首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Niemann-Pick C disease (NPC) is an irreversible neurodegenerative disorder without current treatment. It is the result of deficient intracellular cholesterol movement. We investigated the effects of tamoxifen and vitamin E (D-alpha tocopherol) treatment on patterns of weight loss and motor function in the mouse model of Niemann-Pick C disease (Npc1-/- mice). Tamoxifen has multiple metabolic effects, including reducing oxidative damage, while vitamin E primarily has this property. Npc1-/- mice were identified and treatment was initiated at an approximate age of 21 days. Tamoxifen suspended in peanut oil was administered via intraperitoneal injection (weekly, at a dose calculated to deliver 0.023 microg/g/day). Vitamin E (25 IU) was administered orally via gavage once a week. Weight loss and Rota-Rod performance were analyzed by using Kaplan-Meyer survival curves. Tamoxifen treatment by itself significantly delayed weight loss (an endpoint of neurodegeneration) in male and female mice compared to untreated controls. Motor function was evaluated by performance on a Rota-Rod. Tamoxifen maintained Rota-Rod performance for about an extra week. Vitamin E treatment significantly delayed weight loss in females only. Rota-Rod performance was maintained slightly longer in mice treated with vitamin E. Simultaneous use of both treatments did not delay weight loss longer than tamoxifen-only treatment but had a greater effect than either treatment alone on Rota-Rod performance and demonstrated a significant positive effect on the early "learning curve" portion of the Rota-Rod evaluations. We found significant but relatively small improvements in rate of disease progression by treating Npc1-/- mice with tamoxifen and/or vitamin E. Some sex differences in response and an early improvement in Rota-Rod performance suggest areas for further study.  相似文献   

2.
Kim SJ  Lim MS  Kang SK  Lee YS  Kang KS 《Cell research》2008,18(6):686-694
Nitric oxide (NO) has been implicated in the promotion of neurodegeneration. However, little is known about the relationship between NO and the self-renewal or differentiation capacity of neural stem cells (NSCs) in neurodegenerative disease. In this study, we investigated the effect of NO on self-renewal of NSCs in an animal model for Niemann-Pick type C (NPC) disease. We found that NO production was significantly increased in NSCs from NPC1-deficient mice (NPC1-/-), which showed reduced NSC self-renewal. The number of nestin-positive cells and the size of neurospheres were both significantly decreased. The expression of NO synthase (NOS) was increased in neurospheres derived from the brain of NPC1-/- mice in comparison to wild-type neurospheres. NO-mediated activation of glycogen synthase kinase-3beta (GSK3beta) and caspase-3 was also observed in NSCs from NPC1-/- mice. The self-renewal ability of NSCs from NPC1-/- mice was restored by an NOS inhibitor, L-NAME, which resulted in the inhibition of GSK3beta and caspase-3. In addition, the differentiation ability of NSCs was partially restored and the number of Fluoro-Jade C-positive degenerating neurons was reduced. These data suggest that overproduction of NO in NPC disease impaired the self-renewal of NSCs. Control of NO production may be key for the treatment of NPC disease.  相似文献   

3.
Niemann-Pick type C disease (NPC) is a neurodegenerative and lipid storage disorder for which no effective treatment is known. We previously reported that neural stem cells derived from NPC1 mice showed impaired self-renewal and differentiation. We examined whether valproic acid (VPA), a histone deacetylase inhibitor, could enhance neuronal differentiation and recover defective cholesterol metabolism in neural stem cells (NSCs) from NPC1-deficient mice (NPC1(-/-)). VPA could induce neuronal differentiation and restore impaired astrocytes in NSCs from NPC1(-/-) mice. Importantly, an increasing level of cholesterol within NSCs from NPC1(-/-) mice could be reduced by VPA. Moreover, essential neurotrophic genes (TrkB, BDNF, MnSoD, and NeuroD) were up-regulated through the repression of the REST/NRSF and HDAC complex by the VPA treatment. Up-regulated neurotrophic genes were able to enhance neural differentiation and cholesterol homeostasis in neural stem cells from NPC1(-/-) mice. In this study, we suggested that, along with cholesterol homeostasis, impaired neuronal differentiation and abnormal morphology of astrocytes could be rescued by the inhibition of HDAC and REST/NRSF activity induced by VPA treatment.  相似文献   

