首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The millimolar Ca2+-requiring form of the Ca2+-dependent proteinase from chicken breast skeletal muscle contains two subunit polypeptides of 80 and 28 kDa, just as the analogous forms of this proteinase from other tissues do. Incubation with Ca2+ at pH 7.5 causes rapid autolysis of the 80-kDa polypeptide to 77 kDa and of the 28-kDa polypeptide to 18 kDa. Autolysis of the 28-kDa polypeptide is slightly faster than autolysis of the 80-kDa polypeptide and is 90-95% complete after 10 s at 0 degrees C. Autolysis for 15 s at 0 degrees C converts the proteinase from a form requiring 250-300 microM Ca2+ to one requiring 9-10 microM Ca2+ for half-maximal activity, without changing its specific activity. The autolyzed proteinase has a slightly lower pH optimum (7.7 vs. 8.1) than the unautolyzed proteinase. The autolyzed proteinase is not detected in tissue extracts made immediately after death; therefore, the millimolar Ca2+-requiring proteinase is largely, if not entirely, in the unautolyzed form in situ.  相似文献   

2.
A recent hypothesis suggests that proteolytic activity of the micromolar and millimolar Ca2+-requiring forms of the Ca2+-dependent proteinases (mu- and m-calpain, respectively) is regulated in vivo by their association with a phosphatidylinositol-containing site on the plasma membrane followed by autolysis of the proteinases. Phosphatidylinositol association lowers the Ca2+ concentration needed for autolysis, and autolysis, in turn, lowers the Ca2+ concentration needed for proteolytic activity. To test this hypothesis, we have compared the Ca2+ concentrations needed for autolysis and for proteolytic activity of the calpains both in the presence and the absence of phosphatidylinositol. Bovine skeletal muscle mu-calpain required 40-50 microM Ca2+ for half-maximal rate of proteolysis of a casein substrate, 140-150 microM Ca2+ for half-maximal autolysis in the presence of 80 microM phosphatidylinositol, and 190-210 microM Ca2+ for half-maximal autolysis in the absence of phosphatidylinositol. Consequently, mu-calpain is an active proteinase and does not require autolysis for activation. Bovine skeletal muscle m-calpain required 700-740 microM Ca2+ for half-maximal rate of proteolysis of a casein substrate, 370-400 microM Ca2+ for half-maximal autolysis in the presence of 80 microM phosphatidylinositol, and 740-780 microM Ca2+ for half-maximal autolysis in the absence of phosphatidylinositol. These results are consistent with the idea that m-calpain functions in its autolyzed form, but the results do not demonstrate that unautolyzed m-calpain is inactive. 80 microM phosphatidylinositol had no effect on the Ca2+ requirement of the autolyzed forms of either mu- or m-calpain but lowered the specific activity of mu-calpain to 20% of its activity in the absence of phosphatidylinositol. Of the four forms of the calpains, unautolyzed m-calpain, autolyzed m-calpain, and unautolyzed mu-calpain would not be proteolytically active at the free Ca2+ concentrations of 300-1200 nM present inside normal cells, and neither mu- nor m-calpain would undergo autolysis at these Ca2+ concentrations, even in the presence of phosphatidylinositol. Cells must contain a mechanism other than or in addition to membrane association and autolysis to activate the calpains.  相似文献   

3.
Calpains are Ca(2+)-dependent, intracellular cysteine proteases involved in many physiological functions. How calpains are activated in the cell is unknown because the average intracellular concentration of Ca(2+) is orders of magnitude lower than that needed for half-maximal activation of the enzyme in vitro. Two of the proposed mechanisms by which calpains can overcome this Ca(2+) concentration differential are autoproteolysis (autolysis) and subunit dissociation, both of which could release constraints on the core by breaking the link between the anchor helix and the small subunit to allow the active site to form. By measuring the rate of autolysis at different sites in calpain, we show that while the anchor helix is one of the first targets to be cut, this occurs in the same time-frame as several potentially inactivating cleavages in Domain III. Thus autolytic activation would overlap with inactivation. We also show that the small subunit does not dissociate from the large subunit, but is proteolyzed to a 40-45k heterodimer of Domains IV and VI. It is likely that this autolysis-generated heterodimer has previously been misidentified as the small subunit homodimer produced by subunit dissociation. We propose a model for m-calpain activation that does not involve either autolysis or subunit dissociation.  相似文献   

