首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The eye of the mollusk Bulla gouldiana contains a pacemaker that generates a circadian rhythm in compound action potentials (CAPs) in the optic nerve. In this paper, we present evidence of a second circadian rhythm in the optic nerve of the eye maintained in darkness at 15 °C. This is a rhythm in the frequency of small (10–40 V) neural impulses that occurs about 12 h out-of-phase with the rhythm in CAPs. Typically, the small-spike frequency is at a minimum within an hour of the peak in CAP frequency and is maximal during the subjective night. Like the CAP rhythm, the phase of the small-spike rhythm is determined by the prior light/dark cycle. A rebound in small-spike activity following the end of a light pulse and the presence of photoinhibited impulses in surgically reduced eyes suggests that the cells that generate the small-spikes may be photoreceptors that are inhibited by light. In addition, by using isolated nervous system preparations, we have found that smallspikes occur in the two optic nerves in a one-for-one relationship immediately following a light-to-dark transition. This inter-eye communication may be involved in the coupling of the ocular pacemakers.Abbreviations ASW artificial sea water - BRN basal retinal neuron - CAP compound action potential  相似文献   

2.
During eye tracking of a self-moved target, human subjects' performance differs from eye-alone tracking of an external target. Typical latency between target and eye motion onsets is shorter, ocular smooth pursuit (SP) saturation velocity increases and the maximum target motion frequency at which the SP system functions correctly is higher. Based on a previous qualitative model, a quantitative model of the coordination control between the arm motor system and the SP system is presented and evaluated here. The model structure maintains a high level of parallelism with the physiological system. It contains three main parts: the eye motor control (containing a SP branch and a saccadic branch), the arm motor control and the coordination control. The coordination control is achieved via an exchange of information between the arm and the eye sensorimotor systems, mediated by sensory signals (vision, proprioception) and motor command copy. This cross-talk results in improved SP system performance. The model has been computer simulated and the results have been compared with human subjects' behavior observed during previous experiments. The model performance is seen to quantitatively fit data on human subjects. Received: 6 March 1997 / Accepted in revised form: 15 July 1997  相似文献   

3.
Smooth pursuit eye movements provide a good model system for cerebellar studies of complex motor control in monkeys. First, the pursuit system exhibits predictive control along complex trajectories and this control improves with training. Second, the flocculus/paraflocculus region of the cerebellum appears to generate this control. Lesions impair pursuit and neural activity patterns are closely related to eye motion during complex pursuit. Importantly, neural responses lead eye motion during predictive pursuit and lag eye motion during non-predictable target motions that require visual control. The idea that flocculus/paraflocculus predictive control is non-visual is also supported by a lack of correlation between neural activity and retinal image motion during pursuit. Third, biologically accurate neural network models of the flocculus/paraflocculus allow the exploration and testing of pursuit mechanisms. Our current model can generate predictive control without visual input in a manner that is compatible with the extensive experimental data available for this cerebellar system. Similar types of non-visual cerebellar control are likely to facilitate the wide range of other skilled movements that are observed.  相似文献   

4.
Nervous systems of higher organisms are comprised of a variety of cell types which are interconnected in a precise manner. The molecular mechanisms that lead to the specification of neuronal cell types are not well understood. The compound eye of the fruit fly Drosophila is an attractive experimental system to understand these mechanism. The compound eye is a reiterated neural pattern with several hundred unit structures and is amenable to both classical and molecular genetic methods. During the development of the compound eye cell–cell interactions and positional information play a critical role in the determination of cell fate. Recent genetic and molecular studies have provided important clues regarding the nature of the molecules involved in cellular signalling and neuronal differentiation. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
The eyes of Bulla, a marine snail, express a circadian rhythm in the frequency of optic nerve compound action potentials (CAPs). The two ocular pacemakers are mutually coupled, and their interaction can be observed in vitro. The evidence for mutual coupling, as demonstrated in the present experiments, was as follows: (1) When intact Bulla were placed into darkness for up to 72 days, the two pacemakers did not desynchronize. (2) The free-running period of the ocular rhythm in the intact system (24.4 hr) was longer than the free-running period of the rhythm recorded from isolated eyes (23.7 hr). (3) When the two ocular pacemakers were experimentally desynchronized in vitro, resynchronization occurred if the pacemakers were allowed to interact for 48 hr. The coupling signals are most likely the CAPs. These impulses are conducted through the central ganglia and emerge as efferent impulses in the opposite optic nerve. Ocular-derived efferent impulse activity affects spontaneous impulse production in the target eye and alters the waveform of the circadian rhythm. The coupling pathway mediating syncrhonization consists of the two optic nerves, the cerebral ganglia, and the cerebral commissure. The demonstration of coupling in vitro provides a new opportunity for studying the cellular mechanisms underlying mutual pacemaker entrainment.  相似文献   