4.
Living organisms are exposed to the geomagnetic field (GMF) throughout their lifespan. Elimination of the GMF, resulting in a hypogeomagnetic field (HMF), leads to central nervous system dysfunction and abnormal development in animals. However, the cellular mechanisms underlying these effects have not been identified so far. Here, we show that exposure to an HMF (<200 nT), produced by a magnetic field shielding chamber, promotes the proliferation of neural progenitor/stem cells (NPCs/NSCs) from C57BL/6 mice. Following seven-day HMF-exposure, the primary neurospheres (NSs) were significantly larger in size, and twice more NPCs/NSCs were harvested from neonatal NSs, when compared to the GMF controls. The self-renewal capacity and multipotency of the NSs were maintained, as HMF-exposed NSs were positive for NSC markers (Nestin and Sox2), and could differentiate into neurons and astrocyte/glial cells and be passaged continuously. In addition, adult mice exposed to the HMF for one month were observed to have a greater number of proliferative cells in the subventricular zone. These findings indicate that continuous HMF-exposure increases the proliferation of NPCs/NSCs,in vitro and in vivo. HMF-disturbed NPCs/ NSCs production probably Affects brain development and function, which provides a novel clue for elucidating the cellular mechanisms of the bio-HMF response.  相似文献   

5.
To explore a potential methodology for treating aganglionic megacolon, neural stem cells (NSCs) expressing engineered endothelin receptor type B (EDNRB) and glial cell-derived neurotrophic factor (GDNF) genes were transplanted into the aganglionic megacolon mice. After transplantation, the regeneration of neurons in the colon tissue was observed, and expression levels of differentiation-related genes were determined. Primary culture of NSCs was obtained from the cortex of postnatal mouse brain and infected with recombinant adenovirus expressing EDNRB and GDNF genes. The mouse model of aganglionic megacolon was developed by treating the colon tissue with 0.5 % benzalkonium chloride (BAC) to selectively remove the myenteric nerve plexus that resembles the pathological changes in the human congenital megacolon. The NSCs stably expressing the EDNRB and GDNF genes were transplanted into the benzalkonium chloride-induced mouse aganglionic colon. Survival and differentiation of the implanted stem cells were assessed after transplantation. Results showed that the EDNRB and GDNF genes were able to be expressed in primary culture of NSCs by adenovirus infection. One week after implantation, grafted NSCs survived and differentiated into neurons. Compared to the controls, elevated expression of EDNRB and GDNF was determined in BAC-induced aganglionic megacolon mice with partially improved intestinal function. Those founding indicated that the genes transfected into NSCs were expressed in vivo after transplantation. Also, this study provided favorable support for the therapeutic potential of multiple gene-modified NSC transplantation to treat Hirschsprung’s disease, a congenital disorder of the colon in which ganglion cells are absent.  相似文献   

6.
Numerous research have begun to reveal the importance of maternal nutrition in offspring brain development. Particularly, the maternal obesity or exposure to high-fat diet has been strongly suggested to exert irreversible impact on the structure and function of offspring's brain. However, it remains obscure about whether neonatal neural stem cells (NSCs) in offspring's brain are susceptible to maternal exposure to high-fat diet. Here we focused on the alternation in the Notch signaling in NSCs derived from neonatal mice, which had been given birth by female mice with a high-fat diet and found that, in fact, the high-fat diet administration imposed effects on not only maternal mice, indicated by the accumulation of viscera fat as well as the increase in body weight and serum total cholesterol, but also NSCs in the offspring’s brain, where significant increase was observed in the expression of genes, either downstream of Notch signaling or regulating this pathway, which have been shown essential for the maturation of NSCs. Therefore, our data provided the first evidence for the potential effect of maternal exposure to the high-fat diet on the Notch signaling pathway in offspring’s NSCs, indicating this altered signaling response might contribute to a profound change in offspring’s brains as a result of maternal high-fat diet prior to and during gestation.  相似文献   

