首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Caspases are key mediators of apoptosis. Using a novel expression cloning strategy we recently developed to identify cDNAs encoding caspase substrates, we isolated the intermediate filament protein vimentin as a caspase substrate. Vimentin is preferentially cleaved by multiple caspases at distinct sites in vitro, including Asp85 by caspases-3 and -7 and Asp259 by caspase-6, to yield multiple proteolytic fragments. Vimentin is rapidly proteolyzed by multiple caspases into similar sized fragments during apoptosis induced by many stimuli. Caspase cleavage of vimentin disrupts its cytoplasmic network of intermediate filaments and coincides temporally with nuclear fragmentation. Moreover, caspase proteolysis of vimentin at Asp85 generates a pro-apoptotic amino-terminal fragment whose ability to induce apoptosis is dependent on caspases. Taken together, our findings suggest that caspase proteolysis of vimentin promotes apoptosis by dismantling intermediate filaments and by amplifying the cell death signal via a pro-apoptotic cleavage product.  相似文献   

2.
Neuroblastoma cells, grown in monolayer, transform, emit cytoplasmic processes, and acquire morphological and functional properties resembling those of mature neurons, whereas in suspension culture they remain in the undifferentiated anaplastic form. The appearance of intermediate (10 nm) filamentous structures in neuroblastoma cells is generally considered to indicate a state of cellular differentiation, one of a progressive sequence of maturing phases which lead the cell to the final differentiated state.
We have examined by electron microscope murine C 1300 neuroblastoma cloned cells, grown in suspension or in monolayer cultures in the presence or absence of BrdU as an inducing agent and have compared the expression of intermediate filaments. These filaments were present in five clones of cells grown in suspension still in undifferentiated anaplastic form. One clone in particular showed a massive expression of filaments, particularly visible in the perinuclear region. One hundred per cent of the cells observed presented filaments whose number apparently increased when cells were grown in the presence of BrdU in suspension or in monolayer. One clone never showed intermediate filaments under any circumstances. The original line from which clones were derived showed poor expression of filaments which were visible only in cells grown in monolayer. These results suggest that the expression of intermediate filaments in neuroblastoma cells should be viewed as the result of a positive genetic control of phenotype expression rather than the result of a progressive sequence of differentiating events.  相似文献   

3.
Cultured osteoblasts express three major types of cytoskeleton: actin microfilaments, microtubules, and intermediate filaments. The cytoskeletal network is thought to play an important role in the transmission and conversion of a mechanical stimulus into a biochemical response. To examine a role for the three different cytoskeletal networks in fluid shear stress-induced signaling in osteoblasts, we individually disrupted actin microfilaments, micro-tubules, and intermediate filaments in MC3T3-E1 osteoblasts with multiple pharmacological agents. We subjected these cells to 90 min of laminar fluid shear stress (10 dyn/cm(2)) and compared the PGE(2) and PGI(2) release and induction of cyclooxygenase-2 protein to control cells with intact cytoskeletons. Disruption of actin microfilaments, microtubules, or intermediate filaments in MC3T3-E1 cells did not prevent a significant fluid shear stress-induced release of PGE(2) or PGI(2). Furthermore, disruption of actin microfilaments or microtubules did not prevent a significant fluid shear stress-induced increase in cyclooxygenase-2 protein levels. Disruption of intermediate filaments with acrylamide did prevent the fluid shear stress-induced increase in cyclooxygenase-2 but also prevented a PGE(2)-induced increase in cyclooxygenase-2. Thus none of the three major cytoskeletal networks are required for fluid shear stress-induced prostaglandin release. Furthermore, although neither actin microfilaments nor microtubules are required for fluid shear stress-induced increase in cyclooxygenase-2 levels, the role of intermediate filaments in regulation of cyclooxygenase-2 expression is less clear.  相似文献   

