首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZIPK (zipper-interacting protein kinase) is a Ca2+-independent protein kinase that promotes myosin phosphorylation in both smooth muscle and non-muscle cells. A recent report attempted to clarify a debate over the subcellular localization of ZIPK in non-muscle cells (Shoval et. al. (2007) Plos Genetics. 3: 1884-1883). A species-specific loss of a key phosphorylation site (T299) in murine (mouse and rat) ZIPK seems to direct it to the nucleus, while the presence of the T299 site in human ZIPK correlates with cytoplasmic localization. T299 is immediately adjacent to a putative nuclear localization sequence (NLS) and may mask its function when phosphorylated, therefore explaining the species-specific dichotomy of intracellular localization. However, despite the murine ZIPK (mZIPK) lacking the T299 residue that is critical for controlling human ZIPK (hZIPK) subcellular localization, mutational analysis showed that this NLS control locus is nonfunctional in the murine context. A constitutively active Rho promoted the cytoplasmic retention of a human ZIPK mutant that would otherwise localize to the nucleus. Endogenous hZIPK showed sensitivity to the nuclear export inhibitor leptomycin B, suggesting a continuous shuttling between cytoplasm and nucleus that is dependent upon T299 dephosphorylation. Thus, the C-terminal domain of human and murine ZIPK demonstrated quite divergent nuclear import and export functionality. We conclude that in the case of ZIPK, studies between the species may not be directly comparable to each other given the gross differences in intracellular localization and movement.  相似文献   

2.
Zipper-interacting protein kinase (ZIPK) is a widely expressed serine/threonine kinase implicated in cell death and smooth muscle contractility, but its mechanism of regulation is unknown. We have identified six phosphorylation sites in ZIPK that regulate both its enzyme activity and localization, including Thr180, Thr225, Thr265, Thr299, Thr306, and Ser311. Mutational analysis showed that phosphorylation of Thr180 in the kinase activation T-loop, Thr225 in the substrate-binding groove, and Thr265 in kinase subdomain X is essential for full ZIPK autophosphorylation and activity toward exogenous substrates. Abrogation of phosphorylation of Thr299, Thr306, and Ser311 had little effect on enzyme activity, but mutation of Thr299 and Thr300 to alanine resulted in redistribution of ZIPK from the cytosol to the nucleus. Mutation of Thr299 alone to alanine caused ZIPK to assume a diffuse cellular localization, whereas T299D redistributed the enzyme to the cytoplasm. C-terminal truncations of ZIPK at amino acid 273 or 342 or mutation of the leucine zipper motif increased ZIPK activity toward exogenous substrates by severalfold, suggesting a phosphorylation-independent autoinhibitory role for the C-terminal domain. Additionally, mutation of the leucine zipper reduced the ability of ZIPK to oligomerize and also caused ZIPK to relocalize from the cytoplasm to the nucleus in vivo. Together, our findings show that ZIPK is positively regulated by phosphorylation within its kinase domain and that it contains an inhibitory C-terminal domain that controls enzyme activity, localization, and oligomerization.  相似文献   

3.
Zipper-interacting protein kinase (ZIPK) is a member of the death-associated protein kinase family associated with apoptosis in nonmuscle cells where it phosphorylates myosin regulatory light chain (RLC) to promote membrane blebbing. ZIPK mRNA and protein are abundant in heart tissue and isolated ventricular neonatal rat cardiac myocytes. An unbiased substrate search performed with purified ZIPK on heart homogenates led to the discovery of a prominent 20-kDa protein substrate identified as RLC of ventricular myosin. Biochemical analyses showed ZIPK phosphorylated cardiac RLC at Ser-15 with a Vmax value 2-fold greater than the value for smooth/nonmuscle RLC; cardiac RLC is a favorable biochemical substrate. Knockdown of ZIPK in cardiac myocytes by small interfering RNA significantly decreased the extent of RLC Ser-15 phosphorylation. Thus, ZIPK may act as a cardiac RLC kinase and thereby affect contractility.  相似文献   

4.
5.
6.
Oncogenic ras activates multiple signaling pathways to enforce cell proliferation in tumor cells. The ERK1/2 mitogen-activated protein kinase pathway is required for the transforming effects of ras, and its activation is often sufficient to convey mitogenic stimulation. However, in some settings oncogenic ras triggers a permanent cell cycle arrest with features of cellular senescence. How the Ras/ERK1/2 pathway activates different cellular programs is not well understood. Here we show that ERK1/2 localize predominantly in the cytoplasm during ras-induced senescence. This cytoplasmic localization seems to be dependent on an active nuclear export mechanism and can be rescued by the viral oncoprotein E1A. Consistent with this hypothesis, we showed that E1A dramatically down-regulated the expression of the ERK1/2 nuclear export factor PEA-15. Also, RNA interference against PEA-15 restored the nuclear localization of phospho-ERK1/2 in Ras-expressing primary murine embryo fibroblasts and stimulated their escape from senescence. Because senescence prevents the transforming effect of oncogenic ras, our results suggest a tumor suppressor function for PEA-15 that operates by means of controlling the localization of phospho-ERK1/2.  相似文献   

