首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
P-glycoprotein (Pgp, ABCB1) is an ATP-Binding Cassette (ABC) transporter that is associated with the development of multidrug resistance in cancer cells. Pgp transports a variety of chemically dissimilar amphipathic compounds using the energy from ATP hydrolysis. In the present study, to elucidate the binding sites on Pgp for substrates and modulators, we employed site-directed mutagenesis, cell- and membrane-based assays, molecular modeling and docking. We generated single, double and triple mutants with substitutions of the Y307, F343, Q725, F728, F978 and V982 residues at the proposed drug-binding site with cys in a cysless Pgp, and expressed them in insect and mammalian cells using a baculovirus expression system. All the mutant proteins were expressed at the cell surface to the same extent as the cysless wild-type Pgp. With substitution of three residues of the pocket (Y307, Q725 and V982) with cysteine in a cysless Pgp, QZ59S-SSS, cyclosporine A, tariquidar, valinomycin and FSBA lose the ability to inhibit the labeling of Pgp with a transport substrate, [125I]-Iodoarylazidoprazosin, indicating these drugs cannot bind at their primary binding sites. However, the drugs can modulate the ATP hydrolysis of the mutant Pgps, demonstrating that they bind at secondary sites. In addition, the transport of six fluorescent substrates in HeLa cells expressing triple mutant (Y307C/Q725C/V982C) Pgp is also not significantly altered, showing that substrates bound at secondary sites are still transported. The homology modeling of human Pgp and substrate and modulator docking studies support the biochemical and transport data. In aggregate, our results demonstrate that a large flexible pocket in the Pgp transmembrane domains is able to bind chemically diverse compounds. When residues of the primary drug-binding site are mutated, substrates and modulators bind to secondary sites on the transporter and more than one transport-active binding site is available for each substrate.  相似文献   

2.
We compared the P-glycoprotein ATPase activity in inside-out plasma membrane vesicles and living NIH-MDR1-G185 cells with the aim to detect substrate transport. To this purpose we used six substrates which differ significantly in their passive influx through the plasma membrane. In cells, the cytosolic membrane leaflet harboring the substrate binding site of P-glycoprotein has to be approached by passive diffusion through the lipid membrane, whereas in inside-out plasma membrane vesicles, it is accessible directly from the aqueous phase. Compounds exhibiting fast passive influx compared to active efflux by P-glycoprotein induced similar ATPase activity profiles in cells and inside-out plasma membrane vesicles, because their concentrations in the cytosolic leaflets were similar. Compounds exhibiting similar influx as efflux induced in contrast different ATPase activity profiles in cells and inside-out vesicles. Their concentration was significantly lower in the cytosolic leaflet of cells than in the cytosolic leaflet of inside-out membrane vesicles, indicating that P-glycoprotein could cope with passive influx. P-glycoprotein thus transported all compounds at a rate proportional to ATP hydrolysis (i.e. all compounds were substrates). However, it prevented substrate entry into the cytosol only if passive influx of substrates across the lipid bilayer was in a similar range as active efflux.  相似文献   

3.
The bacterial LmrA protein and the mammalian multidrug resistance P-glycoprotein are closely related ATP-binding cassette (ABC) transporters that confer multidrug resistance on cells by mediating the extrusion of drugs at the expense of ATP hydrolysis. The mechanisms by which transport is mediated, and by which ATP hydrolysis is coupled to drug transport, are not known. Based on equilibrium binding experiments, photoaffinity labeling and drug transport assays, we conclude that homodimeric LmrA mediates drug transport by an alternating two-site transport (two-cylinder engine) mechanism. The transporter possesses two drug-binding sites: a transport-competent site on the inner membrane surface and a drug-release site on the outer membrane surface. The interconversion of these two sites, driven by the hydrolysis of ATP, occurs via a catalytic transition state intermediate in which the drug transport site is occluded. The mechanism proposed for LmrA may also be relevant for P-glycoprotein and other ABC transporters.  相似文献   