4.
Ca2+-dependent proteases isolated from chicken gizzard and bovine aortic smooth muscle were compared with respect to subunit autolysis and the role of autolysis in modulating enzyme activity. The protease isolated from chicken gizzard was a heterodimer consisting of 80,000- and 30,000-dalton subunits. The protease isolated under identical conditions from bovine aorta consisted of 75,000- and 30,000-dalton subunits. In the presence of Ca2+, both enzymes underwent autolysis of their 30,000-dalton subunits with conversion to an 18,000-dalton species. In addition, the 80,000-dalton subunit of the gizzard protease was degraded to a 76,000-dalton form. The Ca2+ concentrations required for autolysis of the 30,000-dalton subunits were different for the two enzymes (i.e. gizzard: K0.5 Ca2+ = 335 microM; aortic: K0.5 Ca2+ = 1,250 microM) although in both cases, stimulation of autolysis by Ca2+ exhibited positive cooperativity. When compared with respect to kinetics of substrate degradation, the native forms of the smooth muscle Ca2+-dependent proteases (gizzard, GIIa = 80,000/30,000-dalton heterodimer; bovine aortic, IIa = 75,000/30,000-dalton heterodimer) exhibited a lag phase in product appearance. On the other hand, the autolyzed forms (gizzard, GIIb = 76,000/18,000-dalton heterodimer; bovine aortic, IIb = 75,000/18,000-dalton heterodimer) exhibited linear rates of substrate degradation. These results were analyzed in terms of autolysis of the 30,000-dalton subunits as determined by the conversion of this subunit to its 18,000 dalton form. For both enzymes, the time course for the autolytic transition, 30,000----18,000 daltons, and Ca2+-dependence of the apparent rate constants for this transition were found to correlate well with the lag phase in enzymatic activity. No such correlation could be established for the 80,000----76,000 dalton autolytic transition of the high molecular mass subunit of the gizzard protease. Our results suggest that catalytic activity of the Ca2+-dependent proteases isolated from gizzard and bovine aortic smooth muscle requires autolysis of the 30,000-dalton subunit. The native or unautolyzed forms of these enzymes appear to be proenzymes that can be activated by autolysis.  相似文献   

5.
Mn2+ (50 microM) satisfies the requirement for activity of the purified Ca2+-dependent neutral proteinase from human erythrocytes. Unlike the activation by Ca2+ [E. Melloni et al. (1984) Biochem. Int. 8, 477-489], the effect of Mn2+ is fully reversible and does not involve autodigestion of the native 80-kDa catalytic subunit. However, the native dimeric proenzyme (procalpain), which contains both the 80-kDa subunit and a smaller 30-kDa subunit, is not activated by Mn2+ alone but also requires the presence of micromolar concentrations of Ca2+. Under these conditions, 40% of the maximum activity is expressed without dissociation of the 80- and 30-kDa subunits. Mn2+, but not micromolar Ca2+, can also partially satisfy the metal requirement of the native 80-kDa subunit isolated after dissociation of the heterodimer. This activity is further enhanced by the addition of 5 microM Ca2+, which is ineffective in the absence of Mn2+. After procalpain is converted to active calpain by incubation with Ca2+ and substrate [S. Pontremoli et al. (1984) Biochem. Biophys. Res. Commun. 123, 331-337] full activity is observed with 5 microM Mn2+, which now substitutes completely for Ca2+. Activation of procalpain by Mn2+ represents a new mechanism for modulation of the Ca2+-dependent proteinase activity.  相似文献   

