首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Bacillus subtilis pss gene encoding phosphatidylserine synthase was cloned by its complementation of the temperature sensitivity of an Escherichia coli pssA1 mutant. Nucleotide sequencing of the clone indicated that the pss gene encodes a polypeptide of 177 amino acid residues (deduced molecular weight of 19,613). This value agreed with the molecular weight of approximately 18,000 observed for the maxicell product. The B. subtilis phosphatidylserine synthase showed 35% amino acid sequence homology to the yeast Saccharomyces cerevisiae phosphatidylserine synthase and had a region with a high degree of local homology to the conserved segments in some phospholipid synthases and amino alcohol phosphotransferases of E. coli and S. cerevisiae, whereas no homology was found with that of the E. coli counterpart. A hydropathy analysis revealed that the B. subtilis synthase is very hydrophobic, in contrast to the hydrophilic E. coli counterpart, consisting of several strongly hydrophobic segments that would span the membrane. A manganese-dependent phosphatidylserine synthase activity, a characteristic of the B. subtilis enzyme, was found exclusively in the membrane fraction of E. coli (pssA1) cells harboring a B. subtilis pss plasmid. Overproduction of the B. subtilis synthase in E. coli cells by a lac promoter system resulted in an unusual increase of phosphatidylethanolamine (up to 93% of the total phospholipids), in contrast to gratuitous overproduction of the E. coli counterpart. This finding suggested that the unusual cytoplasmic localization of the E. coli phosphatidylserine synthase plays a role in the regulation of the phospholipid polar headgroup composition in this organism.  相似文献   

3.
We have isolated three mutants of Escherichia coli which have elevated levels of the phospholipid synthetic enzyme phosphatidylserine synthase. One of these strains carries a mutation, designated pssR1, which maps near minute 84 of the chromosome, distinct from the synthase structural gene (pss) at minute 56. The pssR1 mutation causes selective overproduction of phosphatidylserine synthase, since the levels of six other lipid synthetic enzymes are unaltered. The specific activity of the synthase in crude cell extracts of mutants harboring pssR1 is about five times greater than wild type. The synthase can also be overproduced 10-fold in wild type strains with hybrid ColE1 plasmids carrying the synthase structural gene (pss). A pssR1 mutant harboring such a pss plasmid overproduces the synthase about 50-fold. This multiplicative interaction of pssR1 and cloned pss demonstrates that pssR1 is trans-acting. The synthase has been purified in parallel from pssR1 and pssR+ strains. The pssR1 mutant yields more total synthase protein than pssR+, but the pure enzyme has the same specific activity in both cases. Therefore, pssR1 acts by increasing the amount of the normal protein, not by activating the enzyme. The discovery of pssR shows that there are regulatory loci which control the production of enzymes involved in membrane lipid synthesis.  相似文献   

4.
Z Ge  D E Taylor 《Journal of bacteriology》1997,179(16):4970-4976
The Helicobacter pylori pss gene, coding for phosphatidylserine synthase (PSS), was cloned and sequenced in this study. A polypeptide of 237 amino acids was deduced from the PSS sequence. H. pylori PSS exhibits significant amino acid sequence identity with the PSS proteins found in the archaebacterium Methanococcus jannaschii, the gram-positive bacterium Bacillus subtilis, and the yeast Saccharomyces cerevisiae but none with its Escherichia coli counterpart. Expression of the putative pss gene in maxicells gave rise to a product of approximately 26 kDa, which is in agreement with the predicted molecular mass of 26,617 Da. A manganese-dependent PSS activity was found in the membrane fractions of the E. coli cells overexpressing the H. pylori pss gene product. This result indicates that this enzyme is a membrane-bound protein, a conclusion which is supported by the fact that the PSS protein contains several local hydrophobic segments which could form transmembrane helices. The pss gene was inactivated with a chloramphenicol acetyltransferase cassette on the plasmid. However, an isogenic pss gene-disrupted mutant of H. pylori UA802 could not be obtained, suggesting that this enzyme plays an essential role in the growth of this organism.  相似文献   