4.
The P-glycoprotein multidrug transporter (Pgp; ABCB1) is an ATP-binding cassette (ABC) protein that has been implicated in the multidrug resistance of human cancers. Pgp couples ATP hydrolysis to active extrusion from the cell of a broad array of amphipathic compounds via an ill-defined mechanism. Substrates are believed to interact with Pgp within the membrane. Reconstituted Pgp functions as an ATP-dependent flippase for a variety of fluorescently labelled membrane lipids. The protein may also function as a drug 'flippase', moving its substrates from the inner to the outer leaflet of the bilayer. We show that lipid-based anti-cancer drugs, such as miltefosine, and signaling molecules, such as platelet-activating factors, bind saturably to Pgp with Kd values in the low micromolar range, and modulate its ATPase activity. These compounds also inhibit Pgp-mediated flipping of fluorescent lipids and transport of Hoechst 33342 and tetramethylrosamine, which occupy different subsites in the drug-binding pocket. Bacterial lipid A modulates Pgp ATPase activity, and glycolipid flipping is inhibited by unlabelled glucosylceramide, suggesting that these lipids also interact with the transporter. These results indicate that Pgp treats a variety of lipid-based molecules as substrates, and likely interacts with lipids and drugs in the same manner.  相似文献   

5.
The MDR1 P-glycoprotein, an ATP-binding cassette (ABC) superfamily member that functions as an ATP-driven drug efflux pump, has been linked to resistance of human tumors to multiple chemotherapeutic agents. P-glycoprotein binds and actively transports a large variety of hydrophobic drugs and peptides. P-glycoprotein in reconstituted proteoliposomes is also an outwardly directed flippase for membrane phospholipids and simple glycosphinglipids. This review focuses on recent advances in our understanding of P-glycoprotein structure and function, particularly through the use of fluorescence spectroscopic approaches. Progress is being made towards understanding the structure of the transporter, especially the spatial relationship between the two nucleotide-binding domains. Exploration of the P-glycoprotein catalytic cycle using vanadate-trapped complexes has revealed that drug transport likely takes place by concerted conformational changes linked to relaxation of a high energy intermediate. Low resolution mapping of the protein using fluorescence resonance energy transfer showed that both the H and R drug-binding sites are located within the cytoplasmic leaflet. Two drugs can bind to the R-site simultaneously, suggesting that the protein contains a large flexible binding region.  相似文献   

6.
The human multidrug resistance protein, or P-glycoprotein (Pgp), exhibits a high-capacity drug-dependent ATP hydrolytic activity that is a direct reflection of its drug transport capability. This activity is readily measured in membranes isolated from cultured insect cells infected with a baculovirus carrying the humanmdrl cDNA. The drug-stimulated ATPase activity is a useful alternative to conventional screening systems for identifying high-affinity drug substrates of the Pgp with potential clinical value as chemosensitizers for tumor cells that have become drug resistant. Using this assay system, a variety of drugs have been directly shown to interact with the Pgp. Many of the drugs stimulate the Pgp ATPase activity, but certain drugs bind tightly to the drug-binding site of the Pgp without eliciting ATP hydrolysis. Either class of drugs may be useful as chemosensitizing agents. The baculovirus/insect cell Pgp ATPase assay system may also facilitate future studies of the molecular structure and mechanism of the Pgp.  相似文献   

7.
Lugo MR  Sharom FJ 《Biochemistry》2005,44(2):643-655
One cause of multidrug resistance is the overexpression of P-glycoprotein, a 170 kDa plasma membrane ABC transporter, which functions as an ATP-driven efflux pump with broad specificity for hydrophobic drugs, peptides, and natural products. The protein appears to interact with its substrates within the membrane environment. Previous reports suggested the existence of at least two binding sites, possibly overlapping and displaying positively cooperative interactions, termed the H and R sites for their preference for Hoechst 33342 and rhodamine 123, respectively. In this work, we have used several fluorescence approaches to characterize the molecular interaction of purified P-glycoprotein (Pgp) with the dye LDS-751, which is proposed to bind to the R site. A 50-fold enhancement of LDS-751 fluorescence indicated that the protein binding site was located in a hydrophobic environment, with a polarity lower than that of chloroform. LDS-751 bound with sub-micromolar affinity (K(d) = 0.75 microM) and quenched P-glycoprotein intrinsic Trp fluorescence by 40%, suggesting that Trp emitters are probably located close to the drub-binding regions of the transporter and may interact directly with the dye. Using a FRET approach, we mapped the possible locations of the LDS-751 binding site relative to the NB domain active sites. The R site appeared to be positioned close to the membrane boundary of the cytoplasmic leaflet. The location of both H and R drug binding sites is in agreement with the idea that Pgp may operate as a drug flippase, moving substrates from the inner leaflet to the outer leaflet of the plasma membrane.  相似文献   