6.
The rate of autolysis of mu- and m-calpain from bovine skeletal muscle was measured by using densitometry of SDS polyacrylamide gels and determining the rate of disappearance of the 28 and 80 kDa subunits of the native, unautolyzed calpain molecules. Rate of autolysis of both the 28 and 80 kDa subunits of mu-calpain decreased when mu-calpain concentration decreased and when beta-casein, a good substrate for the calpains, was present. Hence, autolysis of both mu-calpain subunits is an intermolecular process at pH 7.5, 0 or 25.0 degrees C, and low ionic strength. The 78 kDa subunit formed in the first step of autolysis of m-calpain was not resolved from the 80 kDa subunit of the native, unautolyzed m-calpain by our densitometer, so autolysis of m-calpain was measured by determining rate of disappearance of the 28 kDa subunit and the 78/80 kDa complex. At Ca2+ concentrations of 1000 microM or higher, neither the m-calpain concentration nor the presence of beta-casein affected the rate of autolysis of m-calpain. Hence, m-calpain autolysis is intramolecular at Ca2+ concentrations of 1000 microM or higher and pH 7.5. At Ca2+ concentrations of 350 microM or less, the rate of m-calpain autolysis decreased with decreasing m-calpain concentration and in the presence of beta-casein. Thus, m-calpain autolysis is an intermolecular process at Ca2+ concentrations of 350 microM or less. If calpain autolysis is an intermolecular process, autolysis of a membrane-bound calpain would require selective participation of a second, cytosolic calpain, making it an inefficient process. By incubating the calpains at Ca2+ concentrations below those required for half-maximal activity, it is possible to show that unautolyzed calpains degrade a beta-casein substrate, proving that unautolyzed calpains are active proteases.  相似文献   

7.
A calmodulin-dependent protein phosphatase (calcineurin) was converted to an active, calmodulin-independent form by a Ca2+-dependent protease (calpain I). Proteolysis could be blocked by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, leupeptin, or N-ethylmaleimide, but other protease inhibitors such as phenylmethanesulfonyl fluoride, aprotinin, benzamidine, diisopropyl fluorophosphate, and trypsin inhibitor were ineffective. Phosphatase proteolyzed in the absence of calmodulin was insensitive to Ca2+ or Ca2+/calmodulin; the activity of the proteolyzed enzyme was greater than the Ca2+/calmodulin-stimulated activity of the unproteolyzed enzyme. Proteolysis of the phosphatase in the presence of calmodulin proceeded at a more rapid rate than in its absence, and the proteolyzed enzyme retained a small degree of sensitivity to Ca2+/calmodulin, being further stimulated some 15-20%. Proteolytic stimulation of phosphatase activity was accompanied by degradation of the 60-kilodalton (kDa) subunit; the 19-kDa subunit was not degraded. In the absence of calmodulin, the 60-kDa subunit was sequentially degraded to 58- and 45-kDa fragments; the 45-kDa fragment was incapable of binding 125I-calmodulin. In the presence of calmodulin, the 60-kDa subunit was proteolyzed to fragments of 58, 55 (2), and 48 kDa, all of which retained some ability to bind calmodulin. These data, coupled with our previous report that the human platelet calmodulin-binding proteins undergo Ca2+-dependent proteolysis upon platelet activation [Wallace, R. W., Tallant, E. A., & McManus, M. C. (1987) Biochemistry 26, 2766-2773], suggest that the Ca2+-dependent protease may have a role in the platelet as an irreversible activator of certain Ca2+/calmodulin-dependent reactions.  相似文献   