4.
Summary Limited lifespan human diploid fibroblast cells have been fused with the HeLa derived cell line HEB 7A which possesses transformed growth characteristics and unlimited division potential. HEB 7A expresses keratin intermediate filaments, while the fibroblast cells express only vimentin intermediate filaments. Independently arising clones of hybrids were examined for the presence of keratin by indirect immunofluorescence. Of 11 limited lifespan hybrids, all were keratin negative and possessed the growth characteristics of the fibroblast parent. Of 8 transformed hybrids, 6 arising early after fusion and 2 arising late, all were keratin-positive and simultaneously expressed the transformed growth characteristics of loss of density dependent growth inhibition, low serum dependence, and anchorage independence. It is concluded that the growth properties of these hybrids are associated with the type of intermediate filament expressed. The intermediate filament expression is therefore a marker of proliferative potential in these hybrids. This work was supported by grant no. AG 02664 from NIA (to C.L.B.) and by grant nos. 1R01 HD 18129-01 from NIH and PCM83-09068 from NSF (to R.H.S.). Editor’s Statement The tight correlation between the expression of the intermediate filaments of the immortal parent in hybrids of limited lifespan fibroblasts and HeLa cells with the transformed phenotype is of interest. It may offer important clues to the mechanism involved in cellular senescence. Gordon H. Sato  相似文献   

5.
Summary The expression of cytokeratin- and vimentin-type intermediate filaments was studied by means of immunohistochemistry in Sertoli cells cultured on two types of reconstituted basement membrane in two-compartment culture chambers. In situ, the Sertoli cells of 17-day-old rats contained only vimentin intermediate filaments. During culture, a gradual reorganization of intermediate filaments accompanied by an increased cytokeratin immunoreactivity was observed. After 6 days, Sertoli cells contained both cytokeratin and vimentin, and the same cytokeratin type as in fetal and newborn testis was revealed by electrophoresis and immunoblotting. The present study shows that the isolation and culture of Sertoli cells causes, even in an improved culture system qualitative changes in the expression of intermediate filament proteins.  相似文献   

6.
We report here the first observation of 10 nm filaments in a protozoan, Amoeba proteus. These intermediate sized filaments were observed in spread cytoplasmic preparations of amoeba as stable cytoplasmic components over a wide range of pH (5.0-9.0). Although their morphology is grossly similar to the vertebrate intermediate filaments by negative staining, the filaments of amoeba show a characteristic helical structure with a 25 nm axial periodicity and do not display fibrillar projection along their length or at their extremity.  相似文献   

7.
New data are reviewed on intermediate filaments, i.e. on one of the cytoskeleton components. Structural proteins of intermediate filaments, their enzymatic modification, filament-associated proteins and the peculiarities of filament assembly are dealt with. The regularities of expression of intermediate filament proteins in normal tissues are analysed, as well as during differentiation and cultured cell growth. In the final part of the paper possible functions of intermediate filaments are discussed.  相似文献   

8.
Standardized postembedding immunoelectron microscopy was performed to demonstrate glial fibrillary acidic protein (GFAP) and vimentin in individual intermediate filaments to determine the diagnostic value of demonstrating ultrastructural and immunophenotypic characteristics of intermediate filaments in routine brain biopsy specimens. Dual expression of GFAP and vimentin was observed in the astroblastoma and astrocytes of Alexander's disease. The antigen availability for vimentin, however, was too low to allow reliable assessment of the GFAP:vimentin ratio in individual intermediate filaments and/or filament bundles. In meningioma, only vimentin positive intermediate filaments were found. GFAP positive intermediate filaments were present in all other specimens except the oligodendroglial components of the mixed glioma, which were devoid of intermediate filaments. GFAP positivity in the filamentous periphery and electron-dense core of Rosenthal fibers was demonstrated. Technical and tissue processing factors had a significant effect on particle density values obtained for individual specimens. Although the number, distribution, and density of glial intermediate filaments varies in different astroglial entities, correlation of particle density values determined by immunoelectron microscopy with relative GFAP concentrations in different lesions requires utmost caution. Nevertheless, application of the postembedding approach to routinely fixed biopsy specimens indicated an association of different entities with the exclusive presence of GFAP and/or vimentin in individual intermediate filaments, thus emphasizing the diagnostic value of intermediate filament typing for pathological characterization.  相似文献   

