 that disrupt FKBP12 binding (V2461G and V2461I) on excitation-contraction (EC) coupling and intracellular Ca2+ homeostasis following their expression in skeletal myotubes derived from RyR1-knockout (dyspedic) mice. Wild-type RyR1-, V246I-, and V2461G-expressing myotubes exhibited similar resting Ca2+ levels and maximal responses to caffeine (10 mm) and cyclopiazonic acid (30 microm). However, maximal voltage-gated Ca2+ release in V2461G-expressing myotubes was reduced by approximately 50% compared with that attributable to wild-type RyR1 (deltaF/Fmax = 1.6 +/- 0.2 and 3.1 +/- 0.4, respectively). Dyspedic myotubes expressing the V2461I mutant protein, that binds FKBP12.6 but not FKBP12, exhibited a comparable reduction in voltage-gated SR Ca2+ release (deltaF/Fmax = 1.0 +/- 0.1). However, voltage-gated Ca2+ release in V2461I-expressing myotubes was restored to a normal level (deltaF/Fmax = 2.9 +/- 0.6) following co-expression of FKBP12.6. None of the mutations that disrupted FKBP binding to RyR1 significantly affected RyR1-mediated enhancement of L-type Ca2+ channel activity (retrograde coupling). These data demonstrate that FKBP12 binding to RyR1 enhances the gain of skeletal muscle EC coupling.  相似文献   

11.
Apocalmodulin and Ca(2+) calmodulin bind to overlapping sites on the ryanodine receptor skeletal form, RYR1, but have opposite functional effects on channel activity. Suramin, a polysulfonated napthylurea, displaces both forms of calmodulin, leading to an inhibition of activity at low Ca(2+) and an enhancement of activity at high Ca(2+). Calmodulin binding motifs on RYR1 are also able to directly interact with the carboxy-terminal tail of the transverse tubule dihydropyridine receptor (DHPR) (Sencer, S., Papineni, R. V., Halling, D. B., Pate, P., Krol, J., Zhang, J. Z., and Hamilton, S. L. (2001) J. Biol. Chem. 276, 38237-38241). Suramin binds directly to a peptide that corresponds to the calmodulin binding site of RYR1 (amino acids 3609-3643) and blocks the interaction of this peptide with both calmodulin and the carboxyl-terminal tail of the DHPR alpha(1)-subunit. Suramin, added to the internal solution of voltage-clamped skeletal myotubes, produces a concentration-dependent increase in the maximal magnitude of voltage-gated Ca(2+) transients without significantly altering L-channel Ca(2+) channel conducting activity. Together, these results suggest that an interaction between the carboxyl-terminal tail of the DHPR alpha(1)-subunit with the calmodulin binding region of RYR1 serves to limit sarcoplasmic reticulum Ca(2+) release during excitation-contraction coupling and that suramin-induced potentiation of voltage-gated Ca(2+) release involves a relief of this inhibitory interaction.  相似文献   

12.
Although it has been suggested that the C-terminal tail of the β(1a) subunit of the skeletal dihyropyridine receptor (DHPR) may contribute to voltage-activated Ca(2+) release in skeletal muscle by interacting with the skeletal ryanodine receptor (RyR1), a direct functional interaction between the two proteins has not been demonstrated previously. Such an interaction is reported here. A peptide with the sequence of the C-terminal 35 residues of β(1a) bound to RyR1 in affinity chromatography. The full-length β(1a) subunit and the C-terminal peptide increased [(3)H]ryanodine binding and RyR1 channel activity with an AC(50) of 450-600 pM under optimal conditions. The effect of the peptide was dependent on cytoplasmic Ca(2+), ATP, and Mg(2+) concentrations. There was no effect of the peptide when channel activity was very low as a result of Mg(2+) inhibition or addition of 100 nM Ca(2+) (without ATP). Maximum increases were seen with 1-10 μM Ca(2+), in the absence of Mg(2+) inhibition. A control peptide with the C-terminal 35 residues in a scrambled sequence did not bind to RyR1 or alter [(3)H]ryanodine binding or channel activity. This high-affinity in vitro functional interaction between the C-terminal 35 residues of the DHPR β(1a) subunit and RyR1 may support an in vivo function of β(1a) during voltage-activated Ca(2+) release.  相似文献   

