首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the development of a high-performance liquid chromatographic method for the quantitation of free carnitine, total carnitine, acetylcarnitine, propionylcarnitine, isovalerylcarnitine, hexanoylcarnitine and octanoylcarnitine in human urine. Carnitine and acylcarnitines were isolated from 10 or 25 μl of urine using 0.5-ml columns of silica gel, derivatized with 4'-bromophenacyl trifluoromethanesulfonate and separated by high-performance liquid chromatography. Using 4-(N,N-dimethyl-N-ethylammonio)-3-hydroxybutanoate (“e-carnitine”) as the internal standard, standard curves (10–300 nmol/ml) were generated. Carnitine and acylcarnitines were quantified (when they were present) in normal human urine and the urine of patients diagnosed with one of three different disorders of organic acid metabolism: methylmalonic aciduria, isovaleric acidemia, and medium-chain acyl-CoA dehydrogenase deficiency.  相似文献   

2.
A protocol for the identification and estimation of short-chain esters of carnitine is described; it is useful for the diagnosis of acidemias. By this method, carnitine esters in urine are converted to coenzyme A esters enzymatically with carnitine acetyltransferase (CAT): short-chain acylcarnitine + CoA cat in equilibrium short-chain acyl-CoA + carnitine. The coenzyme A esters are separated by high-performance liquid chromatography using a radial compression system with a C8 Radial-Pak cartridge and a mobile phase containing 0.025 M tetraethylammonium phosphate in a linear gradient of 1 to 50% methanol. Coenzyme A esters are quantitated by integrator determination of the area under the 254-nm absorption peaks. Enzymatic conversion approaches 100% for acetyl and propionyl esters except in the presence of high levels of free carnitine, which lowers the proportion of ester as acyl-CoA at equilibrium. However, since acidemia patients produce urine low in free carnitine, this problem is minimized. The method is rapid and simple and identifies propionic, methylmalonic, and isovaleric acidemias.  相似文献   

3.
Carnitine metabolism in the vitamin B-12-deficient rat.   总被引:4,自引:1,他引:3       下载免费PDF全文
In vitamin B-12 (cobalamin) deficiency the metabolism of propionyl-CoA and methylmalonyl-CoA are inhibited secondarily to decreased L-methylmalonyl-CoA mutase activity. Production of acylcarnitines provides a mechanism for removing acyl groups and liberating CoA under conditions of impaired acyl-CoA utilization. Carnitine metabolism was studied in the vitamin B-12-deficient rat to define the relationship between alterations in acylcarnitine generation and the development of methylmalonic aciduria. Urinary excretion of methylmalonic acid was increased 200-fold in vitamin B-12-deficient rats as compared with controls. Urinary acylcarnitine excretion was increased in the vitamin B-12-deficient animals by 70%. This increase in urinary acylcarnitine excretion correlated with the degree of metabolic impairment as measured by the urinary methylmalonic acid elimination. Urinary propionylcarnitine excretion averaged 11 nmol/day in control rats and 120 nmol/day in the vitamin B-12-deficient group. The fraction of total carnitine present as short-chain acylcarnitines in the plasma and liver of vitamin B-12-deficient rats was increased as compared with controls. When the rats were fasted for 48 h, relative or absolute increases were seen in the urine, plasma, liver and skeletal-muscle acylcarnitine content of the vitamin B-12-deficient rats as compared with controls. Thus vitamin B-12 deficiency was associated with a redistribution of carnitine towards acylcarnitines. Propionylcarnitine was a significant constituent of the acylcarnitine pool in the vitamin B-12-deficient animals. The changes in carnitine metabolism were consistent with the changes in CoA metabolism known to occur with vitamin B-12 deficiency. The vitamin B-12-deficient rat provides a model system for studying carnitine metabolism in the methylmalonic acidurias.  相似文献   