9.
Cytoplasmic filaments of the endothelial cells of sheathed capillaries in the pig spleen were identified and their ultrastructure was studied. Two types of cytoplasmic filaments were found: intermediate filaments (diameter: 10 nm) which filled most of the interior of the cells, and thin filaments (diameter: 5 nm) which were located just beneath the cell membrane and filled the lateral cytoplasmic processes. In immunocytochemical preparations, the intermediate filaments were positive for vimentin and desmin, and were negative for keratin. Staining of the thin filaments with heavy meromyosin resulted in arrowhead formations. These observations suggest that the intermediate filaments maintain the cytoarchitecture, possibly protecting the cell from structural alterations induced by blood pressure changes. Concurrently, thin filaments may facilitate the passage of red blood cells and blood platelets through the interendothelial fenestrae of the sheathed endothelial cell to the reticular meshwork in the capillary sheath.  相似文献   

10.
The expression of intermediate filaments is developmentally regulated. In the mammalian embryo keratins are the first to appear, followed by vimentin, while the principal intermediate filament of the adult brain is glial fibrillary acidic protein. The intermediate filaments expressed by a cell thus reflect its state of differentiation. The differentiation state of cells, and especially of glial cells, in turn determines their ability to support axonal growth. In this study we used three new antibodies directed against three fish intermediate filaments (glial fibrillary acidic protein, keratin 8 and vimentin), in order to determine the identity and level of expression of intermediate filaments present in fish glial cells in culture. We found that fish astrocytes and oligodendrocytes are both able to express keratin 8 and vimentin. We further demonstrate that under proliferative conditions astrocytes express high keratin 8 levels and most oligodendrocytes also express keratin 8, whereas under nonproliferative conditions the astrocytes express only low keratin 8 levels and most oligodendrocytes do not express keratin 8 at all. These results suggest that the fish glial cells retain characteristics of immature cells. The findings are also discussed in relation to the fish glial lineage.  相似文献   

11.
Intermediate filaments are a major component of the “cytoskeleton” of “higher” eukaryotes. These filaments are composed of a number of different, although structurally related, proteins. Different intermediate filament protein genes are expressed in different tissues. Spontaneous and experimentally produced mutations in the intermediate filament genes indicate that these filaments function to enhance the mechanical stability of epidermal and muscle cells. As a result, the use of transgenic mice with “knockout” or dominant negative mutations in IF genes has become an important approach for investigating the significance of IFs in other cell types. However, a knockout mutation of vimentin (-/-), the intermediate filament protein characteristically expressed in cells of mesenchymal origin, results in very subtle phenotypes that are not obviously related to cell fragility. Although experiments with cultured cells have described a variety of discrete changes in cell properties that are associated with vimentin expression or organization, there is no evidence yet that any of these properties are affected in the vimentin-/- mouse. BioEssays 20:79–86, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

12.
Intermediate filaments are one of the three major cytoskeletons. Some roles of intermediate filaments in cellular functions have emerged based on various diseases associated with mutations of cytokeratins. However, the precise functions of intermediate filament are still unclear. To resolve this, we manipulated intermediate filaments of cultured cells by expressing a mutant cytokeratin. Arginine 89 of cytokeratin18 plays an important role in intermediate filament assembly. The expression of green fluorescent protein-tagged cytokeratin18 arg89cys induced aggregations and loss of the intermediate filament network composed of cytokeratins in liver-derived epithelial cells, Huh7 and OUMS29, but only induced the formation of cytokeratin aggregates and did not affect the intermediate filament network of endogenous vimentin in HEK293. The expression of this mutant affected the distribution of Golgi apparatus and the reassembly of Golgi apparatus after perturbations by nocodazole or brefeldin A in both Huh7 and OUMS29, but not in HEK293. Our data show that loss of the original intermediate filament network, but not the existence of cytokeratin aggregates, induces redistribution of the Golgi apparatus. The original intact intermediate filament network is necessary for the organization of Golgi apparatus.  相似文献   