7.
Adult stem cells can be identified by label-retaining cell (LRC) approach based on their ability to retain nucleoside analog, such as bromodeoxyuridine (BrdU). We hypothesized that mouse nasopharynx contains a small population of epithelial stem/progenitor cells that may be detected by the LRC technique. To identify LRCs in mice nasopharyngeal epithelia, neonatal mice were intraperitoneally injected with BrdU twice daily for 3 consecutive days. After an 8-week chase, long-term BrdU-labeled LRCs (∼2% of cells) were detected in the adult mice nasopharyngeal epithelia by immunostaining with BrdU antibody and some of LRCs (∼12% of cells) were found to be recruited into the S phase of cell cycle with an additional radioactive thymidine-labeling technique, indicating that the stem cells also divide, most likely asymmetrically. To further investigate whether the LRCs existed in human nasopharyngeal carcinoma (NPC) tissues, three NPC cell lines (5-8F, 6-10B and TMNE) were labeled with BrdU in vitro and then individually engrafted into the back of nude mice, which developed tumors. Again, label-retaining stem cells were found in all the three kinds of NPC xenograft tumors (∼0.3% of cells), around 16% of which were also labeled with radioactive thymidine. Thus, this study has demonstrated for the first time the presence of epithelial LRCs in mouse nasopharyngx and human NPC tissues and these stem-like LRCs are not completely quiescent, as they will be recruited into the cell cycle to participate physiological or pathological process at any moment. More importantly, our data showed that NPC also contained stem cells, which are most likely the cause for NPC spread, metastasis and recurrence.  相似文献   

8.
Neural stem cell (NSC) proliferation and differentiation are required to replace neurons damaged or lost after hypoxic-ischemic events and recover brain function. Periostin (POSTN), a novel matricellular protein, plays pivotal roles in the survival, migration, and regeneration of various cell types, but its function in NSCs of neonatal rodent brain is still unknown. The purpose of this study was to investigate the role of POSTN in NSCs following hypoxia-ischemia (HI). We found that POSTN mRNA levels significantly increased in differentiating NSCs. The proliferation and differentiation of NSCs in the hippocampus is compromised in POSTN knockout mice. Moreover, NSC proliferation and differentiation into neurons and astrocytes significantly increased in cultured NSCs treated with recombinant POSTN. Consistently, injection of POSTN into neonatal hypoxic-ischemic rat brains stimulated NSC proliferation and differentiation in the subventricular and subgranular zones after 7 and 14 days of brain injury. Lastly, POSTN treatment significantly improved the spatial learning deficits of rats subjected to HI. These results suggest that POSTN significantly enhances NSC proliferation and differentiation after HI, and provides new insights into therapeutic strategies for the treatment of hypoxic-ischemic encephalopathy.  相似文献   

9.
In the present study, the effects of power-frequency magnetic fields (PF-MF) on fertility and development were investigated in rats and mice. Adult Sprague-Dawley rats and C57BL/6J mice were divided into four groups: a sham exposure group and 30-µT, 100-µT and 500-µT PF-MF exposure groups. The rats were exposed for 24 weeks, and the exposure time for mice ranged from 18 d to 12 weeks, dependent on the different investigated end points. The rats and mice were exposed for 20 h/d. Plasma hormone levels in rats and mice were analyzed. Furthermore, pregnancy rates and implanted embryos were recorded in pregnant mice. Finally, the neonatal growth of mice was evaluated. The results showed that none of the three intensities affected the body weight and paired ovary weight in female rats. Meanwhile, none of the three intensities affected the body weight, weights of paired testes, weights of paired epididymis and sperm count in male rats. Similarly, no significant differences were found in plasma sex hormone levels between the different PF-MF exposure groups and the sham exposure group. In addition, the pregnancy rates and implanted embryos were not significantly different between the four groups. Moreover, PF-MF exposures had no effects on either the number of fetuses in pregnant mice or the growth and development of neonatal mice.  相似文献   