13.
The calcium-ryanodine receptor complex of skeletal and cardiac muscle   总被引:14,自引:0,他引:14  
[3H]Ryanodine binds with high affinity to saturable and Ca2+-dependent sites in heavy sarcoplasmic reticulum (SR) preparations from rabbit skeletal and cardiac muscle. Ruthenium red, known to interfere with Ca2+-induced Ca2+ release from SR vesicles, inhibits [3H]ryanodine specific binding in both skeletal and cardiac preparations whereas Mg2+, Ba2+, Cd2+ and La3+ selectively inhibit the skeletal preparation. The toxicological relevance of the [3H]ryanodine binding site is established by the correlation of binding inhibition with toxicity for seven ryanoids including two botanical insecticides. These findings provide direct evidence for Ca2+-ryanodine receptor complexes that may play a role in excitation-contraction coupling.  相似文献   

14.
J Ma  M B Bhat    J Zhao 《Biophysical journal》1995,69(6):2398-2404
The cytosolic receptor for immunosuppressant drugs, FK506 binding protein (FKBP12), maintains a tight association with ryanodine receptors of sarcoplasmic reticulum (SR) membrane in skeletal muscle. The interaction between FKBP12 and ryanodine receptors resulted in distinct rectification of the Ca release channel. The endogenous FKBP-bound Ca release channel conducted current unidirectionally from SR lumen to myoplasm; in the opposite direction, the channel deactivated with fast kinetics. The binding of FKBP12 is likely to alter subunit interactions within the ryanodine receptor complex, as revealed by changes in conductance states of the channel. Both on- and off-rates of FKBP12 binding to the ryanodine receptor showed clear dependence on the membrane potential, suggesting that the binding sites of FKBP12 reside in or near the conduction pore of the Ca release channel. Rectification of the Ca release channel would prevent counter-current flow during the rapid release of Ca from SR membrane, and thus may serve as a negative feedback mechanism that participates in the process of muscle excitation-contraction coupling.  相似文献   

15.
We have observed a disparity between the actions of caffeine and ryanodine, two agents known to affect the same site of intracellular calcium (Ca2+) release in muscle. The site of intracellular Ca2+ release, the ryanodine receptor (RyR), is established as the route of Ca2+ movement from the sarcoplasmic reticulum (SR) to the cytosol during excitation-contraction coupling. We measured Ca2+ release fluorimetrically in both saponin-permeabilized and intact L6 cells, in response to known modulators (i.e., caffeine and ryanodine), during differentiation in vitro. The undifferentiated L6 cells showed little response to caffeine. However, a substantial caffeine-induced calcium release (caffCR) was evident by Day 3 of differentiation, and was nearly maximal by Day 7 of differentiation. By contrast, ryanodine failed to stimulate Ca2+ release until Day 4, lagging behind the caffeine response. Ryanodine-stimulated Ca2+ release was also maximal by Day 7. Higher concentrations of ryanodine, known to inhibit Ca2+ release, only began to affect caffCR at Day 4, indicating that cells were insensitive to both ryanodine stimulation and ryanodine inhibition prior to this time. Most of the results could be obtained both in permeabilized and intact cells. Using intact cells, we measured the time course of K+ -dependent (i.e., depolarization-induced) Ca2+ release. This time course matched caffeine and not ryanodine-induced Ca2+ release suggesting the action of caffeine was not due to Ca2+ release unrelated to excitation-contraction coupling. These findings suggest that ryanodine binding sites on the RyR may not be functional at early stages of muscle development, that ryanodine sensitivity is a poor indicator of Ca2+ flux through the RyR, or that other proteins are involved in Ca2+ release under certain circumstances.  相似文献   