8.
Qu Q  Sharom FJ 《Biochemistry》2002,41(14):4744-4752
The P-glycoprotein multidrug transporter carries out ATP-driven cellular efflux of a wide variety of hydrophobic drugs, natural products, and peptides. Multiple binding sites for substrates appear to exist, most likely within the hydrophobic membrane spanning regions of the protein. Since ATP hydrolysis is coupled to drug transport, the spatial relationship of the drug binding sites relative to the ATPase catalytic sites is of considerable interest. We have used a fluorescence resonance energy transfer (FRET) approach to estimate the distance between a bound substrate and the catalytic sites in purified P-glycoprotein. The fluorescent dye Hoechst 33342 (H33342), a high-affinity P-glycoprotein substrate, bound to the transporter and acted as a FRET donor. H33342 showed greatly enhanced fluorescence emission when bound to P-glycoprotein, together with a substantial blue shift, indicating that the drug binding site is located in a nonpolar environment. Cys428 and Cys1071 within the catalytic sites of P-glycoprotein were covalently labeled with the acceptor fluorophore NBD-Cl (7-chloro-4-nitrobenz-2-oxa-1,3-diazole). H33342 fluorescence was highly quenched when bound to NBD-labeled P-glycoprotein relative to unlabeled protein, indicating that FRET takes place from the bound dye to NBD. The distance separating the bound dye from the NBD acceptor was estimated to be approximately 38 A. Transition-state P-glycoprotein with the complex ADP*orthovanadate*Co2+ stably trapped at one catalytic site bound H33342 with similar affinity, and FRET measurements led to a similar separation distance estimate of 34 A. Since previous FRET studies indicated that a fluorophore bound within the catalytic site was positioned 31-35 A from the interfacial region of the bilayer, the H33342 binding site is likely located 10-14 A below the membrane surface, within the cytoplasmic leaflet of the membrane, in both resting-state and transition-state P-glycoprotein.  相似文献   

9.
Human P-glycoprotein (ABCB1) is a primary multidrug transporter located in plasma membranes, that utilizes the energy of ATP hydrolysis to pump toxic xenobiotics out of cells. P-glycoprotein employs a most unusual molecular mechanism to perform this drug transport function. Here we review our work to elucidate the molecular mechanism of drug transport by P-glycoprotein. High level heterologous expression of human P-glycoprotein, in the yeast Saccharomyces cerevisiae, has facilitated biophysical studies in purified proteoliposome preparations. Development of novel spin-labeled transport substrates has allowed for quantitative and rigorous measurements of drug transport in real time by EPR spectroscopy. We have developed a new drug transport model of P-glycoprotein from the results of mutagenic, quantitative thermodynamic and kinetic studies. This model satisfactorily accounts for most of the unusual kinetic, coupling, and physiological features of P-glycoprotein. Additionally, an atomic detail structural model of P-glycoprotein has been devised to place our results within a proper structural context.  相似文献   