10.
目的:探讨川芎嗪(TMP)在体外神经干细胞(NSCs)增殖与分化中的作用。方法:原代提取孕14 d雌性大鼠的胎鼠大脑皮层分离培养,并作免疫荧光染色鉴定,取传代培养第3代的NSCs进行实验。实验分为对照组、β-巯基乙醇阳性对照组、TMP诱导组和TMP+EGTA组(n=4)。采用BrdU法和MTT法观察川芎嗪对NSCs增殖数量的影响,采用蛋白免疫印迹法检测NSCs的分化表达情况。结果:实验成功分离纯化原代NSCs,培养3~5 d可见部分神经球形成,具备典型的NSCs形态并表达NSCs特异抗原巢蛋白;BrdU法和MTT法结果均显示,与对照组和β-巯基乙醇阳性对照组相比,TMP组NSCs增殖数量明显增多(P<0.05);蛋白免疫印迹结果显示,TMP组和TMP+EGTA组NSCs的神经元分化率明显增高,TMP+EGTA组分化率增高更明显(P<0.05)。结论:TMP能显著增强NSCs的增殖和神经元分化率。减少细胞外Ca2+可促进TMP诱导NSCs向神经元分化,Ca2+信号在TMP诱导NSCs向神经元分化过程中起重要作用。  相似文献   

11.
While transplanted neural stem cells (NSCs) have been shown to hold promise for cell replacement in models of a number of neurological disorders, these examples have typically been under conditions where the host cells become dysfunctional due to a cell autonomous etiology, i.e. a 'sick' cell within a relatively supportive environment. It has long been held that cell replacement in a toxic milieu would not likely be possible; donor cells would succumb in much the same way as endogenous cells had. Many metabolic diseases are characterized by this situation, suggesting that they would be poor targets for cell replacement therapies. On the other hand, models of such diseases could prove ideal for testing the capacity for cell replacement under such challenging conditions. In the twitcher (twi ) mouse -- as in patients with Krabbe or globoid cell leukodystrophy (GLD), for which it serves as an authentic model -- loss of galactocerebrosidase (GalC) activity results in the accumulation of psychosine, a toxic glycolipid. Twi mice, like children with GLD, exhibit inexorable neurological deterioration presumably as a result of dysfunctional and ultimately degenerated oligodendrocytes with loss of myelin. It is believed that GLD pathophysiology is related to a psychosine-filled environment that kills not only host oligodendrocytes but theoretically any new cells placed into that milieu. Through the implantation of NSCs into the brains of both neonatal and juvenile/young adult twi mice, we have determined that widespread oligodendrocyte replacement and remyelination is feasible. NSCs appear to be intrinsically resistant to psychosine -- more so in their undifferentiated state than when directed ex vivo to become oligodendrocytes. This resistance can be enhanced by engineering the NSCs to over-express GalC. Some twi mice grafted with such engineered NSCs had thicker white tracts and lived 2-3 times longer than expected. While their brains had detectable levels of GalC, it was probably more significant that their psychosine levels were lower than in twi mice that died at a younger age. This concept of resistance based on differentiation state extended to human NSCs which could similarly survive within the twi brain. Taken together, these results suggest a number of points regarding cellular therapies against degenerative diseases with a prominent cell non-autonomous component: Cell replacement is possible if cells resistant to the toxic environment are employed. Furthermore, an important aspect of successful treatment will likely be not only cell replacement but also cross-correction of host cells to provide them with enzyme activity and hence resistance. While oligodendrocyte replacement alone was not a sufficient treatment for GLD (even when extensive), the replacement of both cells and molecules -- e.g. with NSCs that could both become oligodendrocytes and 'pumps' for GalC -- emerges as a promising basis for a multidisciplinary strategy. Most neurological disease are complex in this way and will likely require multifaceted approaches, perhaps with NSCs serving as the 'glue'.  相似文献   