6.
A model of three-dimensional root growth has been developed to simulate the interactions between root systems, water and nitrate in the rooting environment. This interactive behaviour was achieved by using an external-supply/internal-demand regulation system for the allocation of endogenous plant resources. Data from pot experiments on lupins heterogeneously supplied with nitrate were used to test and parameterise the model for future simulation work. The model reproduced the experimental results well (R 2 = 0.98), simulating both the root proliferation and enhanced nitrate uptake responses of the lupins to differential nitrate supply. These results support the use of the supply/demand regulation system for modelling nitrate uptake by lupins. Further simulation work investigated the local uptake response of lupins when nitrate was supplied to a decreasing fraction of the root system. The model predicted that the nitrate uptake activity of lupin roots will increase as the fraction of root system with access to nitrate decreases, but is limited to an increase of around twice that of a uniformly supplied control. This work is the first example of a modelled root system responding plastically to external nutrient supply. This model will have a broad range of applications in the study of the interactions between root systems and their spatially and temporally heterogeneous environment.  相似文献   

7.
1. A circadian pacemaker is located in the eyes of a variety of marine gastropods, including Aplysia and Bulla. It produces a circadian rhythm in the frequency of spontaneously occurring optic nerve (ON) compound action potentials (CAPs). The circadian pacemaker in Bulla includes a population of 100 retinal pacemaker neurons, that produce the rhythmic CAP output. Intracellular recording from the Bulla pacemaker neurons has yielded new insight into their time-keeping ability. 2. Intracellular injection of Lucifer yellow dye into a single pacemaker neuron results in the spread of dye to several neurons. This dye coupling is presumably mediated by the gap junctions among neurons that are responsible for the synchronous firing of the population of pacemaker neurons and the generation of ON CAPs. 3. The circadian pacemaker in each eye interacts with the paired pacemaker in the contralateral eye. The interaction results in the coordinating firing of CAPs from each eye and in the coordinated phasing of the circadian rhythms of CAP activity generated in each eye. This interaction occurs by reciprocal excitatory chemical synapses. These synaptic receptors occur in the ON as well as in the retinal neuropil and CAP synchrony occurs in the ON as well as in the basal retina. 4. Pacemaker neurons are depolarized by 5-HT and membrane permeable cAMP analogues. The membrane resistance increases during the depolarization suggesting a background potassium current is decreased. 5. The tetrapeptide FMRF-HN2 hyperpolarizes the pacemaker neurons. It reverses the effect of 5-HT and cAMP, suggesting 5-HT and FMRF-NH2 may be acting on the same membrane channel, the S channel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The adult newt retina explanted together with the posterior eye wall and cultivated for a short time in a serum-free medium was tested as an experimental model by several criteria, including the expression of protein markers of the main retinal cell types. Some differences in the expression of specific photoreceptor, interneuron, and glial cell proteins as well as the localization of acetylcholinesterase activity were found during in vitro cultivation. Using this model, preliminary tests of new cell adhesion glycoproteins from the bovine retina and pigment epithelium were conducted, and the role of pigment epithelial cell proteins in improving cell viability in the cultivated newt retina was revealed. Moreover, the fraction of basic adhesion proteins from the bovine pigment epithelium improved the survival potential of the macroglial (Muller) cell population, compared to that in the control.  相似文献   

9.
A control systems model consisting of a population of weakly-coupled feedback oscillators has been developed to simulate the circadian locomotor rhythm of the insect, Hemideina thoracica (Orthoptera; Stenopelmatidae). The model is an extension of a previously published single oscillator feedback model (Gander and Lewis, 1979) which successfully simulates entrainment, phase response curves, temperature compensation and Aschoff's Rule for Hemideina activity rhythms. The population model described here has the additional properties of predicting some of the free-run period lability (Pavlidis, 1978a, b) observed in the Hemideina rhythm (Christensen and Lewis, 1982) which is unexplained by single oscillator systems. Model behaviour is compared with the experimental data derived from the insect activity rhythms.  相似文献   

10.
Effects of retinal dopamine depletion on the growth of the fish eye   总被引:3,自引:0,他引:3  
We investigated the suitability of fishes as animal models to study the involvement of the retinal dopaminergic system in the visually guided control of eye growth (emmetropization). Advantages of such a model system are (i) that all dopaminergic cells in the retina can be destroyed without apparent damage to other neurons, (ii) simple optical design and short depth of field of the eye, and (iii) continuous growth throughout life. Depleting the retina of dopamine in Aequidens pulcher (Cichlidae) had no apparent effect on refractive state, since size and focal length of the eye were reduced by the same amount. Furthermore, imposed defocus was compensated at a normal rate in spite of the absence of retinal dopamine. In A. pulcher, the dopaminergic system of the retina thus appears not to have an essential role in emmetropization. Our results furthermore suggest that in eyes of more complicated optical design, manipulation of the retinal dopaminergic system may lead to unrelated effects indistinguishable from direct interference with emmetropization. A major disadvantage of the fish model was that refractive state of the eye could not be measured accurately in vivo with standard methods. Accepted: 9 January 1999  相似文献   

