首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The five members of the human epidermal growth factor (EGF) family (EGF, transforming growth factor alpha [TGF-alpha], heparin-binding EGF-like growth factor [HB-EGF], betacellulin, and amphiregulin [AR]) are synthesized as transmembrane proteins whose extracellular domains are proteolytically processed to release the biologically active mature growth factors. These factors all activate the EGF receptor, but in contrast to EGF and TGF-alpha, the mature forms of HB-EGF and AR are also glycosylated, heparin-binding proteins. We have constructed a series of mutants to examine the influence of the distinct precursor domains in the biosynthesis of AR. The transmembrane and cytoplasmic domains of the precursor are not required for secretion of bioactive AR from either COS or mammary epithelium-derived cells, although proteolytic removal of the N-terminal pro-region is less efficient in the absence of the membrane anchor. Deletion of the N-terminal pro-region, however, results in rapid intracellular degradation of the molecule with no detectable secretion of active growth factor. AR secretion is preserved by replacing the native pro-region with the corresponding domain of the HB-EGF precursor but not with that of the TGF-alpha precursor. In the absence of any N-terminal pro-region, secretion of the molecule is restored by deleting the N-terminal heparin-binding domain of mature AR. Both EGF and TGF-alpha, in contrast, can be secreted without their pro-regions. However, if the protein is fused with the AR heparin-binding domain, TGF-alpha secretion is inhibited unless the AR pro-region is also present. We propose that the heparin-binding domain of mature AR necessitates the presence of a specific structural motif in an N-terminal pro-region to permit proper folding, and thus secretion, of a bioactive molecule.  相似文献   

2.
3.
The epidermal growth factor (EGF) family of peptides signals through the erbB family of receptor tyrosine kinases and plays important roles in development and tumorigenesis. Both EGF and transforming growth factor (TGF)-alpha only bind to erbB1 and activate it. The precursor of EGF is distinct from that of TGF-alpha in having eight additional EGF-like repeats. We have recently shown that the EGF precursor without these repeats is biologically active and leads to hypospermatogenesis in transgenic mice. Here we present evidence that the growth of transgenic mice widely expressing this engineered EGF precursor is also stunted. These mice were consistently born at half the normal weight and reached almost 80% of normal weight at adulthood. The mechanism involved a reduction of serum insulin-like growth factor-binding protein-3. Chondrocyte development in the growth plate was affected, and osteoblasts accumulated in the endosteum and periosteum. Besides these novel findings on the in vivo effects of EGF on bone development, we observed no sign of tumor formation in our transgenic animals. In contrast to previous reports on TGF-alpha transgenic mice, we show that the biological functions of EGF and TGF-alpha are clearly distinct.  相似文献   

4.
To elucidate the relationship between epidermal growth factor (EGF)/transforming growth factor (TGF-alpha) and estradiol-17 beta (E) in cell proliferation, we examined their effects on the breast cancer cell line, CAMA-1. While E was able to consistently induce cell proliferation under a variety of experimental conditions, EGF/TGF-alpha was without effect. Despite the presence of the receptor (EGFR) gene, mature EGFR protein and mRNA were not detected by radioreceptor assay, 35S Met-labelling, and the Intron Differential RNA/PCR method under conditions in which cells remain responsive to E. Furthermore, TGF-alpha is not an autocrine factor in CAMA-1 cells. We demonstrated unequivocally that EGF/TGF-alpha interaction with EGFR is not an obligatory event in mediating estrogen-stimulated cell proliferation.  相似文献   