7.
The death-associated protein (DAP) kinase family includes three protein kinases, DAP kinase, DAP kinase-related protein 1, and ZIP kinase, which display 80% amino acid identity within their catalytic domains and are functionally linked to common subcellular changes occurring during cell death, such as the process of membrane blebbing. Here we show physical and functional cross talk between DAP kinase and ZIP kinase. The two kinases display strong synergistic effects on cell death when coexpressed and physically bind each other via their catalytic domains. Furthermore, DAP kinase phosphorylates ZIP kinase at six specific sites within its extracatalytic C-terminal domain. ZIP kinase localizes to both the nucleus and the cytoplasm and fractionates as monomeric and trimeric forms. Significantly, modification of the DAP kinase phosphorylation sites influences both the localization and oligomerization status of ZIP kinase. A mutant ZIP kinase construct, in which the six serine/threonine residues were mutated to aspartic acid to mimic the phosphorylated state, was found predominantly in the cytoplasm as a trimer and possessed greater cell death-inducing potency. This suggests that DAP kinase and ZIP kinase function in a biochemical pathway in which DAP kinase activates the cellular function of ZIP kinase through phosphorylation, leading to amplification of death-promoting signals.  相似文献   

8.
Zipper-interacting protein kinase (ZIPK) has been implicated in Ca(2+)-independent smooth muscle contraction, although its specific role is unknown. The addition of ZIPK to demembranated rat caudal arterial strips induced an increase in force, which correlated with increases in LC(20) and MYPT1 phosphorylation. However, because of the number of kinases capable of phosphorylating LC(20) and MYPT1, it has proven difficult to identify the mechanism underlying ZIPK action. Therefore, we set out to identify bona fide ZIPK substrates using a chemical genetics method that takes advantage of ATP analogs with bulky substituents at the N(6) position and an engineered ZIPK capable of utilizing such substrates. (32)P-Labeled 6-phenyl-ATP and ZIPK-L93G mutant protein were added to permeabilized rat caudal arterial strips, and substrate proteins were detected by autoradiography following SDS-PAGE. Mass spectrometry identified LC(20) as a direct target of ZIPK in situ for the first time. Tissues were also exposed to 6-phenyl-ATP and ZIPK-L93G in the absence of endogenous ATP, and putative ZIPK substrates were identified by Western blotting. LC(20) was thereby confirmed as a direct target of ZIPK; however, no phosphorylation of MYPT1 was detected. We conclude that ZIPK is involved in the regulation of smooth muscle contraction through direct phosphorylation of LC(20).  相似文献   

9.
The skeletal myosin light chain kinase (skMLCK) was identified in human and chicken embryo myocardium but not in embryo and adult rat heart using western blotting. The content of skMLCK and myosin-activating protein kinases: RhaA-activated protein kinase (ROCK), integrin-linked protein kinase (ILK), and zipper-interacting protein kinase (ZIPK) was compared in normal human myocardium and the hearts of patients with dilated cardiomyopathy (DCM). It was demonstrated that the content of skMLCK, ROCK and ILK increases in DCM whereas the content of ZIPK decreases. The results obtained may reflect compensatory processes in cardiomyocytes in DMC, which are aimed at increasing their viability and contractility.  相似文献   

10.
The serine protease thrombin has been proposed to be involved in neuromuscular plasticity. Its specific receptor "protease activated receptor-1" (PAR-1), a G protein-coupled receptor, has been shown to be expressed in myoblasts but not after fusion (Suidan et al., 1996 J Biol Chem 271:29162-29169). In the present work we have investigated the expression of PAR-1 during rat skeletal muscle differentiation both in vitro and in vivo. Primary cultures of rat foetal skeletal muscle, characterized by their spontaneous contractile activity, were used for exploration of PAR-1 by RT-PCR, immunocytochemistry and Western blotting. Our results show that PAR-1 mRNA and protein are both present in myoblasts and myotubes. Incubation of myotubes loaded with fluo-3-AM in presence of thrombin (200 nM) or PAR-1 agonist peptide (SFLLRN, 500 microM), induced the intracellular release of calcium indicating the activation of PAR-1. Blockade of contractile activity by tetrodotoxin (TTX, 6 nM) did not modify either PAR-1 synthesis or its cellular localization. Investigation of PAR-1 on rat muscle cryostat sections at Day 18 of embryogenesis and postnatal Days 1, 5, and 10 indicated that this protein is first expressed in the cytoplasm and that it later localizes to the membrane. Moreover, its expression correlates with myosin heavy chain transitions occurring during post-natal period and is restricted to primary fibers. Taken together, these results suggest that PAR-1 expression is not related to contractile activity but to myogenic differentiation.  相似文献   