10.
Romsicki Y  Sharom FJ 《Biochemistry》2001,40(23):6937-6947
The P-glycoprotein multidrug transporter acts as an ATP-powered efflux pump for a large variety of hydrophobic drugs, natural products, and peptides. The protein is proposed to interact with its substrates within the hydrophobic interior of the membrane. There is indirect evidence to suggest that P-glycoprotein can also transport, or "flip", short chain fluorescent lipids between leaflets of the membrane. In this study, we use a fluorescence quenching technique to directly show that P-glycoprotein reconstituted into proteoliposomes translocates a wide variety of NBD lipids from the outer to the inner leaflet of the bilayer. Flippase activity depended on ATP hydrolysis at the outer surface of the proteoliposome, and was inhibited by vanadate. P-Glycoprotein exhibited a broad specificity for phospholipids, and translocated phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin. Lipid derivatives that were flipped included molecules with long, short, unsaturated, and saturated acyl chains and species with the NBD group covalently linked to either acyl chains or the headgroup. The extent of lipid translocation from the outer to the inner leaflet in a 20 min period at 37 degrees C was directly estimated, and fell in the range of 0.36-1.83 nmol/mg of protein. Phospholipid flipping was inhibited in a concentration-dependent, saturable fashion by various substrates and modulators, including vinblastine, verapamil, and cyclosporin A, and the efficiency of inhibition correlated well with the affinity of binding to Pgp. Taken together, these results suggest that P-glycoprotein carries out both lipid translocation and drug transport by the same path. The transporter may be a generic flippase for hydrophobic molecules with the correct steric attributes that are present within the membrane interior.  相似文献   

11.
P-glycoprotein is a plasma membrane protein of mammalian cells that confers multidrug resistance by acting as a broad-specificity, ATP-dependent efflux transporter of diverse lipophilic neutral or cationic compounds. Previously, we identified two positively cooperative drug-binding sites of P-glycoprotein involved in transport [Shapiro, A. B. & Ling, V. (1997) Eur. J. Biochem. 250, 130-137]. The H site is selective for Hoechst 33342 and colchicine. The R site is selective for rhodamine 123 and anthracyclines. Substrate binding to one site stimulates transport by the other. In this paper, we show that prazosin and progesterone stimulate the transport of both Hoechst 33342 and rhodamine 123. Rhodamine 123 and prazosin (or progesterone) in combination stimulate Hoechst 33342 transport in an additive manner. In contrast, Hoechst 33342 and either prazosin or progesterone interfere with each other, so that the stimulatory effect of the combination on rhodamine 123 transport is less than that of each individually. Non-P-glycoprotein-specific effects of prazosin on membrane fluidity and permeability were excluded. These results indicate the existence of a third drug-binding site on P-glycoprotein with a positive allosteric effect on drug transport by the H and R sites. This allosteric site appears to be one of the sites of photoaffinity labeling of P-glycoprotein by [125I]iodoarylazidoprazosin [Safa, A. R., Agresti, M., Bryk, D. & Tamai, I. (1994) Biochemistry 33, 256-265] and is likely not to be capable of drug transport.  相似文献   

12.
Lactococcus lactis possesses an ATP-dependent drug extrusion system which shares functional properties with the mammalian multidrug resistance (MDR) transporter P-glycoprotein. One of the intriguing aspects of both transporters is their ability to interact with a broad range of structurally unrelated amphiphilic compounds. It has been suggested that P-glycoprotein removes drugs directly from the membrane. Evidence is presented that this model is correct for the lactococcal multidrug transporter through studies of the extrusion mechanism of BCECF-AM and cationic diphenylhexatriene (DPH) derivatives from the membrane. The non-fluorescent probe BCECF-AM can be converted intracellularly into its fluorescent derivative, BCECF, by non-specific esterase activities. The development of fluorescence was decreased upon energization of the cells. These and kinetic studies showed that BCECF-AM is actively extruded from the membrane before it can be hydrolysed intracellularly. The increase in fluorescence intensity due to the distribution of TMA-DPH into the phospholipid bilayer is a biphasic process. This behaviour reflects the fast entry of TMA-DPH into the outer leaflet followed by a slower transbilayer movement to the inner leaflet of the membrane. The initial rate of TMA-DPH extrusion correlates with the amount of probe associated with the inner leaflet. Taken together, these results demonstrate that the lactococcal MDR transporter functions as a 'hydrophobic vacuum cleaner', expelling drugs from the inner leaflet of the lipid bilayer. Thus, the ability of amphiphilic substrates to partition in the inner leaflet of the membrane is a prerequisite for recognition by multidrug transporters.  相似文献   