5.
Normal human mammary epithelial cells (HMECs) proliferate in a serum-free defined growth medium in the absence of epidermal growth factor (Li and Shipley, 1991). Amphiregulin (AR) is a heparin-regulated, EGF-like growth factor. Our observation that one strain of HMECs produce AR mRNA (Cook et al., 1991 a) stimulated us to determine whether AR expression was a common phenomenon in HMECs and whether AR could act as an autocrine growth factor to support the EGF-independent growth of these cells. In this study, we detected high levels of AR expression in four separate HMEC strains while one immortal mammary cell line (HBL-100) and six mammary tumor-derived cell lines had low to undetectable levels of AR. The EGF-independent growth of HMECs was blocked by the addition of heparin or a monoclonal anti-EGF receptor antibody to the culture medium, implicating AR as an autocrine growth mediator. This hypothesis is further supported by the fact that medium conditioned by HMECs contains secreted AR protein. A mammary tumor-derived cell line, Hs578T, which proliferates in an EGF-independent manner, does not express detectable levels of AR and is not growth inhibited by heparin. Examination of the same cell types for expression of transforming growth factor type-alpha (TGF-alpha) mRNA revealed coordinate expression of AR and TGF-alpha in these cells. These data suggest that both AR and TGF-alpha mRNA are produced in much greater abundance by normal HMECs than in tumor-derived cells in culture, and that AR is an important autostimulatory factor for the growth of normal HMECs.  相似文献   

6.
EGF and TGF-alpha in wound healing and repair   总被引:8,自引:0,他引:8  
Wound healing is a localized process which involves inflammation, wound cell migration and mitosis, neovascularization, and regeneration of the extracellular matrix. Recent data suggest the actions of wound cells may be regulated by local production of peptide growth factors which influence wound cells through autocrine and paracrine mechanisms. Two peptide growth factors which may play important roles in normal wound healing in tissues such as skin, cornea, and gastrointestinal tract are the structurally related peptides epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha). EGF/TGF-alpha receptors are expressed by many types of cells including skin keratinocytes, fibroblasts, vascular endothelial cells, and epithelial cells of the GI tract. In addition, EGF or TGF-alpha are synthesized by several cells involved in wound healing including platelets, keratinocytes, and activated macrophages. Healing of a variety of wounds in animals and patients was enhanced by treatment with EGF or TGF-alpha. Epidermal regeneration of partial thickness burns on pigs or dermatome wounds on patients was accelerated with topical application of EGF or TGF-alpha, and EGF treatment accelerated healing of gastroduodenal ulcers. EGF also increased tensile strength of skin incisions in rats and corneal incisions in rabbits, cats, and primates. Additional research is needed to better define the roles of EGF, TGF-alpha and their receptor in normal wound healing, to determine if alterations have occurred in the EGF/TGF-alpha system in chronic wounds, and optimize vehicles for effective delivery of peptide growth factors to wounds.  相似文献   

7.
We have examined the expression of mRNAs for epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha), EGF receptor (EGFR), PDGF-A chain (PDGFA), PDGF-B chain (PDGFB) and PDGF receptor (PDGFR) genes in seven human colorectal carcinoma cell lines and 18 human colorectal carcinomas. In surgically resected specimens of the 18 colorectal tumors, TGF-alpha, EGFR, PDGFA, PDGFB and PDGFR mRNAs were detected at various levels in 15 (83%), 9 (50%), 18 (100%), 8 (44%) and 12 (67%), respectively. They were also detected in normal tissues. Interestingly, EGF mRNA was detected in only five (28%) of the tumors, but not in normal mucosa. Expression of EGF was also confirmed immunohistochemically in tumor cells. Of the five tumors expressing EGF, four expressed EGFR mRNA and showed a tendency to invade veins and lymphatics. All the colorectal carcinoma cell lines expressed TGF-alpha mRNA, and five cell lines expressed EGFR mRNA simultaneously. Production of TGF-alpha protein by DLD-1 and CoLo320DM cells was confirmed by TGF-alpha specific monoclonal antibody binding assay. The spontaneous 3H-thymidine uptake by DLD-1 was suppressed by an anti-TGF-alpha monoclonal antibody. PDGFA and PDGFB mRNA were also expressed in four cell lines, but PDGFR and EGF mRNA was not detected. These results suggest that human colorectal carcinomas express multi-loops of growth factors and that TGF-alpha produced by tumor cells functions as an autocrine growth factor in human colonic carcinoma.  相似文献   