8.
Micromolar levels of free calcium ions added to the extracellular medium elicit secretion of serotonin from electropermeabilized bovine platelets in the presence of millimolar levels of Mg-ATP. Such Ca2(+)-dependent secretion of serotonin was almost completely impaired when the permeabilized platelets were preincubated for 1 min at 35 degrees C in 100 microM Ca2+ without Mg-ATP. The half-maximal effect was observed with about 45 microM Ca2+ in the preincubation medium. Inhibitors of serine-thiol protease, such as leupeptin and antipain, suppressed the impairment of the secretion of serotonin by the preincubation with Ca2+. Electron microscopic observation revealed that disorganization of the cytoskeletal structures, in particular of the membrane undercoat and the network of microfilaments, accompanied the impairment of secretion of serotonin. Microfilaments were also found to be dissociated from dense granules that contained serotonin. These morphological changes were also suppressed when antipain was included in the Ca2(+)-preincubation medium. Coincident with these morphological changes, the following biochemical changes were observed in 100 microM Ca2+ but not in the presence of Ca2+ and antipain. The amount of Triton-insoluble cytoskeleton and the acto-myosin content of the dense-granule fraction were markedly decreased. The decrease in Triton-insoluble cytoskeletons was quantitatively correlated with the degree of impairment of secretion of serotonin. Immunoblot analysis of EGTA extracts of the cells showed that the 240-kDa spectrin in platelets was degraded to a 235-kDa fragment, and a 260-kDa actin-binding protein (ABP) in platelets was partially degraded to 190- and 110-kDa components.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Despite intensive research efforts, the functional role and regulation of the insulin receptor kinase remain enigmatic. In this investigation, we demonstrate that calmodulin enhances insulin-stimulated phosphorylation of the beta subunit of the insulin receptor and histone H2b and that insulin also stimulates phosphorylation of calmodulin. Using wheat germ lectin-enriched insulin receptor preparations obtained from rat adipocyte plasma membranes, calmodulin stimulated the rate and increased the amount of 32P incorporated predominantly into tyrosine residues of the beta subunit of the receptor when assayed in the presence of insulin. The stimulatory effect of calmodulin was both dose-dependent and saturable with half-maximal and maximal phosphorylation of the beta subunit occurring at 0.4 and 2.0 microM calmodulin, respectively. Ca2+ enhanced the ability of calmodulin to stimulate insulin-mediated phosphorylation of the beta subunit with an apparent K0.5 of approximately 0.6 microM. Calmodulin also induced an approximately 2-fold increase in both the rate and amount of insulin-mediated incorporation of 32P into histone H2b. The stimulatory effect of calmodulin was only observed in the presence of insulin and was concentration-dependent (K0.5 approximately 3.0 microM calmodulin), saturable (at 5 microM calmodulin), and Ca2+-dependent (K0.5 = 0.2 microM free Ca2+). Insulin also induced phosphorylation of a 17-kDa protein. On the basis of its molecular weight and purification via immunoadsorption with protein A-Sepharose-bound anti-calmodulin IgG, this phosphoprotein was identified as a phosphorylated form of calmodulin. Phosphorylation of calmodulin was only observed in the presence of insulin and was both Ca2+- and insulin concentration-dependent with half-maximal effects observed at 0.1 microM free Ca2+ and 350 microunits/ml insulin. Collectively, these results support the hypothesis that Ca2+ and calmodulin participate in the molecular mechanism whereby binding of insulin to its receptor is coupled to changes in cellular metabolism.  相似文献   

10.
Calpain, a calcium dependent cysteine protease, consists of a catalytic large subunit and a regulatory small subunit. Two models have been proposed to explain calpain activation: an autolysis model and a dissociation model. In the autolysis model, the autolyzed form is the active species, which is sensitized to Ca2+. In the dissociation model, dissociated large subunit is the active species. We have reported that the Ca2+ concentration regulates reversible dissociation of subunits. We found further that in chicken micro/m-calpain autolysis of the large subunit induces irreversible dissociation from the small subunit as well as activation. So we could propose a new mechanism for activation of the calpain by combining our findings. Our model insists that autolyzed large subunit remains dissociated from the small subunit even after the removal of Ca2+ to keep it sensitized to Ca2+. This model could be expanded to other calpains and give a new perspective on calpain activation.  相似文献   

11.
We have isolated and sequenced cDNA clones for the small subunit (30-kDa subunit) of rabbit calcium-dependent protease (Ca2+-protease) using synthesized oligodeoxynucleotide probes based on the partial amino acid sequence of the protein. A nearly full-length cDNA clone containing the total amino acid coding sequence was obtained. From the deduced sequence, the following conclusions about possible functions of the protein are presented. The kDa subunit comprises 266 residues (Mr = 28,238). The N-terminal region (64 residues) is mainly composed of glycine (37 residues) and hydrophobic amino acids and may interact with the cell membrane or an organelle. The sequence of the C-terminal 168 residues is highly homologous to the corresponding C-terminal region of the large subunit (80-kDa subunit) which has been identified as the calcium-binding domain. This region of the 30-kDa subunit contains four E-F hand structures and presumably binds Ca2+, as in the case of the 80-kDa subunit. Thus, the 30-kDa subunit may play important roles in regulating enzyme activity and/or possibly in determining the location of the Ca2+-protease. The marked sequence homology of the C-terminal regions of the two subunits may indicate that the calcium-binding domains have evolved from the same ancestral gene.  相似文献   