11.
V M Gusev  N F Podvigin 《Biofizika》1986,31(2):309-312
Within the scope of the concepts on the look control mechanism, i. e. the system of interrelated control of head and eye movements a mathematical model is considered which described the control system over eye involuntary movements with quadratic criterion of its work quality. Assuming the optimal character of the control system under study and taking into account the experimental data on the eye movements parameters the relationship between the parameters of the criterion introduced and retinotopic relation of a locus of lateral geniculate is estimated.  相似文献   

12.
ABSTRACT

The bacterial chromosome is replicated once during the division cycle, a process ensured by the tight regulation of initiation at oriC. In prokaryotes, the initiator protein DnaA plays an essential role at the initiation step, and feedback control is critical in regulating initiation. Three systems have been identified that exert feedback control in Escherichia coli, all of which are necessary for tight strict regulation of the initiation step. In particular, the ATP-dependent control of DnaA activity is essential. A missing link in initiator activity regulation has been identified, facilitating analysis of the reaction mechanism. Furthermore, key components of this regulatory network have also been described. Because the eukaryotic initiator complex, ORC, is also regulated by ATP, the bacterial system provides an important model for understanding initiation in eukaryotes. This review summarizes recent studies on the regulation of initiator activity.  相似文献   

13.
A Ca2+-dependent TG activity, identified in the eye lens of several mammalian species, has long been implicated in cataract formation. The precise mechanism of the involvement of this enzyme in this process remains unclear. The purpose of this work was to investigate the modulatory effect of polyamines on TG activity during rabbit eye lens in vitro opacification. We observed, in an in vitro Ca2+-induced cataract model, a rapid decrease of the endogenous levels of SPD with the progression of opacification, paralleled by an increase of crystallin cross-linking by bis(γ-glutamyl)SPD. This pattern was reversed adding exogenous SPD to the incubation medium. Indeed, endogenous SPD levels were restored and cross-linking by bis(γ-glutamyl)SPD were drastically reduced. Surprisingly, under this experimental condition, the loss of transparency of lens was delayed. We found that exogenous SPD incubation led to a remarkable increase of mono(γ-glutamyl)SPD, likely responsible of the inhibition of cross-linking of lens crystallins and of the transparency persistence.  相似文献   

14.
Alkan Y  Biswal BB  Alvarez TL 《PloS one》2011,6(11):e25866

Purpose

Eye movement research has traditionally studied solely saccade and/or vergence eye movements by isolating these systems within a laboratory setting. While the neural correlates of saccadic eye movements are established, few studies have quantified the functional activity of vergence eye movements using fMRI. This study mapped the neural substrates of vergence eye movements and compared them to saccades to elucidate the spatial commonality and differentiation between these systems.

Methodology

The stimulus was presented in a block design where the ‘off’ stimulus was a sustained fixation and the ‘on’ stimulus was random vergence or saccadic eye movements. Data were collected with a 3T scanner. A general linear model (GLM) was used in conjunction with cluster size to determine significantly active regions. A paired t-test of the GLM beta weight coefficients was computed between the saccade and vergence functional activities to test the hypothesis that vergence and saccadic stimulation would have spatial differentiation in addition to shared neural substrates.

Results

Segregated functional activation was observed within the frontal eye fields where a portion of the functional activity from the vergence task was located anterior to the saccadic functional activity (z>2.3; p<0.03). An area within the midbrain was significantly correlated with the experimental design for the vergence but not the saccade data set. Similar functional activation was observed within the following regions of interest: the supplementary eye field, dorsolateral prefrontal cortex, ventral lateral prefrontal cortex, lateral intraparietal area, cuneus, precuneus, anterior and posterior cingulates, and cerebellar vermis. The functional activity from these regions was not different between the vergence and saccade data sets assessed by analyzing the beta weights of the paired t-test (p>0.2).