12.
目的:探讨异常免疫反应介导的糖尿病(DM)对大脑神经干/祖细胞(NSC/NPC)增殖的影响。方法:依据尿糖测定结果将非肥胖型糖尿病(NOD)小鼠分为发病组和未发病组,观察两组小鼠的体重变化和胰岛炎的严重程度。通过5-溴-2'-脱氧尿苷(BrdU)掺入和免疫荧光染色方法,观察两组小鼠海马齿状回(DG)和侧脑室下区(SVZ)的BrdU阳性细胞数量的变化,以评估NSC/NPC增殖情况。结果:发病组小鼠呈现出多饮、多食、多尿等糖尿病典型症状,体重较未发病组明显减低。发病组小鼠胰腺组织中炎症评分为3分的胰岛数量明显多于未发病组,且胰岛炎症的平均评分显著高于未发病组(P0.05)。与未发病组比较,发病组小鼠大脑海马DG区BrdU阳性细胞显著降低(P0.01);SVZ区的BrdU阳性细胞数量亦明显少于未发病组(P0.001)。结论:异常免疫反应介导的DM可抑制小鼠大脑NSC/NPC的增殖。  相似文献   

13.
Sun Y  Shi J  Fu SL  Lu PH  Xu XM 《生理学报》2003,55(3):349-354
将胚胎神经干细胞(neural stem cells,NSCs)移植至成年大鼠损伤的脊髓,观察移植后NSCs的存活、迁移以及损伤后的功能恢复。实验结果显示:动物NSCs移植4周后,斜板实验平均角度和运动评分结果比对照组均有明显增高(P<0.05),而脊髓损伤(spinal cord injury,SCI)处的空洞面积显著减小(P<0.05);在NSCs中加入胶质细胞源性的神经营养因子(glial cell line-derived neurotrophic factor,GDNF)后,上述改变更加显著。移植后的NSCs不仅能存活,而且向损伤的头端和尾端迁移达3mm之远。这些结果表明,移植的NSCs不仅可以存活、迁移,还可减小SCI空洞面积,促进动物神经功能的恢复;此外,我们的结果还表明GDNF对SCI功能恢复有促进作用。  相似文献   

14.
《Cytotherapy》2014,16(7):1011-1023
Background aimsGlioblastoma multiforme (GBM) is the most common and lethal primary brain tumor and current treatments have not improved its prognosis. Therefore, new strategies and therapeutic agents should be investigated. Growth arrest specific-1 (Gas1) is a protein that induces cell arrest and apoptosis of gliomas and a soluble form, tGas1, increases these effects acting in both autocrine and paracrine manners. Moreover, neural stem cells (NSCs) can be used as a vehicle to transport therapeutic molecules because they have innate tropism towards tumors.MethodsLentiviral vectors were used to obtain NSCs capable of expressing tGas1 in a regulated manner. The ability of engineered NSCs to track and reach GBM in vivo, produce tGas1, and their efficacy decreasing tumor growth and increasing the overall health and survival time of nude mice implanted with GBM were assessed.ResultsThe overexpression of tGas1 from NSCs decreased viability and induced cell arrest and apoptosis of GBM cells and also, albeit in a reduced manner, of NSCs themselves. NSCs migrate from one cerebral hemisphere to the contralateral, reach GBM, express the tGas1 transgene when induced by tetracycline and produce the protein. Tumor volume decreased by 77% compared with controls, and tGas1 improved the overall health and increased the survival time of mice implanted with GBM by 75%.ConclusionsWe demonstrated that tGas1 has an antineoplastic effect, and the results support the potential of tGas1 as an adjuvant for the treatment of gliomas.  相似文献   