5.
A Saccharomyces cerevisiae mutant (cdg1 mutation) was isolated on the basis of an inositol excretion phenotype and exhibited pleiotropic deficiencies in phospholipid biosynthesis. Genetic analysis of the mutant confirmed that the cdg1 mutation represents a new genetic locus and that a defect in a single gene was responsible for the Cdg1 phenotype. CDP-diacylglycerol synthase activity in mutant haploid cells was 25% of the wild-type derepressed level. Biochemical and immunoblot analyses revealed that the defect in CDP-diacylglycerol synthase activity in the cdg1 mutant was due to a reduced level of the CDP-diacylglycerol synthase Mr-56,000 subunit rather than to an alteration in the enzymological properties of the enzyme. This defect resulted in a reduced rate of CDP-diacylglycerol synthesis, an elevated phosphatidate content, and alterations in overall phospholipid synthesis. Unlike wild-type cells, CDP-diacylglycerol synthase was not regulated in response to water-soluble phospholipid precursors. The cdg1 lesion also caused constitutive expression of inositol-1-phosphate synthase and elevated phosphatidylserine synthase. Phosphatidylinositol synthase was not affected in the cdg1 mutant.  相似文献   

6.
The cls gene responsible for cardiolipin synthesis in Escherichia coli K-12 was cloned in a 5-kilobase-pair DNA fragment inserted in a mini-F vector, pML31, and then subcloned into a 2.0-kilobase-pair fragment inserted in pBR322. The initial selection of the gene was accomplished in a cls pss-1 double mutant that had lesions in both cardiolipin and phosphatidylserine synthases and required either the cls or the pss gene product for normal growth at 42 degrees C in a broth medium, NBY, supplemented with 200 mM sucrose. The cloned gene was identified as the cls gene by the recovery and amplification of both cardiolipin and cardiolipin synthase in a cls mutant as well as by the integration of a pBR322 derivative into its genetic locus at 27 min on the chromosome of a polA1 mutant. The maxicell analysis indicated that a protein of molecular weight 46,000 is the gene product. The cls gene is thus most likely the structural gene coding for cardiolipin synthase. Hybrid plasmids of high copy numbers containing the cls gene were growth inhibitory to pss-I mutants under the above selective conditions, whereas they inhibited neither the growth of pss-I mutants at 30 degrees C nor that of pss+ strains at any temperature. Amplification of cardiolipin synthase activity was observed, but was not proportional to the probable gene dosage (the enzyme activity was at most 10 times that in wild-type cells), and cardiolipin synthesis in vivo was at the maximum 1.5 times that in wild-type strains, implying the presence in E. coli cells of a mechanism that avoids cardiolipin overproduction, which is possibly disadvantageous to proper membrane functions.  相似文献   

7.
The addition of inositol to the growth medium of Saccharomyces cerevisiae resulted in rapid changes in the rates of phospholipid biosynthesis. The partitioning of the phospholipid intermediate CDP-diacylglycerol was shifted to phosphatidylinositol at the expense of phosphatidylserine and its derivatives phosphatidylethanolamine and phosphatidylcholine. Serine at 133-fold greater concentrations than that of inositol shifted the partitioning of CDP-diacylglycerol to phosphatidylserine at the expense of phosphatidylinositol but to a much lesser degree. Kinetic experiments with pure phosphatidylserine synthase and phosphatidylinositol synthase indicated that the partitioning of CDP-diacylglycerol between phosphatidylserine and phosphatidylinositol was not governed by the affinities both enzymes have for their common substrate CDP-diacylglycerol. Instead, the main regulation of phosphatidylinositol and phosphatidylserine synthesis was through the exogenous supply of inositol. The Km of inositol (0.21 mM) for phosphatidylinositol synthase was 9-fold higher than cytosolic concentration of inositol (24 microM). The Km of serine (0.83 mM) for phosphatidylserine synthase was 3-fold below the cytosolic concentration of serine (2.6 mM). Therefore, inositol supplementation resulted in a dramatic increase in the rate of phosphatidylinositol synthesis, whereas serine supplementation resulted in little affect on the rate of phosphatidylserine synthesis. Inositol also contributed to the regulation of phosphatidylinositol and phosphatidylserine synthesis by having a direct affect on phosphatidylserine synthase activity. Kinetic experiments with pure phosphatidylserine synthase showed that inositol was a noncompetitive inhibitor of the enzyme with a Ki of 65 microM.  相似文献   