12.
Ca2+-Requiring proteases degrade cytosolic and integral membrane proteins as well as alter, by limited proteolysis, the activity of certain protein kinases. When cells are lysed, a Ca2+-requiring protease degrades the epidermal growth factor (EGF) receptor, an integral membrane protein with an intrinsic kinase activity, from its 170-kDa form to a 150-kDa form. This Ca2+-requiring protease has all of the characteristics of calcium-activated neutral protease (CANP). To show that CANP is the protease uniquely responsible for the degradation of the native EGF receptor in vitro, CANP was highly purified from beef lung. This affinity purified CANP had properties previously described for other CANPs: heterodimer of 80 and 30 kDa; neutral pH optimum; activation by millimolar Ca2+; and inhibition by an endogenous, heat-stable proteinaceous inhibitor, by leupeptin, and by sulfhydryl alkylating agents. Using the EGF receptor labeled by covalent attachment to 125I-EGF, this purified CANP quantitatively generated the 150-kDa form from the native receptor in A-431 cell membranes. As with the native receptor, the 150-kDa receptor forms produced by the endogenous Ca2+-requiring protease, by CANP, by chymotrypsin, and by elastase were all capable of EGF-stimulated autophosphorylation. When the 150-kDa receptor forms were generated by the three exogenously added proteases, autophosphorylation with [gamma-32P]ATP followed by trypsinization produced 32P-labeled peptides that were not the same. However, the tryptic 32P-labeled peptides from the autophosphorylated 150-kDa receptor form produced by CANP or by the endogenous Ca2+-requiring protease were identical. These data indicate that CANP is identical to the endogenous Ca2+-requiring protease responsible for producing the autophosphorylating 150-kDa receptor form from the native EGF receptor when cells are lysed.  相似文献   

13.
The clpB gene in Escherichia coli encodes a heat-shock protein that is a close homolog of the clpA gene product. The latter is the ATPase subunit of the multimeric ATP-dependent protease Ti (Clp) in E. coli, which also contains the 21-kDa proteolytic subunit (ClpP). The clpB gene product has been purified to near homogeneity by DEAE-Sepharose and heparin-agarose column chromatographies. The purified ClpB consists of a major 93-kDa protein and a minor 79-kDa polypeptide as analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Upon gel filtration on a Superose-6 column, it behaves as a 350-kDa protein. Thus, ClpB appears to be a tetrameric complex of the 93-kDa subunit. The purified ClpB has ATPase activity which is stimulated 5-10-fold by casein. It is also activated by insulin, but not by other proteins, including globin and denatured bovine serum albumin. ClpB cleaves adenosine 5'-(alpha,beta-methylene)-triphosphate as rapidly as ATP, but not adenosine 5'-(beta,gamma-methylene)-triphosphate. GTP, CTP, and UTP are hydrolyzed 15-25% as well as ATP. ADP strongly inhibits ATP hydrolysis with a Ki of 34 microM. ClpB has a Km for ATP of 1.1 mM, and casein increases its Vmax for ATP without affecting its Km. A Mg2+ concentration of 3 mM is necessary for half-maximal ATP hydrolysis. Mn2+ supports ATPase activity as well as Mg2+, and Ca2+ has about 20% their activity. Anti-ClpB antiserum does not cross-react with ClpA nor does anti-ClpA antiserum react with ClpB. In addition, ClpB cannot replace ClpA in supporting the casein-degrading activity of ClpP. Thus, ClpB is distinct from ClpA in its structural and biochemical properties despite the similarities in their sequences.  相似文献   

14.
D E Croall 《Biochemistry》1989,28(17):6882-6888
In vitro, limited proteolytic cleavage of the subunits of the purified calcium-dependent proteases [also known as calpains (EC 3.4.22.17) or calcium-activated neutral proteinases (CANPs)] appears to be required for enzyme activity. It has not yet been demonstrated if similar processing of the protease subunits occurs in vivo. To directly assess proteolytic modification of these proteases in cells, we have measured the loss of the proenzyme form of the regulatory subunit (a 26-kDa protein) and/or the appearance of the modified regulatory subunit (a 17-kDa protein) by densitometric analysis of immunoblots. In rat erythrocytes, proteolytic modification of the endogenous calcium-dependent protease (calcium-dependent protease 1, mu CANP) occurs in vivo in response to ionomycin and calcium. The extent of enzyme modification was dependent on time, ionomycin concentration, and calcium concentration, suggesting that in this cellular model Ca2+ regulates proteolytic modification of the enzyme.  相似文献   