15.
Neural stem cells (NSCs) can self-renew and differentiate into neurons and glia. Transplanted NSCs can replace lost neurons and glia after spinal cord injury (SCI), and can form functional relays to re-connect spinal cord segments above and below a lesion. Previous studies grafting neural stem cells have been limited by incomplete graft survival within the spinal cord lesion cavity. Further, tracking of graft cell survival, differentiation, and process extension had not been optimized. Finally, in previous studies, cultured rat NSCs were typically reported to differentiate into glia when grafted to the injured spinal cord, rather than neurons, unless fate was driven to a specific cell type. To address these issues, we developed new methods to improve the survival, integration and differentiation of NSCs to sites of even severe SCI. NSCs were freshly isolated from embryonic day 14 spinal cord (E14) from a stable transgenic Fischer 344 rat line expressing green fluorescent protein (GFP) and were embedded into a fibrin matrix containing growth factors; this formulation aimed to retain grafted cells in the lesion cavity and support cell survival. NSCs in the fibrin/growth factor cocktail were implanted two weeks after thoracic level-3 (T3) complete spinal cord transections, thereby avoiding peak periods of inflammation. Resulting grafts completely filled the lesion cavity and differentiated into both neurons, which extended axons into the host spinal cord over remarkably long distances, and glia. Grafts of cultured human NSCs expressing GFP resulted in similar findings. Thus, methods are defined for improving neural stem cell grafting, survival and analysis of in vivo findings.  相似文献   

16.
Neural stem cells (NSCs, B1 cells) are retained in the walls of the adult lateral ventricles but, unlike embryonic NSCs, are displaced from the ventricular zone (VZ) into the subventricular zone (SVZ) by ependymal cells. Apical and basal compartments, which in embryonic NSCs play essential roles in self-renewal and differentiation, are not evident in adult NSCs. Here we show that SVZ B1 cells in adult mice extend a minute apical ending to directly contact the ventricle and a long basal process ending on blood vessels. A closer look at the ventricular surface reveals a striking pinwheel organization specific to regions of adult neurogenesis. The pinwheel's core contains the apical endings of B1 cells and in its periphery two types of ependymal cells: multiciliated (E1) and a type (E2) characterized by only two cilia and extraordinarily complex basal bodies. These results reveal that adult NSCs retain fundamental epithelial properties, including apical and basal compartmentalization, significantly reshaping our understanding of this adult neurogenic niche.  相似文献   

17.
Calcium sensing receptor (CaSR) is implicated in the establishment of neural connections and myelin formation. However, its contribution to brain development remains unclear. We addressed this issue by analyzing brain phenotype in postnatal CaSR null mice, a model of human neonatal severe hyperparathyroidism. One- and 2-week-old CaSR null mice exhibited decreased brain weight and size with a developmental delay in expression of proliferating cell nuclear antigen. Neuronal and glial differentiation markers, neuronal specific nuclear protein, glial fibrillary acidic protein, and myelin basic protein, were also decreased compared with age-matched wild-type littermates. Moreover, deletion of the parathyroid hormone gene that corrects hyperparathyroidism, hypercalcemia, hypophosphatemia, and whole-body growth retardation normalized brain cell proliferation, but not differentiation, in CaSR null mice. Cultured neural stem cells (NSCs) derived from the subventricular zones of CaSR null neonatal mice exhibited normal proliferation capacity but decreased differentiation capacity, compared with wild-type controls. These results demonstrate that direct effects of CaSR absence impair NSC differentiation, while secondary effects of parathyroid hormone-related endocrine abnormalities impair NSC proliferation, both of which contribute to delayed brain development in CaSR null newborn mice.  相似文献   