13.
Before we can explain why so many closely related intermediate filament genes have evolved in vertebrates, while maintaining such dramatically tissue specific expression, we need to understand their function. The best evidence for intermediate filament function comes from observing the consequences of mutation and mis-expression, primarily in human tissues. Mostly these observations suggest that intermediate filaments are important in allowing individual cells, the tissues and whole organs to cope with various types of stress, in health and disease. Exactly how they do this is unclear and many aspects of cell dysfunction have been associated with intermediate filaments to date. In particular, it is still not clear whether the non-mechanical functions now being attributed to intermediate filaments are primary functions of these structural proteins, or secondary consequences of their function to respond to mechanical stress. We discuss selected situations in which responses to stress are clearly influenced by intermediate filaments.  相似文献   

14.
Abstract The human breast contains two epithelial lineages, luminal epithelial and myoepithelial. Specific patterns of expression of intermediate filaments have previously been demonstrated in the resting breast. To determine how terminal differentiation and lactation influenced expression of intermediate filaments in breast epithelial cells, we used Western blot analysis to measure the levels of vimentin, α-smooth muscle actin, keratin 14, and keratin 18 in the resting and lactating breast. Confocal immunofluorescence was used to determine the subcellular site of localization of the intermediate filaments. Vimentin was localised to myoepithelial cells in both the resting and lactating gland. There was a four-fold increase in vimentin protein levels in lactating tissue relative to resting tissue, and this may be related to increased cellular activity of the myoepithelial cells which surround secretory alveoli. Alpha-smooth muscle actin and keratin 14 were detected in myoepithelial cells, and similar levels of expression were found in lactating and resting tissue. In the resting breast, keratin 18 and keratin 8 were detected in luminal epithelial cells in a filamentous form, whereas in lactating tissue it was present in a punctate form in luminal cells and also seen as granules in the lumen of alveoli. Our results indicate that intermediate filament expression patterns are altered in the lactating human breast, and this may reflect their role in the fully functional gland.  相似文献   

15.
Akita Y 《The FEBS journal》2008,275(16):3995-4004
Recent studies have established essential roles of protein kinase Cepsilon in signaling pathways controlling various functions of microfilaments and intermediate filaments by modulating multiple cytoskeletal proteins. This review summarizes recent progress in our understanding of the roles of protein kinase Cepsilon in the functions and signaling of microfilaments and intermediate filaments, with a focus mainly on cell-matrix and cell-cell interactions, migrations and contraction, in addition to its relevance in the development of several diseases, such as malignant tumors or cardiac disease.  相似文献   

16.
Rabbit bladder epithelium, grown on collagen gels and exposed to the chemical carcinogen benzo[a]pyrene, produced nontumorigenic altered foci as well as tumorigenic epithelial cell lines during 120-180 d in culture. Immunofluorescence studies revealed extensive keratin filaments in both primary epithelial cells and benzo[a]pyrene-induced altered epithelial foci but showed no detectable vimentin filaments. The absence of vimentin expression in these cells was confirmed by two- dimensional gel electrophoresis. In contrast, immunofluorescence staining of the cloned benzo[a]pyrene-transformed rabbit bladder epithelial cell line, RBC-1, revealed a reduction in filamentous keratin concomitant with the expression of vimentin filaments. The epithelial nature of this cell line was established by the observation that cells injected into nude mice formed well-differentiated adenocarcinomas. Frozen sections of such tumors showed strong staining with antikeratins antibodies, but no detectable staining with antivimentin antibodies. These results demonstrated a differential expression of intermediate filament type in cells at different stages of neoplastic progression and in cells maintained in different growth environments. It is apparent that the expression of intermediate filaments throughout neoplastic progression is best studied by use of an in vivo model system in parallel with culture studies.  相似文献   