8.
Estrogen-stimulated growth of the human mammary adenocarcinoma cell line MCF-7 is significantly inhibited by monoclonal antibodies to the epidermal growth factor (EGF) receptor that act as antagonists of EGF's mitogenic events by competing for high-affinity EGF receptor binding sites. These antibodies likewise inhibit the EGF or transforming growth factor-alpha (TGF-alpha)-stimulated growth of these MCF-7 cells. An analogous pattern of specific EGF or TGF-alpha growth inhibitory activity was obtained using a synthetic peptide analog encompassing the third disulfide loop region of TGF-alpha, but containing additional modifications designed for increased membrane affinity [( Ac-D-hArg(Et)2(31),Gly32,33]HuTGF-alpha(31-43)NH2). The growth factor antagonism by this synthetic peptide was specific in that it inhibited EGF, TGF-alpha, or estrogen-stimulated growth of MCF-7 cells but did not inhibit insulin-like growth factor-1 (IGF-1)-stimulated cell growth. Altogether, these results suggest that a significant portion of the estrogen-stimulated growth of these MCF-7 cells is mediated in an autocrine/paracrine manner by release of EGF or TGF-alpha-like growth factors. The TGF-alpha peptide likewise inhibited EGF- but not fibroblast growth factor (FGF)- or platelet-derived growth factor (PDGF)-stimulated growth of NIH-3T3 cells in completely defined media; but had no effect on growth or DNA synthesis of G0-arrested cells, nor did it effect growth of NR-6 cells, which are nonresponsive to EGF. Although this synthetic peptide did not directly compete with EGF for cell surface receptor binding, it exhibited binding to a cell surface component (followed by internalization), which likewise was not competed by EGF. The peptide did not directly inhibit EGF-stimulated phosphorylation of the EGF receptor, nor did it inhibit phosphorylation of an exogenous substrate, angiotensin II, by activated EGF receptor. The TGF-alpha peptide did, however, affect the structure of laminin as manifested by laminin self-aggregation; this affect on laminin may, in turn, have a modulatory effect on EGF-mediated cell growth.  相似文献   

9.
T3M4 human pancreatic carcinoma cells avidly bound and internalized 125I-labeled epidermal growth factor (EGF) but did not readily degrade the ligand. Pulse-chase experiments in which the cell-bound radioactivity was allowed to dissociate into the incubation medium in the presence of unlabeled EGF indicated that the majority of the released 125I-EGF consisted of intact EGF and a slightly processed species that readily bound to the cell. Omission of unlabeled EGF during the chase period markedly decreased the amount of radioactivity in the incubation medium, mainly as a result of the rebinding of EGF to the cells. In contrast, T3M4 cells readily degraded 125I-labeled transforming growth factor-alpha (TGF-alpha), and the released radiolabeled products did not rebind to the cells. Both ligands were released from T3M4 cells under acidic conditions, complete dissociation occurring at a pH of 4.5 for EGF, and a pH of 6.5 for TGF-alpha. A 431 human epidermoid carcinoma cells and ASPC-1 human pancreatic carcinoma cells also failed to extensively degrade 125I-EGF, whereas Rat-1 fibroblasts markedly degraded the growth factor. As in the case of T3M4 cells, ASPC-1 cells extensively degraded 125I-TGF-alpha. Degradation of either ligand was blocked by the lysosomotropic compound methylamine in all the tested cell lines. Immunoprecipitation of the EGF receptor with specific polyclonal antibodies and Western blot analysis revealed the anticipated 170-kDa protein in T3M4 cells. Both EGF and TGF-alpha enhanced EGF receptor degradation, but TGF-alpha was less effective than EGF. These findings indicate that in certain cell types EGF and TGF-alpha may be differentially processed.  相似文献   