4.
Adult rat heart mitochondria were isolated and incubated with [U-14C]hexadecanoyl-CoA or unlabelled hexadecanoyl-CoA. The accumulating CoA and carnitine esters and [NAD+]/[NADH] ratio were measured by HPLC or tandem mass spectrometry. Despite minimal changes in the intramitochondrial [NAD+]/[NADH] ratio, 2, 3-unsaturated and 3-hydroxyacyl esters were observed as well as saturated acyl-CoA and acylcarnitine esters. In addition to acetylcarnitine, significant amounts of butyryl-, hexanoyl-, octanoyl- and decanoylcarnitines were detected and measured. Rat myocardial beta-oxidation is subject to control at the level of 3-hydroxyacyl-CoA dehydrogenase but this control is not due to a simple lack of oxidised NAD. We hypothesise a pool of NAD in contact between the trifunctional protein of beta-oxidation and complex I of the respiratory chain, the turnover of which is responsible for some of the control of beta-oxidation flux. In addition, short- and medium-chain acylcarnitine esters were detected whereas only small amounts of long-chain acylcarnitines were present. This may imply the presence of a mitochondrial carnitine octanoyl transferase or may reflect channelling of long-chain CoA esters so that they are not available for carnitine palmitoyl transferase II activity.  相似文献   

5.
In a neonatal-screening pilot study for inherited disorders in organic acid and amino acid metabolism, we analyzed butyrated acylcarnitines and amino acids in blood spots of more than 20 000 newborns by electrospray tandem mass spectrometry. In order to screen urea cycle disorders, we performed multiple scanning functions with additional stable isotope-labelled internal standards, since such reported functions as neutral loss of m/z 102 or 109 for butyrated amino acids were not sufficient. Arginine levels were measured with arginine-13C6. Hypocitrullinemia for the screening of some urea cycle disorders was detectable by measurement with synthesized citrulline-d6, although we did not find any such disorders. In the acylcarnitine analysis, we found a patient with propionic acidemia, who has been treated effectively. The increasing false positive rate due to the use of pivalic acid-containing antibiotics in the diagnosis of isovaleric acidemia was a problem in Japan.  相似文献   

6.
A novel approach to the analysis of acylcarnitines has been developed. It involves a direct esterification using propyl chloroformate in aqueous propanol followed by ion-pair extraction with potassium iodide into chloroform and subsequent on-column N-demethylation of the resulting acylcarnitine propyl ester iodides. The products, acyl N-demethylcarnitine propyl esters, are volatile and are easily analyzed by gas chromatography-chemical ionization mass spectrometry. For medium-chain-length (C4-C12) acylcarnitine standards, detection limits are demonstrated to be well below 1 ng starting material using selected ion monitoring. Well-separated gas chromatographic peaks and structure-specific mass spectra are obtained with samples of synthetic and biological origin. Seven acylcarnitines have been characterized in the urine of a patient suffering from medium-chain acyl-CoA dehydrogenase deficiency.  相似文献   

7.
Acylcarnitine profiles have been used to diagnose specific inherited metabolic diseases. For some acylcarnitines, however, the detailed structure of their acyl group remains a question. One such incompletely characterized acylcarnitine is cis-3,4-methylene-heptanoylcarnitine. To investigate this problem, we isolated the "C8:1" acylcarnitine from human urine, transesterified it to form its acyl picolinyl ester, and characterized it by GC/EI-MS. These results were compared to GC/EI-MS results from authentic standards we synthesized (cis-3,4-methylene-heptanoylcarnitine, trans-2-octenoylcarnitine, 3-octenoylcarnitine, cis-4-octenoylcarnitine, and trans-4-octenoylcarnitine). Only cis-3,4-methylene-heptanoylcarnitine matched the urinary "C8:1" acylcarnitine. The standards were then spiked in human urine, converted to pentafluorophenacyl esters, and detected by HPLC/MS. cis-3,4-Methylene-heptanoylcarnitine exactly matched the "C8:1" acylcarnitine in urine, whereas none of the other C8:1 acylcarnitine standards matched. Based on the data from GC/EI-MS and HPLC/MS, the "C8:1" acylcarnitine in human urine is shown to be cis-3,4-methylene-heptanoylcarnitine.  相似文献   