8.
9.
Escherichia coli mutants harboring the pss-1 allele (coding for a temperature-sensitive phosphatidylserine synthase) are temperature sensitive for growth and synthesize less phosphatidylethanolamine at higher temperatures, giving rise to abnormal membrane phospholipid compositions. To obtain information concerning the determinant for the phospholipid polar headgroup composition and the lethal factor in the defective membranes, we have examined the effect of increased supply of sn-glycerol 3-phosphate on the phospholipid synthesis and the growth ability of a pss-1 mutant. For this purpose, a pair of E. coli K-12 derivatives isogenic except for the pss-1 allele was constructed from strain BB26-36 to harbor the mutations related to glycerol metabolism (glpD3, glpR2, glpKi, and phoA8). Pulse- and uniform-labeling of phospholipids with 32P at 42 degrees C in a synthetic medium with (0.2%) or without glycerol showed that glycerol further lowered the temperature-sensitive formation of phosphatidylethanolamine, removed the phosphatidate and CDP-diacylglycerol accumulated in the absence of glycerol, and resulted in an increase in cardiolipin content in the pss-1 mutant. The phospholipid synthesis and contents in the pss+ strain were not significantly affected by glycerol. Glycerol in the medium markedly enhanced the growth defect of the pss-1 mutant, which was remediable by sucrose. The results indicate that the intracellular pool of sn-glycerol 3-phosphate is the limiting factor for acidic phospholipid synthesis in the pss-1 mutant, and cardiolipin unusually accumulated is injurious to the functional E. coli membranes. Possible determinants for the phospholipid composition of the wild-type E. coli cells are also discussed on the basis of the present observations.  相似文献   

10.
Phosphatidylethanolamine methyltransferase (PEMT) and phospholipid methyltransferase (PLMT), which are encoded by the CHO2 and OPI3 genes, respectively, catalyze the three-step methylation of phosphatidylethanolamine to phosphatidylcholine in Saccharomyces cerevisiae. Regulation of PEMT and PLMT as well as CHO2 mRNA and OPI3 mRNA abundance was examined in S. cerevisiae cells supplemented with phospholipid precursors. The addition of choline to inositol-containing growth medium repressed the levels of CHO2 mRNA and OPI3 mRNA abundance in wild-type cells. The major effect on the levels of the CHO2 mRNA and OPI3 mRNA occurred in response to inositol. Regulation was also examined in cho2 and opi3 mutants, which are defective in PEMT and PLMT activities, respectively. These mutants can synthesize phosphatidylcholine when they are supplemented with choline by the CDP-choline-based pathway but they are not auxotrophic for choline. CHO2 mRNA and OPI3 mRNA were regulated by inositol plus choline in opi3 and cho2 mutants, respectively. However, there was no regulation in response to inositol when the mutants were not supplemented with choline. This analysis showed that the regulation of CHO2 mRNA and OPI3 mRNA abundance by inositol required phosphatidylcholine synthesis by the CDP-choline-based pathway. The regulation of CHO2 mRNA and OPI3 mRNA abundance generally correlated with the activities of PEMT and PLMT, respectively. CDP-diacylglycerol synthase and phosphatidylserine synthase, which are regulated by inositol in wild-type cells, were examined in the cho2 and opi3 mutants. Phosphatidylcholine synthesis was not required for the regulation of CDP-diacylglycerol synthase and phosphatidylserine synthase by inositol.  相似文献   

11.
The cls gene of Escherichia coli is responsible for the synthesis of a major membrane phospholipid, cardiolipin, and has been proposed to encode cardiolipin synthase. This gene cloned on a pBR322 derivative was disrupted by either insertion of or replacement with a kanamycin-resistant gene followed by exchange with the homologous chromosomal region. The proper genomic disruptions were confirmed by Southern blot hybridization and a transductional linkage analysis. Both types of disruptants had essentially the same properties; cardiolipin synthase activity was not detectable, but the strains grew well, although their growth rates and final culture densities were lower than those of the corresponding wild-type strains and strains with the classical cls-1 mutation. A disruptant harboring a plasmid that carried the intact cls gene grew normally. The results indicate that the cls gene and probably the cardiolipin synthase are dispensable for E. coli but may confer growth or survival advantages. Low but definite levels of cardiolipin were synthesized by all the disruptants. Cardiolipin content of the cls mutants depended on the dosage of the pss gene, and attempts to transfer a null allele of the cls gene into a pss-1 mutant were unsuccessful. We point out the possibilities of minor cardiolipin formation by phosphatidylserine synthase and of the essential nature of cardiolipin for the survival of E. coli cells.  相似文献   