10.
Transforming growth factor-alpha (TGF-alpha) is an autocrine growth factor for epidermal keratinocytes that can induce its own expression (autoinduction). Because the regulation of this process may be important for the control of epidermal growth, we examined the roles of EGF receptor tyrosine kinase and protein kinase C (PKC) in TGF-alpha autoinduction in cultured human keratinocytes. Antiphosphotyrosine immunoblot analysis demonstrated that EGF and TGF-alpha rapidly and markedly stimulated tyrosine phosphorylation of a 170 kDa protein in growth factor-deprived keratinocytes. This protein was identified as the EGF receptor by immuno-precipitation using anti-EGF receptor mAbs. Tyrosine phosphorylation and TGF-alpha mRNA accumulation in response to EGF and TGF-alpha were both inhibited by a monoclonal antibody against the EGF receptor and by the EGF receptor tyrosine kinase inhibitor RG50864, demonstrating the involvement of the tyrosine kinase activity of the receptor in TGF-alpha autoinduction. The monoclonal antibody inhibited keratinocyte growth and TGF-alpha autoinduction with similar potency (IC50 approximately 0.1 microgram/ml). TGF-alpha and the PKC activator tetradecanoyl phorbol 12-myristyl, 13-acetate (TPA) had similar effects on TGF-alpha steady-state mRNA levels, suggesting that PKC activation might be a downstream mediator of TGF-alpha autoinduction. However, down-regulation of more than 90% of keratinocyte PKC activity by bryostatin pretreatment abrogated the induction of TGF-alpha mRNA in response to TPA without affecting the autoinductive response or EGF-stimulated tyrosine phosphorylation. These results indicate that EGF receptor and PKC stimulate TGF-alpha gene expression by different pathways, and suggest that PKC is not required for TGF-alpha autoinduction in this system. Moreover, the fact that EGF-stimulated tyrosine phosphorylation and TGF-alpha autoinduction were not potentiated after PKC down-regulation suggests that PKC does not exert a tonic inhibitory influence on EGF receptor tyrosine kinase activity in normal human keratinocytes.  相似文献   

11.
Carcinoma cells frequently coexpress transforming growth factor (TGF)-alpha and its receptor, the epidermal growth factor (EGF) receptor, implicating an autocrine function of carcinoma-derived TGF-alpha. Using a monoclonal antibody (425) to the EGF-receptor, we investigated the role of exogenous and tumor cell-derived EGF/TGF-alpha mitogenic activities in proliferation of cell lines derived from solid tumors. Monoclonal antibody 425 was chosen for these studies because it inhibits binding of EGF/TGF-alpha to the EGF-receptor and effectively blocks activation of the EGF-receptor by EGF/TGF-alpha. Seven malignant cell lines originating from carcinomas of colon, pancreas, breast, squamous epithelia, and bladder expressed surface EGF-receptor and secreted EGF/TGF-alpha-like mitogenic activities into their tissue culture media. All cell lines were maintained in a defined medium free of exogenous EGF/TGF-alpha. EGF and TGF-alpha added to the culture medium stimulated proliferation of five cell lines to comparable levels. EGF/TGF-alpha-dependent proliferation was significantly reduced by addition of MAb 425 to culture media. In addition, monoclonal antibody 425 reduced proliferation of the five EGF/TGF-alpha responsive cell lines in the absence of exogenous EGF/TGF-alpha. Antiproliferative effects induced by monoclonal antibody 425 were reversible and could be overcome by addition of EGF to culture media. Our results indicate that tumor-derived EGF-receptor-reactive mitogens can promote proliferation of carcinoma cells in an autocrine fashion.  相似文献   