8.
The analysis of urinary acylglycines is an important biochemical tool for the diagnosis of many organic acidemias and mitochondrial fatty acid β-oxidation defects. A new rapid analytical method has been developed for quantification of acylglycines in urine by liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). The method requires a simple sample preparation avoiding derivatization. It has high sensitivity, specificity, and throughput capability, and it requires minimal instrument maintenance. The use of chromatographic separation allows us to identify and quantify isomeric compounds that cannot be solved by appropriate multiple reaction monitoring (MRM) transitions. Urinary concentrations of the different acylglycines were determined using deuterated internal standards. The reference interval for the various metabolites was established using 120 healthy controls. The diagnostic usefulness of the method was demonstrated in three patients with propionic acidemia (PA), one patient with isovaleric acidemia (IVA), two patients with beta ketothiolase deficiency (BKTD), one patient with short branched chain amino acid deficiency (SBCAD), four patients with medium chain acyl-coenzyme A dehydrogenase deficiency (MCADD), one patient with isobutyryl-coenzyme A dehydrogenase deficiency (IBDHD), and one patient with multiple acyl-coenzyme A dehydrogenase deficiency (MADD).  相似文献   

9.
We have developed a method for measuring leukotriene B4 glucuronide, a marker of systemic leukotriene B4 biosynthesis, in human urine. This method involves the separation of two positional isomers of leukotriene B4 glucuronide by high-performance liquid chromatography, followed by hydrolysis with beta-glucuronidase and then leukotriene B4 quantification by enzyme immunoassay after purification by high-performance liquid chromatography. One of two positional isomers of leukotriene B4 glucuronide was predominantly present in urine. The concentration of the isomer increased in urine from aspirin-intolerant asthma patients after aspirin challenge. Urinary leukotriene E4 and leukotriene B4 glucuronide concentrations in 13 normal healthy adults were 94.6 pg/mg-creatinine (median) and 22.3 pg/mg-creatinine, respectively. Urinary LTE4 concentration increased during the first 3h after allergen inhalation in atopic patients. However, allergen-induced bronchoconstriction was not associated with an increased concentration of LTB4 glucuronide in urine. The method enabled us to precisely determine urinary leukotriene B4 glucuronide concentration.  相似文献   

10.
This report describes the application of high-performance liquid chromatography combined with continuous-flow fast atom bombardment mass spectrometry to analytical problems in the biomedical laboratory. Applications include the compound-specific detection of diagnostic acylcarnitines in human urine, the separation and analysis of acyl-coenzyme A thioesters, and qualitative studies on complex mixtures of modified peptides (dansyl and dinitrophenyl derivatives). For each of these applications standard analytical columns (3.9 mm I.D.) and 1 ml/min flow-rates were employed with post-column stream splitting (1:100) before mass spectrometry. Various mobile phase compositions and solvent gradients were employed. The addition of 1–5% glycerol to the mobile phase was shown to have little effect on the chromatography. For all compounds studied (acylcarnitines, acyl-coenzyme A thioesters, and derivatized peptides) molecular weight information was obtained and sufficient sensitivity was achieved to allow unambiguous identification of trace components in complex mixtures.  相似文献   

11.
This paper reports a new, high-performance liquid chromatography/tandem mass spectrometry method for the separation and identification of human plasma short-chain acylcarnitine isomers. This simple, rapid procedure involves the use of a single sample previously shown to contain elevated acylcarnitine concentrations by flow injection analysis, and can separate two C4, three C5, two C5:1 and four C5-OH acylcarnitine isomers, thus permitting the differential diagnosis of certain fatty acid oxidation defects and organic acidemias.  相似文献   