18.
低氧促进神经干细胞向多巴胺能神经元分化   总被引:2,自引:0,他引:2  
Zhao T  Zhang CP  Zhu LL  Jin B  Huang X  Fan M 《生理学报》2007,59(3):273-277
神经干细胞(neural stem cells,NSCs)作为具有多向分化潜能的神经前体细胞,被广泛应用于细胞移植等研究,而低氧不但调节干细胞的体外增殖,在干细胞分化中也具有重要的作用。本文着重探讨了低氧对NSCs分化的调节作用。采用Wistar孕大鼠(E13.5d),分离胚胎中脑NSCs,加入无血清DMEM/F12培养液(含20ng/mL EGF、20ng/mL bFGF、1% N2和B27),3~5d后传代,细胞培养至第三代进行诱导分化,分别在低氧(3%O2)和常氧(20%O2)条件下诱导分化3d,然后在常氧条件下分化成熟5~7d(DMEM/F12含1%FBS、N2和B27)后进行检测。Nestin、NeuN以及TH免疫组织化学鉴定NSCs;流式细胞术分析测定NSCs向TH阳性神经元方向的分化;高效液相色谱测定细胞培养上清液中多巴胺(dopamine,DA)含量。结果显示,分离培养的NSCs均为nestin阳性细胞;低氧可明显促进NSCs向神经元方向的分化;TH阳性神经元比例在常氧和低氧组分别为(10.25±1.03)%和(19.88±1.44)%。NSCs诱导分化7d后,低氧组细胞培养上清液中DA浓度明显增加,约为常氧组的2倍(P〈0.05,n=8)。上述结果表明,3%低氧可促进NSCs向神经元方向,特别是向DA能神经元方向分化。这为NSCs应用于临床治疗帕金森病提供了基础。  相似文献   

19.
The cochlear sensory epithelium and spiral ganglion neurons (SGNs) in the adult mammalian inner ear do not regenerate following severe injury. To replace the degenerated SGNs, neural stem cell (NSC) is an attractive alternative for substitution cell therapy. In this study, adult mouse NSCs were transplanted into normal and deafened inner ears of guinea pigs. To more efficiently drive the implanted cells into a neuronal fate, NSCs were also transduced with neurogenin 2 (ngn2) before transplantation. In deafened inner ears and in animals transplanted with ngn2-transduced NSCs, surviving cells expressed the neuronal marker neural class III beta-tubulin. Transplanted cells were found close to the sensory epithelium and adjacent to the SGNs and their peripheral processes. The results illustrate that adult NSCs can survive and differentiate in the injured inner ear. It also demonstrates the feasibility of gene transfer to generate specific progeny for cell replacement therapy in the inner ear.  相似文献   

20.
The olfactory bulb (OB) periventricular zone is an extension of the forebrain subventricular zone (SVZ) and thus is a source of neuroprogenitor cells and neural stem cells. While considerable information is available on the SVZ-OB neural stem cell (NSC)/neuroprogenitor cell (NPC) niche in rodents, less work has been done on this system in large animals. The newborn piglet is used as a preclinical translational model of neonatal hypoxic-ischemic brain damage, but information about the endogenous sources of NSCs/NPCs in piglet is needed to implement endogenous or autologous cell-based therapies in this model. We characterized NSC/NPC niches in piglet forebrain and OB-SVZ using western blotting, histological, and cell culture methods. Immunoblotting revealed nestin, a NSC/NPC marker, in forebrain-SVZ and OB-SVZ in newborn piglet. Several progenitor or newborn neuron markers, including Dlx2, musashi, doublecortin, and polysialated neural cell adhesion molecule were also detected in OB-SVZ by immunoblotting. Immunohistochemistry confirmed the presence of nestin, musashi, and doublecortin in forebrain-SVZ and OB-SVZ. Bromodeoxyuridine (BrdU) labeling showed that the forebrain-SVZ and OB-SVZ accumulate newly replicated cells. BrdU-positive cells were immunolabeled for astroglial, oligodendroglial, and neuronal markers. A lateral migratory pathway for newly born neuron migration to primary olfactory cortex was revealed by BrdU labeling and co-labeling for doublecortin and class III β tubulin. Isolated and cultured forebrain-SVZ and OB-SVZ cells from newborn piglet had the capacity to generate numerous neurospheres. Single cell clonal analysis of neurospheres revealed the capacity for self-renewal and multipotency. Neurosphere-derived cells differentiated into neurons, astrocytes, and oligodendrocytes and were amenable to permanent genetic tagging with lentivirus encoding green fluorescent protein. We conclude that the piglet OB-SVZ is a reservoir of NSCs and NPCs suitable to use in autologous cell therapy in preclinical models of neonatal/pediatric brain injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号