12.
Two structurally related but different polypeptide growth factors, epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha), exert their activities after interaction with a common cell-surface EGF/TGF-alpha-receptor. Comparative studies of the effects of both ligands have established that TGF-alpha is more potent than EGF in a variety of biological systems. This observation is not explained by differences in affinities of the ligands for the receptor, because the affinity-constants of both factors are very similar. We have compared the intracellular processing of ligand-receptor complexes using either EGF or TGF-alpha in two different cell systems. We found that TGF-alpha dissociates from the EGF/TGF-alpha-receptor at much higher pH than EGF, which may reflect the substantial difference in the calculated isoelectric points. After internalization, the intracellular TGF-alpha is more rapidly cleared than EGF, and a substantial portion of the released TGF-alpha represents undegraded TGF-alpha in contrast to the mostly degraded EGF. In addition, TGF-alpha did not induce a complete down-regulation of cell surface receptors, as observed with EGF, which is at least in part responsible for a much sooner recovery of the ligand-binding ability after down-regulation, in the case of TGF-alpha. These differences in processing of the ligand-receptor complexes may explain why TGF-alpha exerts quantitatively higher activities than EGF.  相似文献   

13.
We have recently shown that epidermal growth factor (EGF) is capable of positive regulation of IFN-gamma production, thus establishing a functional relationship between nonhemopoietic growth factors and the immune system. In order to study this relationship further, EGF and the EGF-related growth factors transforming growth factor-alpha (TGF-alpha) and vaccinia virus growth factor (VGF), which stimulate cellular proliferation via binding to the EGF receptor, were studied for their functional and physicochemical effects on IFN-gamma production. In contrast to the positive signal of purified murine EGF and recombinant human EGF (both at 1 nM), neither synthetic TGF alpha nor recombinant VGF were capable of restoring competence for IFN-gamma production by Th cell-depleted spleen cell cultures. TGF-alpha and VGF, in molar excess, also failed to block the helper signal of EGF for IFN-gamma production. Thus TGF-alpha and VGF failed to functionally compete for the EGF receptor in the murine spleen cell system. Both TGF-alpha and VGF stimulated murine 3T3 cell proliferation at concentrations similar to those of EGF, and thus their failure to provide help for IFN-gamma production was not due to a general lack of biologic activity. Binding studies with 125I-EGF suggest that the EGF receptor on murine lymphocytes is not constitutively expressed, but inducible by the T cell mitogen staphylococcal enterotoxin A. TGF-alpha did not compete with 125I-EGF for the induced receptor. The data suggest that lymphocytes express a novel inducible EGF receptor that differs from that expressed on cells such as 3T3 fibroblasts.  相似文献   

14.
While previous studies have indicated that exogenous TGF-alpha stimulates epithelial growth, maintenance, and repair of the gut, roles of endogenous TGF-alpha are less well-defined particularly in the small bowel. The current study examined effects of TGF-alpha knockout on adult small intestinal epithelial cell proliferation, migration, apoptosis, and damage/repair response after methotrexate treatment. Compared to normal mice, TGF-alpha gene knockout did not affect crypt cell production, mitosis position, migration, and apoptosis in non-injured intestine. RT-PCR gene expression analysis revealed presence of four out of six TGF-alpha related EGF family ligands in the normal intestine, suggesting a possible functional redundancy of the EGF family in maintenance of the intestine. Although TGF-alpha gene knockout did not significantly impair the overall mucosal repair in methotrexate-induced acute damage in the small intestine, it resulted in a higher apoptotic response in the early hours following methotrexate challenge, and a delayed and reduced crypt cell proliferation during repair. Consistently, after methotrexate challenge, intestinal TGF-alpha mRNA was found to be markedly upregulated in the early hours and during repair in the wild type, and there were similar profiles in the increased expression of all other ligands (except EGF) between the wild type and knockout intestines. Therefore, despite a possible functional redundancy among the EGF family ligands in the normal small intestine, TGF-alpha may play a role in modulating the early apoptotic events and in enhancing the subsequent reparative proliferative response in the methotrexate-damaged intestine.  相似文献   