13.
Drug–drug interactions (DDIs) and associated toxicity from cardiovascular drugs represents a major problem for effective co-administration of cardiovascular therapeutics. A significant amount of drug toxicity from DDIs occurs because of drug interactions and multiple cardiovascular drug binding to the efflux transporter P-glycoprotein (Pgp), which is particularly problematic for cardiovascular drugs because of their relatively low therapeutic indexes. The calcium channel antagonist, verapamil and the cardiac glycoside, digoxin, exhibit DDIs with Pgp through non-competitive inhibition of digoxin transport, which leads to elevated digoxin plasma concentrations and digoxin toxicity. In the present study, verapamil-induced ATPase activation kinetics were biphasic implying at least two verapamil-binding sites on Pgp, whereas monophasic digoxin activation of Pgp-coupled ATPase kinetics suggested a single digoxin-binding site. Using intrinsic protein fluorescence and the saturation transfer double difference (STDD) NMR techniques to probe drug–Pgp interactions, verapamil was found to have little effect on digoxin–Pgp interactions at low concentrations of verapamil, which is consistent with simultaneous binding of the drugs and non-competitive inhibition. Higher concentrations of verapamil caused significant disruption of digoxin–Pgp interactions that suggested overlapping and competing drug-binding sites. These interactions correlated to drug-induced conformational changes deduced from acrylamide quenching of Pgp tryptophan fluorescence. Also, Pgp-coupled ATPase activity kinetics measured with a range of verapamil and digoxin concentrations fit well to a DDI model encompassing non-competitive and competitive inhibition of digoxin by verapamil. The results and previous transport studies were combined into a comprehensive model of verapamil–digoxin DDIs encompassing drug binding, ATP hydrolysis, transport and conformational changes.  相似文献   

14.
Pancreatic β-cell dysfunction is a diagnostic criterion of Type 2 diabetes and includes defects in glucose transport and insulin secretion. In healthy individuals, β-cells maintain plasma glucose concentrations within a narrow range in concert with insulin action among multiple tissues. Postprandial elevations in blood glucose facilitate glucose uptake into β-cells by diffusion through glucose transporters residing at the plasma membrane. Glucose transport is essential for glycolysis and glucose-stimulated insulin secretion. In human Type 2 diabetes and in the mouse model of obesity-associated diabetes, a marked deficiency of β-cell glucose transporters and glucose uptake occurs with the loss of glucose-stimulated insulin secretion. Recent studies have shown that the preservation of glucose transport in β-cells maintains normal insulin secretion and blocks the development of obesity-associated diabetes. To further elucidate the underlying mechanisms, we have constructed a computational model of human β-cell glucose transport in health and in Type 2 diabetes, and present a systems analysis based on experimental results from human and animal studies. Our findings identify a metabolic threshold or “tipping point” whereby diminished glucose transport across the plasma membrane of β-cells limits intracellular glucose-6-phosphate production by glucokinase. This metabolic threshold is crossed in Type 2 diabetes and results in β-cell dysfunction including the loss of glucose stimulated insulin secretion. Our model further discriminates among molecular control points in this pathway wherein maximal therapeutic intervention is achieved.  相似文献   