11.
Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity   总被引:2,自引:0,他引:2  
Neurons polarize to form elaborate multiple dendrites and one long axon. The establishment and maintenance of axon/dendrite polarity are fundamentally important for neurons. Recent studies have demonstrated that the polarity complex PAR-3-PAR-6-atypical protein kinase C (aPKC) is involved in polarity determination in many tissues and cells. The function of the PAR-3-PAR-6-aPKC protein complex depends on its subcellular localization in polarized cells. PAR-3 accumulates at the tip of growing axons in cultured rat hippocampal neurons, but the molecular mechanism of this localization remains unknown. Here we identify a direct interaction between PAR-3 and KIF3A, a plus-end-directed microtubule motor protein, and show that aPKC can associate with KIF3A through its interaction with PAR-3. The expression of dominant-negative PAR-3 and KIF3A fragments that disrupt PAR-3-KIF3A binding inhibited the accumulation of PAR-3 and aPKC at the tip of the neurites and abolished neuronal polarity. These results suggest that PAR-3 is transported to the distal tip of the axon by KIF3A and that the proper localization of PAR-3 is required to establish neuronal polarity.  相似文献   

12.
13.
DAP-kinase (DAPK) is the founding member of a family of highly related, death associated Ser/Thr kinases that belongs to the calmodulin (CaM)-regulated kinase superfamily. The family includes DRP-1 and ZIP-kinase (ZIPK), both of which share significant homology within the common N-terminal kinase domain, but differ in their extra-catalytic domains. Both DAPK and DRP-1 possess a conserved CaM autoregulatory domain, and are regulated by calcium-activated CaM and by an inhibitory auto-phosphorylation within the domain. ZIPK’s activity is independent of CaM but can be activated by DAPK. The three kinases share some common functions and substrates, such as induction of autophagy and phosphorylation of myosin regulatory light chain leading to membrane blebbing. Furthermore, all can function as tumor suppressors. However, they also each possess unique functions and intracellular localizations, which may arise from the divergence in structure in their respective C-termini. In this review we will introduce the DAPK family, and present a structure/function analysis for each individual member, and for the family as a whole. Emphasis will be placed on the various domains, and how they mediate interactions with additional proteins and/or regulation of kinase function.  相似文献   

14.
As a regulator of smooth muscle contractility, zipper-interacting protein kinase (ZIPK) appears to phosphorylate the regulatory myosin light chain (RLC20), directly or indirectly, at Ser19 and Thr18 in a Ca2+-independent manner. The calmodulin-binding and autoinhibitory domain of myosin light chain kinase (MLCK) shares similarity to a sequence found in ZIPK. This similarity in sequence prompted an investigation of the SM1 peptide, which is derived from the autoinhibitory region of MLCK, as a potential inhibitor of ZIPK. In vitro studies showed that SM1 is a competitive inhibitor of a constitutively active 32-kDa form of ZIPK with an apparent Ki value of 3.4 µM. Experiments confirmed that the SM1 peptide is also active against full-length ZIPK. In addition, ZIPK autophosphorylation was reduced by SM1. ZIPK activity is independent of calmodulin; however, calmodulin suppressed the in vitro inhibitory potential of SM1, likely as a result of nonspecific binding of the peptide to calmodulin. Treatment of ileal smooth muscle with exogenous ZIPK was accompanied by an increase in RLC20 diphosphorylation, distinguishing between ZIPK [and integrin-linked kinase (ILK)] and MLCK actions. Administration of SM1 suppressed steady-state muscle tension developed by the addition of exogenous ZIPK to Triton-skinned rat ileal muscle strips with or without calmodulin depletion by trifluoperazine. The decrease in contractile force was associated with decreases in both RLC20 mono- and diphosphorylation. In summary, we present the SM1 peptide as a novel inhibitor of ZIPK. We also conclude that the SM1 peptide, which has no effect on ILK, can be used to distinguish between ZIPK and ILK effects in smooth muscle tissues. inhibitory peptide; calcium sensitization  相似文献   