15.
A431 cells express high numbers of epidermal growth factor (EGF) receptors and produce a ligand for these receptors, transforming growth factor-alpha (TGF-alpha). We have obtained evidence that the EGF receptors on these cells may be activated through an "autocrine" pathway by ligand and have investigated whether activation of phosphorylation of the receptor by the endogenously produced TGF-alpha occurs intracellularly or at the cell surface. When A431 cells were cultured under serum-free conditions, in the absence of exogenous ligand, EGF receptors were found to have a basal level of phosphorylation. When cells were labeled by culturing with 32Pi in the continuous presence of monoclonal antibodies that block binding of TGF-alpha to the EGF receptor, phosphorylation decreased to 30 +/- 10% of the basal level. This reduction could not be accounted for by the decrease in receptor content attributable to down-regulation and catabolism of EGF receptors that resulted from the binding of anti-receptor monoclonal antibodies. The reduction in receptor phosphorylation mediated by antibody was accompanied by the accumulation of increased levels of secreted TGF-alpha species in the culture medium. We also pulse-labeled A431 cells for 15 min with [35S]cysteine and immunoprecipitated the cell lysate with anti-phosphotyrosine antibody after various chase periods. Tyrosine-phosphorylated EGF receptor became detectable after 40 min of chase and reached a maximum after 4-6 h; these times are in agreement with the intervals required for EGF receptors to reach the cell surface after synthesis and then to achieve maximal expression. In addition, only the 170-kDa, mature EGF receptor species, and not the 160-kDa intracellular precursor, was immunoprecipitated with the anti-phosphotyrosine antibody. The results of these pulse-chase experiments and the finding that anti-receptor monoclonal antibody can block receptor phosphorylation suggest that activation of EGF receptors can result from the binding of an endogenous ligand (presumably TGF-alpha), which occurs at the cell surface and not during receptor biosynthesis and intracellular processing.  相似文献   

16.
The 1246-3A cell line is an insulin-independent variant derived from the adipogenic cell line 1246. Data presented in this paper indicate that the 1246-3A cell line releases in its culture medium two types of transforming growth factors, TGF-alpha- and TGF-beta-like polypeptides, and a growth inhibitor. TGF-alpha like polypeptide eluted from Biogel P60 column into two fractions with an apparent molecular weight of 50 kDa and 13 kDa. These high-molecular-weight TGF-alpha-like factors competed with 125I-EGF for binding to epidermal growth factor (EGF) receptors and were specifically immunoprecipitated by incubation with antirat TGF-alpha antibody, not by incubation with anti-EGF antibody. Both fractions promoted anchorage-independent growth of normal rat kidney NRK cells in the absence of EGF and stimulated DNA synthesis in quiescent Balb/c-3T3 cells in a fashion similar to EGF and synthetic TGF-alpha. In addition to secreting TGF-alpha-like polypeptides, 1246-3A cells produce TGF-beta. This polypeptide, eluted from Biogel P60 chromatography with an apparent molecular weight of 25 kDa, promoted anchorage-independent growth of NRK cells in the presence of EGF and was growth inhibitory for Chinese hamster lung fibroblasts CCL 39 cells. Interestingly, another growth inhibitory activity was detected in Biogel P60 fractions and eluted with an apparent molecular weight of between 9.5-11 kDa. This fraction was different from TGF-beta and TGF-alpha as determined by specific radioreceptor competition assays. TGF-alpha and TGF-beta-like polypeptides could represent autocrine growth stimulators for the insulin-independent 1246-3A cells and act in synergy with insulin-related factor (IRF) for an optimal stimulation of 1246-3A cell proliferation in serum-free medium.  相似文献   