15.
A calcium-activated neutral protease (CANP) was purified from monkey cardiac muscle by a method involving column chromatography on DEAE-cellulose, Sepharose CL-6B, DEAE-Sephacel, organomercurial-Sepharose 4B, and Sephadex G-150 in succession. This protease required both millimolar concentration of Ca2+ and the SH-group for activation, and it was maximally active around pH 8.0. It was strongly inhibited by thiol protease inhibitors such as iodoacetic acid, antipain, leupeptin, and epoxysuccinic acid derivatives. The molecular weight of this protease was estimated to be 110,000 by gel filtration. Upon nondenaturing electrophoresis the purified protease gave two bands, both of which were active at millimolar concentration of Ca2+, indicating the existence of two forms of the protease. The less acidic band (form I CANP) contained two components with molecular weights of 74,000 and 28,000 and the more acidic one (form II CANP) contained components with molecular weights of 74,000 and 26,000. The protease was synergistically activated by Mn2+ and Ca2+ at a concentration where Mn2+ or Ca2+ alone was not effective. In the presence of millimolar level of Ca2+, limited autolysis reduced the Ca2+-requirement of this protease. The proteolysis of myofibrils by this protease resulted in the production of a component with a molecular weight of 30,000 as well as various other higher and lower molecular weight peptide fragments.  相似文献   

16.
Effect of Ca2+ on binding of the calpains to calpastatin   总被引:1,自引:0,他引:1  
Autolyzed mu-calpain, unautolyzed mu-calpain, autolyzed m-calpain, and unautolyzed m-calpain (mu-calpain is the micromolar Ca2+-requiring proteinase, m-calpain is the millimolar Ca2+-requiring proteinase) were passed through a calpastatin-affinity column at different free Ca2+ concentrations, and binding of the calpains to calpastatin was compared with proteolytic activity of that calpain at each Ca2+ concentration. Unautolyzed m-calpain, autolyzed m-calpain, and autolyzed mu-calpain required less Ca2+ for half-maximal binding to calpastatin than for half-maximal activity. Unautolyzed mu-calpain, however, required slightly more Ca2+ for half-maximal binding to calpastatin than for half-maximal activity. Half-maximal binding of oxidatively inactivated mu- or m-calpain to calpastatin required approximately the same Ca2+ concentrations as half-maximal binding of unautolyzed mu- or m-calpain, respectively, to calpastatin. Binding of unautolyzed m-calpain and autolyzed mu-calpain to calpastatin occurred over a wide range of Ca2+ concentrations, and it seems likely that two or more Ca2+-binding sites with different Ca2+-binding constants are involved in binding of the calpains to calpastatin. Proteolytic activity occurs at different Ca2+ concentrations than calpastatin binding, suggesting a second set of Ca2+-binding sites associated with proteolytic activity. Third and fourth sets of Ca2+-binding sites may be involved in autolysis and in binding to phosphatidylinositol or cell membranes; these four Ca2+-dependent properties of the calpains may require the eight potential Ca2+-binding sites that amino acid sequences predict are present in the calpain molecules.  相似文献   

17.
Vascular smooth muscle contains large amounts of a Ca2+-dependent protease. Similar to a Ca2+-dependent protease previously purified from chicken gizzard smooth muscle (Hathaway, D. R., Werth, D. K., and Haeberle, J. R. (1982) J. Biol. Chem. 257, 9072-9077), the mammalian vascular muscle protease is a heterodimer consisting of 76,000- and 30,000-dalton subunits (IIa). The enzyme can undergo autolysis in the presence of Ca2+ to produce a smaller species consisting of 76,000- and 18,000-dalton subunits (IIb). Autolysis greatly reduces the Ca2+ dependence of catalytic activity. The autolytic species, IIb, was approximately 23-fold more sensitive to Ca2+ (K0.5 = 39 microM) than the native enzyme, IIa (K0.5 = 891 microM). In this communication, we report that phosphatidylinositol and to a lesser extent one metabolic derivative, dioleoylglycerol, stimulate autolysis of the vascular Ca2+-dependent protease by reducing the Ca2+ for autolysis from K0.5 = 680 microM in the absence of lipid to K0.5 = 87 microM in the presence of both phosphatidylinositol and dioleoylglycerol. Moreover, the reduction in the Ca2+ requirement for autolysis produced by the phosphatidylinositol was antagonized by the phospholipid-binding drug, trifluoperazine. In addition, the effect of phosphatidylinositol was specific for autolysis, and none of several phospholipids or derivatives tested altered the Ca2+ dependence or maximal rate for protein degradation of the autolytic product, IIb. Our results suggest that autolysis may be an important initial step in the activation of the Ca2+-dependent protease in vascular smooth muscle and that this step may be regulated by a combination of Ca2+ and phosphatidylinositol.  相似文献   