16.
Evidence for functional interactions between the Ca2+ release channel in the skeletal muscle sarcoplasmic reticulum (the ryanodine receptor) and the L-type Ca2+ channel in the sarcolemma (the dihydropyridine receptor), leading to excitation-contraction coupling, is reviewed and experimental systems used to identify candidate sites of interaction are outlined.  相似文献   

17.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.  相似文献   

18.
In heart and skeletal muscle an S100 protein family member, S100A1, binds to the ryanodine receptor (RyR) and promotes Ca(2+) release. Using competition binding assays, we further characterized this system in skeletal muscle and showed that Ca(2+)-S100A1 competes with Ca(2+)-calmodulin (CaM) for the same binding site on RyR1. In addition, the NMR structure was determined for Ca(2+)-S100A1 bound to a peptide derived from this CaM/S100A1 binding domain, a region conserved in RyR1 and RyR2 and termed RyRP12 (residues 3616-3627 in human RyR1). Examination of the S100A1-RyRP12 complex revealed residues of the helical RyRP12 peptide (Lys-3616, Trp-3620, Lys-3622, Leu-3623, Leu-3624, and Lys-3626) that are involved in favorable hydrophobic and electrostatic interactions with Ca(2+)-S100A1. These same residues were shown previously to be important for RyR1 binding to Ca(2+)-CaM. A model for regulating muscle contraction is presented in which Ca(2+)-S100A1 and Ca(2+)-CaM compete directly for the same binding site on the ryanodine receptor.  相似文献   

19.
Although it is well established that voltage-sensing of the alpha(1)-dihydropyridine receptor triggers Ca(2+)-release via the ryanodine receptor during excitation-contraction coupling in skeletal muscle fibers, it remains to be determined which junctional components are responsible for the assembly, maintenance, and stabilization of triads. Here, we analyzed the expression pattern and neighborhood relationship of a novel 90-kDa sarcoplasmic reticulum protein. This protein is highly enriched in the triad fraction and is predominantly expressed in fast-twitching muscle fibers. Chronic low-frequency electro-stimulation induced a drastic decrease in the relative abundance of this protein. Chemical crosslinking showed a potential overlap between the 90-kDa junctional face membrane protein and the ryanodine receptor Ca(2+)-release channel, suggesting tight protein-protein interactions between these two triad components. Hence, Ca(2+)-regulatory muscle proteins have a strong tendency to oligomerize and the triad region of skeletal muscle fibers forms supramolecular membrane complexes involved in the regulation of Ca(2+)-homeostasis and signal transduction.  相似文献   

20.
Calmodulin is a ubiquitous Ca(2+) binding protein that modulates the in vitro activity of the skeletal muscle ryanodine receptor (RyR1). Residues 3614-3643 of RyR1 comprise the CaM binding domain and mutations within this region result in a loss of both high-affinity Ca(2+)-bound calmodulin (CaCaM) and Ca(2+)-free CaM (apoCaM) binding (L3624D) or only CaCaM binding (W3620A). To investigate the functional role of CaM binding to this region of RyR1 in intact skeletal muscle, we compared the ability of RyR1, L3624D, and W3620A to restore excitation-contraction (EC) coupling after expression in RyR1-deficient (dyspedic) myotubes. W3620A-expressing cells responded normally to 10 mM caffeine and 500 microM 4-chloro-m-cresol (4-cmc). Interestingly, L3624D-expressing cells displayed a bimodal response to caffeine, with a large proportion of cells ( approximately 44%) showing a greatly attenuated response to caffeine. However, high and low caffeine-responsive L3624D-expressing myotubes exhibited Ca(2+) transients of similar magnitude after activation by 4-cmc (500 microM) and electrical stimulation. Expression of either L3624D or W3620A in dyspedic myotubes restored both L-type Ca(2+) currents (retrograde coupling) and voltage-gated SR Ca(2+) release (orthograde coupling) to a similar degree as that observed for wild-type RyR1, although L-current density was somewhat larger and activated at more hyperpolarized potentials in W3620A-expressing myotubes. The results indicate that CaM binding to the 3614-3643 region of RyR1 is not essential for voltage sensor activation of RyR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号