12.
The regulation of purified yeast membrane-associated phosphatidylserine synthase (CDP-diacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) and phosphatidylinositol synthase (CDP-diacylglycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) activities by phospholipids was examined using Triton X-100/phospholipid mixed micelles. Phosphatidate, phosphatidylcholine, and phosphatidylinositol stimulated phosphatidylserine synthase activity, whereas cardiolipin and the neutral lipid diacylglycerol inhibited enzyme activity. Phosphatidate was a potent activator of phosphatidylserine synthase activity with an apparent activation constant (0.033 mol %) 88-fold lower than the apparent Km (2.9 mol %) for the surface concentration of CDP-diacylglycerol. Phosphatidate caused an increase in the apparent Vmax and a decrease in the apparent Km for the enzyme with respect to the surface concentration of CDP-diacylglycerol. Phosphatidylcholine and phosphatidylinositol caused an increase in the apparent Vmax for phosphatidylserine synthase with respect to CDP-diacylglycerol with apparent activation constants of 3.4 and 3.2 mol %, respectively. Cardiolipin and diacylglycerol were competitive inhibitors of phosphatidylserine synthase activity with respect to CDP-diacylglycerol. The apparent Ki value for cardiolipin (0.7 mol %) was 4-fold lower than the apparent Km for CDP-diacylglycerol, whereas the apparent Ki for diacylglycerol (7 mol %) was 2.4-fold higher than the apparent Km for CDP-diacylglycerol. Phosphatidylethanolamine and phosphatidylglycerol did not affect phosphatidylserine synthase activity. Phosphatidylinositol synthase activity was not significantly effected by lipids. The role of lipid activators and inhibitors on phosphatidylserine synthase activity is discussed in relation to overall lipid metabolism.  相似文献   

13.
The effect of growth phase on the membrane-associated phospholipid biosynthetic enzymes CDP-diacylglycerol synthase, phosphatidylserine synthase, phosphatidylinositol synthase, and the phospholipid N-methyltransferases in wild-type Saccharomyces cerevisiae was examined. Maximum activities were found in the exponential phase of cells grown in complete synthetic medium. As cells entered the stationary phase of growth, the activities of the CDP-diacylglycerol synthase, phosphatidylserine synthase, and the phospholipid N-methyltransferases decreased 2.5- to 5-fold. The subunit levels of phosphatidylserine synthase and the cytoplasmic-associated enzyme inositol-1-phosphate synthase were not significantly affected by the growth phase. When grown in medium supplemented with inositol-choline, cells in the exponential phase of growth had reduced CDP-diacylglycerol synthase, phosphatidylserine synthase, and phospholipid N-methyltransferase activities, with repressed subunit levels of phosphatidylserine synthase and inositol-1-phosphate synthase compared with cells grown without inositol-choline. Enzyme activity levels remained reduced in the stationary phase of growth of cells supplemented with inositol-choline. The phosphatidylserine synthase and inositol-1-phosphate synthase subunit levels, however, were depressed. Phosphatidylinositol synthase (activity and subunit) was not affected by growth in medium supplemented with or without inositol-choline or the growth phase of the culture. The phospholipid composition of cells in the exponential and stationary phase of growth was also examined. The phosphatidylinositol to phosphatidylserine ratio doubled in stationary-phase cells. The phosphatidylcholine to phosphatidylethanolamine ratio was not significantly affected by the growth phase of cells.  相似文献   

