首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The effect of sex steroids, 17β-estradiol and testosterone, on the production of 6-keto-prostaglandin F, prostaglandin F and prostaglandin E2 was studied in cultures of piglet aorta endothelial cells. In cells isolated from female animals both steroids stimulated the secretion of prostaglandins. In contrast, sex steroids did not affect prostaglandin synthesis by endothelial cells taken from male animals. In addition, female endothelial cells convert testosterone into Estriol, estrone and estradiol. estradiol-induced stimulation of prostacyclin production may explain in part the beneficial role generally attributed to naturally occuring estrogens in cardiovascular diseases.  相似文献   

2.
The contribution of sex steroids to sex-related differences in renal prostaglandin dehydrogenase activity and urinary prostaglandin excretion was examined in 7-8-week-old male and female rats subjected to sham-operation or gonadectomy at 3 weeks of age. Rats were injected subcutaneously twice over a 6-day interval with vehicle (peanut oil, 0.5 mg/kg) or with depot forms of testosterone (10 mg/kg), estradiol (0.1 mg/kg), progesterone (5 mg/kg), or with estradiol and progesterone combined (0.1 and 5 mg/kg). After the second injection, 24-h urine samples were collected for prostaglandin measurement by radioimmunoassay; the rats were killed, and renal and pulmonary prostaglandin dehydrogenase activities were determined by radiochemical assay. Renal prostaglandin dehydrogenase activity was 10-times higher in intact male rats than in intact females. Gonadectomy increased renal prostaglandin dehydrogenase activity 4-fold in females, but had no effect in males; estradiol, alone or combined with progesterone, markedly suppressed renal prostaglandin dehydrogenase activity in both sexes, while testosterone or progesterone alone had no effect. Pulmonary prostaglandin dehydrogenase did not differ between the sexes and was unaffected by gonadectomy or sex-steroid treatment. Intact female sham-operated rats excreted 70-100% more prostaglandin E2, prostaglandin F2 alpha, and 6-keto-prostaglandin F1 alpha in urine than did males; gonadectomy abolished the difference in urinary prostaglandin E2 excretion. Estradiol decreased urinary prostaglandin E2 in females but not in males; treatment with other sex steroids did not alter urinary prostaglandin excretion.  相似文献   

3.
Estradiol-17 beta increases the production of prostaglandin F2 alpha (PGF2 alpha) in long term monolayer cell cultures of the human endometrium in a dose dependent manner. Progesterone in pharmacological dosage stimulates the syntheses of PGF2 alpha and of prostaglandin E2 (PGE2). The synthesis of prostaglandin I2 (PGI2) is not influenced by sex steroids in long term monolayer cell cultures of the human endometrium.  相似文献   

4.
Endothelin-1 (10(-11)M-10(-7)M) was incubated with human umbilical vein endothelial cells and cells derived from amnion and decidua and prostaglandin production was determined. The rates of biosynthesis of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) and prostaglandin E2 (PGE2) by endothelial cells were increased significantly by treatment with endothelin-1. Amnion cell PGE2 production was reduced significantly by endothelin-1 treatment whereas decidual PGE2 and prostaglandin F2 alpha production was unaffected by this treatment. Thus, it is possible that endothelins may play a part in the regulation of uteroplacental hemodynamics and the mechanisms of parturition.  相似文献   

5.
After [3H]arachidonic acid labeling, cyclooxygenase products were qualitatively analysed in the media of each cultured vascular cell type by reverse-phase high-performance liquid chromatography (rp-HPLC). The prostaglandin E2, prostaglandin F2 alpha, 6-ketoprostaglandin F1 alpha and thromboxane B2 detected in the rp-HPLC radioactive profile were then quantified by radioimmunoassay (RIA) in separate sets of experiments. In preconfluent endothelial cells prostaglandin F2 alpha and 6-ketoprostaglandin F1 alpha were detected in equal amounts (49%), whereas after confluence 6-ketoprostaglandin F1 alpha represented 57% of total secretion (P less than 0.05). Smooth muscle cells secreted mainly prostaglandin F2 alpha (48%) and fibroblasts prostaglandin E2 (44%). Using the bioassay method, antiaggregatory activity was detected only in endothelial cells, though a small percentage of immunoreactive 6-ketoprostaglandin F1 alpha was encountered in smooth muscle cells and fibroblasts (13 and 10%, respectively). Radioimmunological analysis after rp-HPLC separation of the medium of endothelial cells showed that the anti-6-ketoprostaglandin F1 alpha antibody recognized, among other substances, an unidentified compound. Its retention time was similar to that of prostaglandin F2 alpha. This unidentified compound was not detected in the media from smooth muscle cells and fibroblasts.  相似文献   