17.
Transforming growth factor-alpha   总被引:9,自引:0,他引:9  
In summary, although TGF-alpha was initially found in tumors, a number of later studies, some of them from the author's laboratory, have shown that TGF-alpha should no longer be considered a tumor associated growth factor. Rather, TGF-alpha is a normal physiological ligand for the EGF receptor. Table 2 lists some of the normal cellular sources of TGF-alpha. Our list is incomplete, but we know that TGF-alpha is made in keratinocytes and a number of epithelial cells, including gut and breast epithelial cells. It seems very likely that TGF-alpha is a major growth factor secreted by cells of epithelial origin. Zena Werb's and Russell Ross's groups have shown that activated macrophages make TGF-alpha. We have shown that brain makes TGF-alpha and Jeff Kudlow has found TGF-alpha made in the pituitary. Data from several sources, including David Lee, the author's laboratory, and Zena Werb's laboratory has shown that TGF-alpha is made during embryonic development. Therefore, it is now important to look at TGF-alpha in its normal physiological context. Finally, it should be stressed that, as was mentioned above, TGF-alpha is not necessarily a secreted growth factor 50 amino acids long. There is quite a bit of processing of the larger precursor that may or may not take place. This processing, which determines the ultimate size and location of the molecule, is also likely to influence its physiological action.  相似文献   

18.
To study the relationship between the primary structure of transforming growth factor alpha (TGF-alpha) and some of its functional properties (competition with epidermal growth factor (EGF) for binding to the EGF receptor and induction of anchorage-independent growth), we introduced single amino acid mutations into the sequence for the fully processed, 50-amino-acid human TGF-alpha. The wild-type and mutant proteins were expressed in a vector by using a yeast alpha mating pheromone promoter. Mutations of two amino acids that are conserved in the family of the EGF-like peptides and are located in the carboxy-terminal part of TGF-alpha resulted in different biological effects. When aspartic acid 47 was mutated to alanine or asparagine, biological activity was retained; in contrast, substitutions of this residue with serine or glutamic acid generated mutants with reduced binding and colony-forming capacities. When leucine 48 was mutated to alanine, a complete loss of binding and colony-forming abilities resulted; mutation of leucine 48 to isoleucine or methionine resulted in very low activities. Our data suggest that these two adjacent conserved amino acids in positions 47 and 48 play different roles in defining the structure and/or biological activity of TGF-alpha and that the carboxy terminus of TGF-alpha is involved in interactions with cellular TGF-alpha receptors. The side chain of leucine 48 appears to be crucial either indirectly in determining the biologically active conformation of TGF-alpha or directly in the molecular recognition of TGF-alpha by its receptor.  相似文献   

19.
The epidermal growth factor (EGF) receptor mediates the induction of a transformed phenotype in normal rat kidney (NRK) cells by transforming growth factors (TGFs). The ability of EGF and its analogue TGF-alpha to induce the transformed phenotype in NRK cells is greatly potentiated by TGF-beta, a polypeptide that does not interact directly with binding sites for EGF or TGF-alpha. Our evidence indicates that TGF-beta purified from retrovirally transformed rat embryo cells and human platelets induces a rapid (t 1/2 = 0.3 h) decrease in the binding of EGF and TGF-alpha to high-affinity cell surface receptors in NRK cells. No change due to TGF-beta was observed in the binding of EGF or TGF-alpha to lower affinity sites also present in NRK cells. The effect of TGF-beta on EGF/TGF-alpha receptors was observed at concentrations (0.5-20 pM) similar to those at which TGF-beta is active in promoting proliferation of NRK cells in monolayer culture and semisolid medium. Affinity labeling of NRK cells and membranes by cross-linking with receptor-bound 125I-TGF-alpha and 125I-EGF indicated that both factors interact with a common 170-kD receptor structure. Treatment of cells with TGF-beta decreased the intensity of affinity-labeling of this receptor structure. These data suggest that the 170 kD high-affinity receptors for EGF and TGF-alpha in NRK cells are a target for rapid modulation by TGF-beta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号