14.
Membrane-associated cytidine 5'-diphospho-1,2-diacyl-sn-glycerol (CDP-diacylglycerol):L-serine O-phosphatidyltransferase (phosphatidylserine synthase, EC2.7.8.8.) and CDP-diacylglycerol:myo-inositol phosphatidyltransferase (phosphatidylinositol synthase, EC 2.7.8.11) were solubilized from the microsomal fraction of Saccharomyces cerevisiae. A variety of detergents were examined for their ability to release phosphatidylserine synthase and phosphatidylinositol synthase activities from the microsome fraction. Both enzymes were solubilized from the microsome fraction with Renex 690 in yield over 80% with increase to specific activity of 1.6-fold. Both solubilized enzymatic activities were dependent on manganese ions and Triton X-100 for maximum activity. The pH optimum for each reaction was 8.0. The apparent Km values for CDP-diacylglycerol and serine for the phosphatidylserine synthase reaction were 0.1 and 0.25 mM, respectively. The apparent Km values for CDP-diacylglycerol and inositol for the phosphatidylinositol synthase reaction were 70 microM and 0.1 mM, respectively. Thioreactive agents inhibited both enzymatic activities. Both solubilized enzymatic activities were thermally inactivated at temperatures above 30 degrees C.  相似文献   

15.
A pair of putatively isogenic pss(Ts) and pss+ (phosphatidylserine synthetase structural gene) strains was constructed and analyzed, together with the revertants, for the physiological consequences of cessation of the optimal synthesis of phosphatidylethanolamine (PE). Their in vivo and in vitro abilities to synthetize PE and the growth rates at different temperatures were determined. The rate of PE synthesis by OS2101 pss(Ts) was inversely related to the culture temperature. OS2101 in a low-salt broth medium stopped division and formed filamentous cells with declining viability upon the elevation of culture temperature from 27 to 42 or 44 degrees C, whereas the syntheses of deoxyribonucleic acid, ribonucleic acid, and protein were not affected. Proper concentrations of cations such as Na+, K+, NH4+, and Mg2+ or of sucrose could remedy the division and growth of OS2101 at the restrictive temperature without restoring normal PE synthesis. A remedial effect other than osmotic protection of these effectors and an adaptive regulatory mechanism for PE formation are suggested.  相似文献   

16.
17.
Katayama K  Sakurai I  Wada H 《FEBS letters》2004,577(1-2):193-198
Cardiolipin (CL) is an anionic phospholipid with a dimeric structure. In eukaryotes, it is primarily localized in the inner membranes of mitochondria. Although the biosynthetic pathway of CL is well known, the gene for CL synthase has not been identified in any higher organisms. In this study, the CLS gene for a CL synthase has been identified in a higher plant, Arabidopsis thaliana. We have shown that the CLS gene encodes a CL synthase by demonstrating its ability to catalyze the reaction of CL synthesis from CDP-diacylglycerol and phosphatidylglycerol, and that CLS is targeted into mitochondria. These findings demonstrate that CLS is a CL synthase located in mitochondria.  相似文献   

18.
19.
Phosphatidylethanolamine is the only zwitterionic phospholipid in Escherichia coli and accounts for 70-80% of the total glycerophospholipids of this organism. To investigate the function of phosphatidylethanolamine in E. coli, we constructed an inactivated allele (pss93::kan) of the gene encoding the phosphatidylserine synthase which catalyzes the committed step to the synthesis of phosphatidylethanolamine. Growth of this mutant was dependent on a plasmid-borne copy of the wild type gene. After curing the mutant of the wild type gene, growth stopped when the content of phosphatidylethanolamine reached 30% of the total phospholipid. Divalent metal ions at millimolar concentrations suppressed the growth phenotype of the mutant in the following order of efficiency: Ca2+ greater than Mg2+ greater than Sr2+. Although phosphatidylserine synthase activity was not detectable, phosphatidylethanolamine was still present at 0.007% of the total phospholipid after growth for many generations in rich medium containing 20 mM Mg2+. The remainder of the phospholipid was primarily phosphatidylglycerol and cardiolipin with no other unique phosphate-containing chloroform-soluble material present. The phospholipid to protein ratio and the fatty acid composition were very similar to the parental strain. The broad divalent metal ion auxotrophy brought about by the lack of phosphatidylethanolamine suggests a primarily structural role for this phospholipid in E. coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号