15.
1. P-Glycoprotein is a 170-kDa transmembrane glycoprotein active efflux system that confers multidrug resistance in tumors, as well as normal tissues including brain.2. The classical model of multidrug resistance in brain places the expression of P-glycoprotein at the luminal membrane of the brain microvascular endothelial cell. However, recent studies have been performed with human brain microvessels and double-labeling confocal microscopy using (a) the MRK16 antibody to human P-glycoprotein, (b) an antiserum to glial fibrillary acidic protein (GFAP), an astrocyte foot process marker, or (c) an antiserum to the GLUT1 glucose transporter, a brain endothelial plasma membrane marker. These results provide evidence for a revised model of P-glycoprotein function at the brain microvasculature. In human brain capillaries, there is colocalization of immunoreactive P-glycoprotein with astrocytic GFAP but not with endothelial GLUT1 glucose transporter.3. In the revised model of multidrug resistance in brain, P-glycoprotein is hypothesized to function at the plasma membrane of astrocyte foot processes. These astrocyte foot processes invest the brain microvascular endothelium but are located behind the blood–brain barrier in vivo, which is formed by the brain capillary endothelial plasma membrane.4. In the classical model, an inhibition of endothelial P-glycoprotein would result in both an increase in the blood–brain barrier permeability to a given drug substrate of P-glycoprotein and an increase in the brain volume of distribution (V D) of the drug. However, in the revised model of P-glycoprotein function in brain, which positions this protein transporter at the astrocyte foot process, an inhibition of P-glycoprotein would result in no increase in blood–brain barrier permeability, per se, but only an increase in the V D in brain of P-glycoprotein substrates.  相似文献   

16.
The human multidrug resistance P-glycoprotein (ABCB1) transports a broad range of structurally diverse compounds out of the cell. The transport cycle involves coupling of drug binding in the transmembrane domains with ATP hydrolysis. Compounds such as verapamil stimulate ATPase activity. We used cysteine-scanning mutagenesis of the transmembrane segments and reaction with the thiol-reactive substrate analog of verapamil, methanethiosulfonate (MTS)-verapamil, to test whether it caused permanent activation of ATP hydrolysis. Here we report that one mutant, I306C(TM5) showed increased ATPase activity (8-fold higher than untreated) when treated with MTS-verapamil and isolated by nickel-chelate chromatography. Drug substrates that either enhance (calcein acetoxymethyl ester, demecolcine, and vinblastine) or inhibit (cyclosporin A and trans-(E)-flupentixol) ATPase activity of Cys-less or untreated mutant I306C P-glycoprotein did not affect the activity of MTS-verapamil-treated mutant I306C. Addition of dithiothreitol released the covalently attached verapamil, and ATPase activity returned to basal levels. Pretreatment with substrates such as cyclosporin A, demecolcine, verapamil, vinblastine, or colchicine prevented activation of mutant I306C by MTS-verapamil. The results suggest that MTS-verapamil reacts with I306C in a common drug-binding site. Covalent modification of I306C affects the long range linkage between the drug-binding site and the distal ATP-binding sites. This results in the permanent activation of ATP hydrolysis in the absence of transport. Trapping mutant I306C in a permanently activated state indicates that Ile-306 may be part of the signal to switch on ATP hydrolysis when the drug-binding site is occupied.  相似文献   

17.
Pgp (P-glycoprotein) (ABCB1) is an ATP-powered efflux pump which can transport hundreds of structurally unrelated hydrophobic amphipathic compounds, including therapeutic drugs, peptides and lipid-like compounds. This 170 kDa polypeptide plays a crucial physiological role in protecting tissues from toxic xenobiotics and endogenous metabolites, and also affects the uptake and distribution of many clinically important drugs. It forms a major component of the blood-brain barrier and restricts the uptake of drugs from the intestine. The protein is also expressed in many human cancers, where it probably contributes to resistance to chemotherapy treatment. Many chemical modulators have been identified that block the action of Pgp, and may have clinical applications in improving drug delivery and treating cancer. Pgp substrates are generally lipid-soluble, and partition into the membrane before the transporter expels them into the aqueous phase, much like a 'hydrophobic vacuum cleaner'. The transporter may also act as a 'flippase', moving its substrates from the inner to the outer membrane leaflet. An X-ray crystal structure shows that drugs interact with Pgp within the transmembrane regions by fitting into a large flexible binding pocket, which can accommodate several substrate molecules simultaneously. The nucleotide-binding domains of Pgp appear to hydrolyse ATP in an alternating manner; however, it is still not clear whether transport is driven by ATP hydrolysis or ATP binding. Details of the steps involved in the drug-transport process, and how it is coupled to ATP hydrolysis, remain the object of intensive study.  相似文献   