12.
We studied the effects of L-carnitine supplementation at a small dose on the profiles of acylcarnitines in serum and urine, as well as the renal handling of acylcarnitines, in a patient with multiple acyl-coenzyme A dehydrogenation defect. After supplementation with L-carnitine at a dose of 20 mg/kg/day, the concentration of each acylcarnitine measured both in the serum and in the urine had increased significantly, with the exception of that of an acylcarnitine with a carbon chain length (C) of 8 (C8 acylcarnitine). The magnitude of increase in the concentrations of the acylcarnitines in the serum was not associated with chain length, whereas in the urine, the magnitude tended to be greater in proportion to the shortness of the chain length. The fractional excretions of C2-C5 acylcarnitines exceeded 100%, indicating that they were produced in, or transported across, renal tubular epithelial cells and secreted into the urine. These results indicate that supplementation with a relatively small amount of L-carnitine can enhance the renal excretion of accumulated short-chain-length acylcarnitines through tubular excretion, in addition to basic glomerular filtration.  相似文献   

13.
We have used radio-high pressure liquid chromatography to study the acyl-CoA ester intermediates and the acylcarnitines formed during mitochondrial fatty acid oxidation. During oxidation of [U-14C]hexadecanoate by normal human fibroblast mitochondria, only the saturated acyl-CoA and acylcarnitine esters can be detected, supporting the concept that the acyl-CoA dehydrogenase step is rate-limiting in mitochondrial beta-oxidation. Incubations of fibroblast mitochondria from patients with defects of beta-oxidation show an entirely different profile of intermediates. Mitochondria from patients with defects in electron transfer flavoprotein and electron transfer flavoprotein:ubiquinone oxido-reductase are associated with slow flux through beta-oxidation and accumulation of long chain acyl-CoA and acylcarnitine esters. Increased amounts of saturated medium chain acyl-CoA and acylcarnitine esters are detected in the incubations of mitochondria with medium chain acyl-CoA dehydrogenase deficiency, whereas long chain 3-hydroxyacyl-CoA dehydrogenase deficiency is associated with accumulation of long chain 3-hydroxyacyl- and 2-enoyl-CoA and carnitine esters. These studies show that the control strength at the site of the defective enzyme has increased. Radio-high pressure liquid chromatography analysis of intermediates of mitochondrial fatty acid oxidation is an important new technique to study the control, organization and defects of the enzymes of beta-oxidation.  相似文献   

14.
n-Acetylglycine, n-propionylglycine, n-butyrylglycine, isobutyrylglycine, n-valerylglycine, isovalerylglycine, heptanoylglycine, phenylacetylglycine and isovalerylglucuronide were identified based on their liquid chromatographic-atmospheric pressure chemical ionization mass spectra (LC-APCI-MS). We were able to detect the presence of urinary isovalerylglycine in two cases of isovaleric acidemia using LC-APCI-MS. Membrane-filtered urine samples were injected into the LC-APCI-MS system in the negative-ion mode without any further pretreatment, and large amounts of isovalerylglycine were detected as the [M − H] ion. The urinary excretion of isovalerylglycine appeared to increase after -carnitine therapy. This analytical method is quick and easy and it may be a useful tool in understanding dysfunctional conditions in isovaleric acidemia.  相似文献   

15.
A column-switching high-performance liquid chromatographic method has been developed for the simple and sensitive analysis of BO-2727 (I) in human plasma and urine. Plasma samples were diluted with an equal volume of a stabilizer, and the mixture was directly injected onto the HPLC system. The analyte was enriched in a pre-treatment column, while endogenous components were eluted to waste. The analyte was then backflushed onto an analytical column and quantified with ultraviolet detection. Urinary concentrations were determined in a similar way except that the enriched analyte was eluted in the foreflush mode to a cation-exchange column used for chromatographic separation. The standard curves for the drug were linear in the range of 0.05–50 μg/ml in plasma and 0.5–100 μg/ml in urine. The limits of quantification for plasma and urine were found to be 0.05 μg/ml and 0.5 μg/ml, respectively. This method was used to support Phase I clinical pharmacokinetic studies.  相似文献   