Conclusion

Functional MRI can elucidate the differences between the vergence and saccade neural substrates within the frontal eye fields and midbrain.  相似文献   

15.
In this paper we construct a model of the glycolytic-glycogenolytic converging pathway in rat liver, by integrating experimental data obtained in anin vitro system and information available from the literature. The model takes the mathematical expression of an S-system representation within the power law formalism (Savageau, 1976. Biochemical System Analysis: A study of function and design in Molecular Biology. Addison-Wesley, Reading, Mass.). By using this theoretical framework a model analysis was carried out that allowed us a) the assessment of the quality of the model in terms of its consistency and robustness, b) the steady state analysis and control characterization of the system, and c) the study of the dynamics of the system after changes in the level of two magnitudes of biological significance: the glucose concentration and the phosphofructokinase enzyme activity. Model predictions are compared with experimental measurements referred to Logarithmic Gains through fluxes and substrates concentrations showing that there is a good correlation between the model predictions and the experimentally determined values.  相似文献   

16.
Although they possess a well‐characterized ability to porate the bacterial membrane, emerging research suggests that cationic antimicrobial peptides (CAPs) can influence pathogen behaviour at levels that are sublethal. In this study, we investigated the interaction of polymyxin B and human neutrophil peptide (HNP‐1) with the human pathogen Streptococcus pyogenes. At sublethal concentrations, these CAPs preferentially targeted the ExPortal, a unique microdomain of the S. pyogenes membrane, specialized for protein secretion and processing. A consequence of this interaction was the disruption of ExPortal organization and a redistribution of ExPortal components into the peripheral membrane. Redistribution was associated with inhibition of secretion of certain toxins, including the SpeB cysteine protease and the streptolysin O (SLO) cytolysin, but not SIC, a protein that protects S. pyogenes from CAPs. These data suggest a novel function for CAPs in targeting the ExPortal and interfering with secretion of factors required for infection and survival. This mechanism may prove valuable for the design of new types of antimicrobial agents to combat the emergence of antibiotic‐resistant pathogens.  相似文献   

17.
18.
Reports of cationic antimicrobial peptides (CAPs) have become standard fare in research literature. But with several hundred peptides described to date, the investigator who tries to navigate the proposed models of their activity is only treated to a generous serving of incongruencies. Rather than acting in isolation as antimicrobial molecules, CAPs also may synergize with other molecules of innate immunity and modulate both innate and adaptive immune systems, thus providing a link between the various mechanisms that result in host protection.  相似文献   

19.

Background

Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs). They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties. We explored whether CAPs application could be a novel strategy to improve acute Coxsackievirus B3 (CVB3)-induced myocarditis.

Methodology/Principal Findings

To evaluate the safety of our approach, we first analyzed the expression of the coxsackie- and adenovirus receptor (CAR) and the co-receptor CD55 on CAPs, which are both required for effective CVB3 infectivity. We could demonstrate that CAPs only minimally express both receptors, which translates to minimal CVB3 copy numbers, and without viral particle release after CVB3 infection. Co-culture of CAPs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis and viral progeny release. In addition, CAPs reduced CD4 and CD8 T cell proliferation. All CAPs-mediated protective effects were nitric oxide- and interleukin-10-dependent and required interferon-γ. In an acute murine model of CVB3-induced myocarditis, application of CAPs led to a decrease of cardiac apoptosis, cardiac CVB3 viral load and improved left ventricular contractility parameters. This was associated with a decline in cardiac mononuclear cell activity, an increase in T regulatory cells and T cell apoptosis, and an increase in left ventricular interleukin-10 and interferon-γ mRNA expression.

Conclusions

We conclude that CAPs are a unique type of cardiac-derived cells and promising tools to improve acute CVB3-induced myocarditis.  相似文献   

20.
The eye is a very sophisticated system of optical elements for the preeminent sense of vision. In recent years, the number of laser surgery to correct the optical aberration such as myopia or astigmatism has significantly increased. Consequently, improving the knowledge related to the interactions of light with the eye is very important in order to enhance the efficiency of the surgery. For this reason, a complete optical characterization of the porcine eye is presented in this study. Kubelka‐Munk and Inverse Adding‐Doubling methods were applied to spectroscopy measurement to determine the absorption and scattering coefficients. Furthermore, the refractive index has been measured by ellipsometry. The different parameters were obtained for the cornea, lens, vitreous humor, sclera, iris, choroids and eyelid in the visible and infrared region. Thereafter, the results are implemented in a COMSOL Multiphysics® software to create an eye model. This model gives a better understanding of the propagation of light in the eye by adding optical parts such as the iris, the sclera or the ciliary bodies. Two simulations show the propagation of light from the cornea to the retina but also from the sclera to the retina. This last possibility provides a better understanding of light propagation during eye laser surgery such as, for example, transscleral cyclophotocoagulation. Figure: Eye simulation models allow the development of new laser treatments in a simple and safe way for patients. To this purpose, the creation of an eye simulated model based on optical parameters obtained from experimental data is presented in this study. This model will facilitate the understanding of the light propagation inside the porcine eye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号