18.
Overexpression of P-glycoprotein (P-gp; ABCB1) can cause multidrug resistance during cancer and AIDS chemotherapy because of its ability to transport a broad range of structurally unrelated compounds from the cell. P-gp is a member of the ABC family of proteins. It is a single polypeptide containing four domains—two transmembrane (TM) domains each of which contains six TM segments and two nucleotide-binding domains. Chemical modification and cross-linking studies of cysteine mutants of P-gp indicate that the common drug-binding pocket is at the interface between the TM domains. It has been postulated that drug substrates enter the lipid bilayer, are extracted by P-gp and transported to the extracellular medium. It is not clear how drug substrates enter the drug-binding pocket. Here, we propose that drug-substrates diffuse from the lipid bilayer into the drug-binding pocket through “gates” formed by TM segments at either end of the drug-binding pocket.  相似文献   

19.
The human multidrug resistance P-glycoprotein (P-gp) interacts with a broad range of compounds with diverse structures and sizes. There is considerable evidence indicating that residues in transmembrane segments 4-6 and 10-12 form the drug-binding site. We attempted to measure the size of the drug-binding site by using thiol-specific methanethiosulfonate (MTS) cross-linkers containing spacer arms of 2 to 17 atoms. The majority of these cross-linkers were also substrates of P-gp, because they stimulated ATPase activity (2.5- to 10.1-fold). 36 P-gp mutants with pairs of cysteine residues introduced into transmembrane segments 4-6 and 10-12 were analyzed after reaction with 0.2 mm MTS cross-linker at 4 degrees C. The cross-linked product migrated with lower mobility than native P-gp in SDS gels. 13 P-gp mutants were cross-linked by MTS cross-linkers with spacer arms of 9-25 A. Vinblastine and cyclosporin A inhibited cross-linking. The emerging picture from these results and other studies is that the drug-binding domain is large enough to accommodate compounds of different sizes and that the drug-binding domain is "funnel" shaped, narrow at the cytoplasmic side, at least 9-25 A in the middle, and wider still at the extracellular surface.  相似文献   

20.
ATPase activity associated with P-glycoprotein (Pgp) is characterized by three drug-dependent phases: basal (no drug), drug-activated, and drug-inhibited. To understand the communication between drug-binding sites and ATP hydrolytic sites, we performed steady-state thermodynamic analyses of ATP hydrolysis in the presence and absence of transport substrates. We used purified human Pgp (ABCB1, MDR1) expressed in Saccharomyces cerevisiae (Figler, R. A., Omote, H., Nakamoto, R. K., and Al-Shawi, M. K. (2000) Arch. Biochem. Biophys. 376, 34-46) as well as Chinese hamster Pgp (PGP1). Between 23 and 35 degrees C, we obtained linear Arrhenius relationships for the turnover rate of hydrolysis of saturating MgATP in the presence of saturating drug concentrations (kcat), from which we calculated the intrinsic enthalpic, entropic, and free energy terms for the rate-limiting transition states. Linearity of the Arrhenius plots indicated that the same rate-limiting step was being measured over the temperature range employed. Using linear free energy analysis, two distinct transition states were found: one associated with uncoupled basal activity and the other with coupled drug transport activity. We concluded that basal ATPase activity associated with Pgp is not a consequence of transport of an endogenous lipid or other endogenous substrates. Rather, it is an intrinsic mechanistic property of the enzyme. We also found that rapidly transported substrates bound tighter to the transition state and required fewer conformational alterations by the enzyme to achieve the coupling transition state. The overall rate-limiting step of Pgp during transport is a carrier reorientation step. Furthermore, Pgp is optimized to transport drugs out of cells at high rates at the expense of coupling efficiency. The drug inhibition phase was associated with low affinity drug-binding sites. These results are consistent with an expanded version of the alternating catalytic site drug transport model (Senior, A. E., Al-Shawi, M. K., and Urbatsch, I. L. (1995) FEBS Lett. 377, 285-289). A new kinetic model of drug transport is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号