15.
16.
Par-4 (prostate apoptosis response-4) protein was originally found upregulated in prostate tumor cells undergoing apoptosis. Then it was further identified as a proapoptotic protein upregulated both in normal and leukemic lymphocytes. The aim of our study was to assess PAR-4 protein expression in the B cells of CLL patients and to examine its relationship with the expression of other proteins involved in the apoptosis process, such as DAXX, ZIPK and BCL-2. We found a positive relationship between PAR-4 and BCL-2 protein expression. Additionally, there was a positive correlation between PAR-4 and both DAXX and ZIPK protein expression. The results of our research were also analyzed in association with the principal CLL prognostic factors. There was a positive correlation between the expression of PAR-4 protein and the lactate dehydrogenase (LDH) serum concentration (p < 0.005). The expression of PAR-4 protein in B cells correlated positively with the percentage of CD38(+) cells (p < 0.05), as well as with CD38(+)/ZAP-70(+) cells (p < 0.05). Moreover, we found a close relationship between LPL protein expression or LPL/ADAM29 MFI ratio and PAR-4 protein expression. Our results confirm the significance of apoptosis deregulation in CLL, and suggest a possible relationship between PAR-4 expression and the clinical course of the disease. This however requires further investigation.  相似文献   

17.
Zipper-interacting protein kinase (ZIPK) is a serine-threonine kinase that has been implicated in Ca2+-independent myosin II phosphorylation and contractile force generation in vascular smooth muscle. However, relatively little is known about the contribution of this kinase to gastrointestinal smooth muscle contraction. The addition of a recombinant version of ZIPK that lacked the leucine zipper domain to permeabilized ileal strips evoked a Ca2+-independent contraction and resulted in myosin regulatory light chain diphosphorylation at Ser19 and Thr18. Neither Ca2+-independent force development nor myosin regulatory light chain phosphorylation was elicited by the addition of kinase-dead ZIPK to the ileal strips. The sensitivity of ZIPK-induced contraction to various kinase inhibitors was similar to the in vitro sensitivity of purified ZIPK to these inhibitors. Staurosporine was the most effective ZIPK inhibitor, with a Ki value calculated to be 2.6 +/- 0.3 micromol/L. Through the use of specific kinase inhibitors, we determined that Rho-associated protein kinase and Ca2+/phospholipid-dependent protein kinase (protein kinase C) do not mitigate ZIPK-induced contraction in ileum. Our findings support a role for ZIPK in Ca2+-independent contractile force generation in gastrointestinal smooth muscle.  相似文献   

18.
MARK/PAR-1 protein kinases play important roles in cell polarization in animals. Kin1 and Kin2 are a pair of MARK/PAR-1 orthologs in the budding yeast Saccharomyces cerevisiae. They participate in the regulation of secretion and ER stress response. However, neither the subcellular localization of these two kinases nor whether they may have other cellular functions is clear. Here, we show that Kin2 localizes to the sites of polarized growth in addition to localization on the plasma membrane. The localization to polarity sites is mediated by two targeting domains—TD1 and TD2. TD1 locates in the N-terminal region that spans the protein kinase domain whereas TD2 locates in the C-terminal end that covers the KA1 domain. We also show that an excess of Kin2 activity impaired growth, septin organization, and chitin deposition in the cell wall. Both TD1 and TD2 contribute to this function. Moreover, we find that the C-terminal region of Kin2 interacts with Cdc11, a septin subunit, and Pea2, a component of the polarisome that is known to play a role in septin organization. These findings suggest that Kin2 may play a role in the regulation of the septin cytoskeleton and the cell wall. Finally, we show that the C-terminal region of Kin2 interacts with Rho3, a Rho GTPase, whereas the N-terminal region of Kin2 interacts with Bmh1, a 14-3-3 protein. We speculate that Kin2 may be regulated by Bmh1, Rho3, or Pea2 in vivo. Our study provides new insight in the localization, function, and regulation of Kin2.  相似文献   

19.
Bcr–Abl is the transforming principle underlying chronic myelogenous leukaemia (CML). Here, we use a functional interaction proteomics approach to map pathways by which Bcr–Abl regulates defined cellular processes. The results show that Bcr–Abl regulates the actin cytoskeleton and non-apoptotic membrane blebbing via a GADS/Slp-76/Nck1 adaptor protein pathway. The binding of GADS to Bcr–Abl requires Bcr–Abl tyrosine kinase activity and is sensitive to the Bcr–Abl inhibitor imatinib, while the GADS/Slp-76 and Slp-76/Nck interactions are tyrosine phosphorylation independent. All three adaptor proteins co-localize with cortical actin in membrane blebs. Downregulation of each adaptor protein disrupts the actin cytoskeleton and membrane blebbing in a similar fashion and similar to imatinib. These findings highlight the importance of protein interaction dependent adaptor protein pathways in oncogenic kinase signaling.  相似文献   

20.
Zipper interacting protein kinase (ZIPK), also known as death associated protein kinase 3, is a serine/threonine kinase that mediates variety of cell functions. The major biologic function of ZIPK is considered to be the regulation of apoptosis and smooth muscle contraction. Recently, several other functions of ZIPK have been gradually clarified. In this review article, we summarized the recent findings on ZIPK function and ZIPK-related cell signaling. We propose that ZIPK is a potential future target for the development of pharmaceutical therapy for cancer as well as cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号