16.
Acylcarnitines have been linked to obesity-induced insulin resistance. However the majority of these studies have focused on acylcarnitines in plasma. It is currently unclear to what extent plasma levels of acylcarnitines reflect tissue acylcarnitine metabolism. We investigated the correlation of plasma acylcarnitine levels with selected tissue acylcarnitines as measured with tandem mass spectrometry, in both fed and fasted BALB/cJ (BALB) and C57BL/6N (Bl6) mice. Fasting affected acylcarnitine levels in all tissues. These changes varied substantially between the different tissue compartments. No significant correlations were found between plasma acylcarnitine species and their tissue counterparts in both mouse strains, with the exception of plasma C4OH-carnitine in BALB mice. We suggest that this lack of correlation is due to differences in acylcarnitine turnover rates between plasma and tissue compartments and the fact that the plasma acylcarnitine profile is a composition of acylcarnitines derived from different compartments. Therefore, plasma acylcarnitine levels do not reflect tissue levels and should be interpreted with caution. A focus on tissue acylcarnitine levels is warranted in metabolic studies.  相似文献   

17.
Acylcarnitines in urine from 45 patients with organic acidemias and fatty acid oxidation disorders were evaluated using ESI-MS/MS. The urinary acylcarnitine profiles in organic acidemias, SCAD deficiency and MCAD deficiency were compatible with blood acylcarnitine profiles, and abnormalities in urinary acylcarnitine profiles in these conditions were enhanced following carnitine loading. Urinary acylcarnitine profiles were not helpful for characterization of long-chain fatty acid disorders, but a combination of urine and blood acylcarnitine analysis was useful for differential diagnosis of carnitine deficit.  相似文献   

18.
Porphyrin methyl esters and the isomers of uroporphyrin and heptacarboxylic porphyrin were separated by high-performance liquid chromatography. Isocoproporphyrin was also separated from coproporphyrin. By slight modifications to the solvent mixture, the separation of all biological polycarboxylic porphyrins was achieved. These separations were made possible through the high efficiency of 10- or 5-μm particle-size Radial-PAK cartridges, which have been used in the separation of porphyrins in various excreta and tissues in a number of porphyrias.  相似文献   

19.
Chromatographic conditions are reported for the efficient separation of fatty acyl precursors of Spodoptera littoralis sex pheromone by reversed-phase high-performance liquid chromatography. The procedure was optimized with a mixture of phenacyl derivative standards, using an octadecylsilane column, mixtures of acetonitrile-water, methanol-water, and methanol-isopropanol-water as mobile phases, and temperature control. This optimized method allowed the satisfactory separation of phenacyl esters obtained directly from S. littoralis sex pheromone gland extracts. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Su X  Han X  Mancuso DJ  Abendschein DR  Gross RW 《Biochemistry》2005,44(13):5234-5245
Diabetic cardiomyopathy is the result of maladaptive changes in energy homeostasis. However, the biochemical mechanisms underlying dysfunctional lipid metabolism in diabetic myocardium are incompletely understood. Herein, we exploit shotgun lipidomics to demonstrate a 4-fold increase in acylcarnitines in diabetic myocardium, which was reversible upon insulin treatment. Analysis of acylcarnitine molecular species in myocardium unexpectedly identified acylcarnitine molecular species containing a mass shift of 16 amu in comparison to the anticipated molecular species. Synthesis of 3-hydroxy acylcarnitine identified the natural products as the 3-hydroxylated acylcarnitines through comparisons of diagnostic fragmentation patterns of synthetic and naturally occurring constituents using tandem mass spectrometry. Diabetes induced an increase of both calcium-independent phospholipase A(2) (iPLA(2)) mRNA and iPLA(2) activity in rat myocardium. Cardiac ischemia in myocardium genetically engineered to overexpress iPLA(2) dramatically increased the amount of acylcarnitine present in myocardium. Moreover, mechanism-based inactivation of iPLA(2) in either wild-type or transgenic myocardium ablated a substantial portion of the acylcarnitine increase. Collectively, these results identify discrete insulin remediable abnormalities in mitochondrial fatty acid processing in diabetic myocardium and identify iPLA(2) as an important enzymatic contributor to the pool of fatty acids that can be used for acylcarnitine synthesis and energy production in myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号