17.
Four adenomatoid tumors of the epididymis were evaluated immunohistologically for the expression of intermediate filaments and endothelial cell markers, factor VIII-related antigen and binding of Ulex europaeus I-lectin (UEA I). Immunofluorescence microscopy showed a strong reaction with antikeratin but not with anti-vimentin antibodies, indicating that adenomatoid tumor cells contain epithelial but not mesenchymal type of intermediate filaments. No staining of tumor cells was seen with anti-FVIII-related antigen antibodies or with fluorochrome-coupled UEA I. The results support the mesothelial, non-endothelial origin of adenomatoid tumors.  相似文献   

18.
The human breast contains two epithelial lineages, luminal epithelial and myoepithelial. Specific patterns of expression of intermediate filaments have previously been demonstrated in the resting breast. To determine how terminal differentiation and lactation influenced expression of intermediate filaments in breast epithelial cells, we used Western blot analysis to measure the levels of vimentin, alpha-smooth muscle actin, keratin 14, and keratin 18 in the resting and lactating breast. Confocal immunofluorescence was used to determine the subcellular site of localization of the intermediate filaments. Vimentin was localised to myoepithelial cells in both the resting and lactating gland. There was a four-fold increase in vimentin protein levels in lactating tissue relative to resting tissue, and this may be related to increased cellular activity of the myoepithelial cells which surround secretory alveoli. Alpha-smooth muscle actin and keratin 14 were detected in myoepithelial cells, and similar levels of expression were found in lactating and resting tissue. In the resting breast, keratin 18 and keratin 8 were detected in luminal epithelial cells in a filamentous form, whereas in lactating tissue it was present in a punctate form in luminal cells and also seen as granules in the lumen of alveoli. Our results indicate that intermediate filament expression patterns are altered in the lactating human breast, and this may reflect their role in the fully functional gland.  相似文献   

19.
To study the assembly of intermediate filaments in vivo we have transfected fibroblast cell lines with the cDNAs coding for keratins 8 and 18 under the control of the promoter of the SV40 early region and followed keratin expression by RNA hybridization, two-dimensional gel electrophoresis, and immunofluorescence analysis. When expressed individually, keratins 8 and 18 failed to polymerize into intermediate filaments but formed granular aggregates of variable size distributed throughout the cytoplasm as seen by staining with specific antibodies. The expression of one of these two keratins did not induce the synthesis of its partner or of any other keratin. Coexpression of the two keratins produced filamentous structures, frequently perinuclear, indicating that the two types of polypeptides were able to assemble into intermediate filaments but could not form the cytoskeleton characteristic of epithelial cells. These results demonstrate that assembly in heterocomplexes stabilizes keratins against cellular degradation, helping to explain why excess pools of simple keratins have never been detected.  相似文献   

20.
Immunofluorescence microscopy was used to follow the rearrangement of keratin filaments and vimentin filaments during mitosis in Vero and HeLa cell lines. The experiment results showed that the three dimensional organization and structure of intermediate filaments changed drastically during mitosis. The behavior of intermediate filaments was different in these two epithelial cell lines. In mitotic Vero cells the keratin filaments and vimentin filaments maintained their filamentous structure and formed a cage around the mitotic apparatus. In mitotic HeLa cells the keratin filaments and vimentin filaments reorganized extensively and formed granular cytoplasmic bodies. The ratio of granular cytoplasmic body formation changed in different mitotic phase. The interphase intermediate filament network was reconstructed after mitosis. It is proposed that the state of intermediate filament network in these cells is cell cycle-dependent and intermediate filaments may have some skeletal role in mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号