18.
Proteolytic digestion by trypsin and chymotrypsin was used to probe conformation and domain structure of the mu- and m-calpain molecules in the presence and the absence of Ca(2+). Both calpains have a compact structure in the absence of Ca(2+); incubation with either protease for 120 min results in only three or four major fragments. A 24-kDa fragment was produced by removal of the Gly-rich area in domain V of the 28-kDa subunit. The other fragments were from the 80-kDa subunit. Except for trypsin digestion of m-calpain, the region between amino acids 245 and 265 (human sequence) was very susceptible to cleavage by both proteases in the absence of Ca(2+); this region is in domain II (IIb of the crystallographic structure). Although no proteolytically active fragments could be isolated from either tryptic or chymotryptic digests, the calpain molecule can remain assembled in a proteolytically active complex even after the 80-kDa subunit has been completely degraded. The results suggest that interaction among different regions of the entire calpain molecule is required for its full proteolytic activity. In the presence of 1 mM Ca(2+), both calpains are degraded to fragments less than 40-kDa in less than 5 min. The C-terminal ends of both subunits, from amino acids 503 to 506 to the end of the 80-kDa subunit and from amino acids 85 to 88 to the end of the 28-kDa subunit, were resistant to degradation by either protease in the presence or in the absence of Ca(2+). Hence, this part of the calpain molecule is in a compact structure that does not change significantly in the presence of Ca(2+).  相似文献   

19.
Calcium-dependent protease activity was found associated with a neurofilament-enriched cytoskeleton isolated from the bovine spinal cord. The protease was extracted from the cytoskeleton by 0.6 M KCl, and purified to apparent homogeneity (3300-fold) by chromatography on organomercurial-Sepharose 4B, casein-Sepharose 4B, and Sepharose CL-6B. A cytosolic calcium-dependent protease was similarly purified from the bovine spinal cord, after the cytosol was fractionated on DEAE-cellulose. Both cytoskeleton-bound and cytosolic enzymes had an apparent molecular mass of 100 kDa as judged by gel filtration, and consisted of two subunits (79 kDa and 20 kDa) upon sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Both enzymes exhibited caseinolytic activity with 0.5 mM Ca2+ and above, and the activity was strongly inhibited by various thiol protease inhibitors. In the presence of 0.1-0.2 mM Ca2+, the 68-kDa and 160-kDa components, and to a lesser extent the 200-kDa component, of the neurofilament triplet polypeptides were degraded by the cytosolic protease, whereas the cytoskeleton-bound protease needed two-fold higher concentration of Ca2+ to degrade the neurofilaments. Nevertheless, the cytoskeleton-bound protease in situ, i.e. before its extraction form the cytoskeleton by 0.6 M KCl, preferentially degraded the 160-kDa component in the presence of 0.1-0.2 mM Ca2+, suggesting that a proper locational relation of this enzyme to the neurofilament structure is a prerequisite to its preference for the 160-kDa component. It appears that a factor or factors involved in such an interaction between the protease and the neurofilament were eliminated during the course of enzyme purification. The glial fibrillary acidic protein was almost insensitive to the proteases purified in the present study.  相似文献   

20.
Calcium-activated neutral protease (rabbit mCANP), composed of large and small subunits, was converted to a lower-Ca2+-requiring form (derived microCANP) by limited autolysis in the presence of Ca2+. The NH2-terminal regions of the two subunits of mCANP were cleaved by autolysis, but the COOH-termini remained intact after autolysis. When native mCANP or derived microCANP was dissociated into subunits, the proteolytic activity of the large subunit was reduced to 2-5% of that of the native dimeric enzyme. The Ca2+-sensitivity of one hybrid CANP reconstituted from the large subunit of derived microCANP and the small subunit of native mCANP was similar to that of derived microCANP. However, the other hybrid molecule composed of the large subunit of native mCANP and the small subunit of derived microCANP required a high concentration of Ca2+ for activity, like native mCANP. These results indicate that the Ca2+-sensitivity of derived microCANP is determined by the structural change of the large subunit resulting from loss of its NH2-terminal region. The autolysis of the small subunit apparently has no effect on the reduction of the Ca2+-requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号