6.
The production of prostaglandin F2 alpha in monolayer stromal cell cultures of proliferative human endometrium is enhanced by 10(-7) mol/l estradiol-17 beta or 10(-4) mol/l progesterone. Progesterone in high concentration (10(-4) mol/l) also enhanced the synthesis of prostaglandin E2. Clomiphene citrate reduced this increased prostaglandin production dose dependently. The synthesis of prostaglandin I2 was not influenced either by sex steroids or by clomiphene citrate.  相似文献   

7.
Besides 6-ketoprostaglandin F1 alpha, bovine aortic endothelial cells also produced considerable amounts of 6,15-diketoprostaglandin F1 alpha from arachidonic acid, either exogenously added or released from cellular phospholipids. Incubations of particulate fractions of endothelial cells with the cyclic endoperoxides prostaglandin G2 and prostaglandin H2 showed that 6,15-diketoprostaglandin F1 alpha is formed by the action of prostaglandin I2 synthetase on prostaglandin G2. The labile metabolite 15-hydroperoxyprostaglandin I2 is then converted nonenzymatically to the 15-keto derivative. In the presence of reduced glutathione, quantitative analysis of both metabolites by gas chromatography-mass spectrometry showed a significant decrease of 6,15-diketoprostaglandin F1 alpha formation, whereas prostaglandin I2 synthesis was markedly increased. This shift seems to be due to a stimulation of peroxidase by GSH, a well known cofactor of this enzyme. Thus, it seems that a decreased endothelial prostaglandin I2 formation may occur when cellular glutathione levels are reduced as a consequence of oxidant injury and lipid peroxidation. Additionally, ferrous ions seems to be involved in the regulation of endothelial prostaglandin I2 synthesis, since Desferal, a specific ferrous ion chelator that might have antimetastatic properties, produced a pronounced shift from 6,15-diketoprostaglandin F1 alpha to the 6-keto derivative, i.e., prostaglandin I2.  相似文献   

8.
Plasma prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha), androgens and estradiol-17 beta were measured in the male water frog, Rana esculenta, during the annual sexual cycle. In vivo experiments were carried out to study the effects of PGE2 and PGF2 alpha on plasma sex steroids during the following periods: prereproduction (April), reproduction (May), postreproduction (June) and recovery (October). In the same months, in vitro experiments were performed to evaluate the effects of these two prostaglandins (PGs) on testicular release of sex steroids. The PGE2 plasma levels peaked in April. PGE2 treatment in vivo increased androgens in April and October, while PGF2 alpha increased estradiol-17 beta in June and October. In in vitro experiments, PGE2 increased androgens in April, while PGF2 alpha increased estradiol-17 beta in October. These results suggest that PGE2 could induce the breeding activity, probably through androgens synthesis. PGF2 alpha could interrupt the breeding, through estradiol-17 beta secretion.  相似文献   

9.
Pearson LJ  Yandle TG  Nicholls MG  Evans JJ 《Peptides》2008,29(6):1057-1061
It is well documented that there are gender differences in the incidence and patterns of cardiovascular disease; males have a higher incidence of cardiovascular disease than premenopausal women. We have therefore investigated whether the sex hormones, estradiol and testosterone, could directly influence the secretion of vascular peptides from human aortic endothelial cells (HAEC). Previously we have shown that testosterone can increase the number of HAECs that secrete adrenomedullin. In this study we investigated sex hormone regulation of endothelin-1 in HAEC. Several studies have observed a reduction in endothelin-1 secretion from endothelial cells in the presence of estradiol, the effect being more marked for stimulated cells. Studies on the actions of testosterone are much fewer and inconclusive. In this study we observed that estradiol did not change the number of cells secreting endothelin-1 during 4 h incubation under basal conditions but decreased the number of secreting cells stimulated with angiotensin-II. Testosterone induced an increase in the number of cells secreting endothelin-1 (p = 0.03). Complementary incubations revealed that testosterone up-regulated endothelin-1 mRNA at 1–3 h (p < 0.05). These results, together with our previous observations, indicate that angiotensin-II, testosterone and estradiol have parallel effects on the production of endothelin-1 as on adrenomedullin in HAEC. We conclude that there is potential for coordinated modulation by sex steroids and angiotensin-II of vasoactive peptide production in human endothelial cells.  相似文献   

10.
We have identified thromboxane specific receptors in membrane preparations of bovine pulmonary artery endothelial cells using a potent thromboxane specific antagonist, [125I]-PTA-OH in a binding assay. The binding was specific and saturable. Neither thromboxane B2, prostaglandin D2 nor prostaglandin F2 alpha displaced the ligand (0.1 nM) at concentrations up to 10 microM. However, binding was displaced by IPTA-OH greater than SQ29548 greater than U46619. In addition, we observed that thromboxane mimetic U46619 significantly lowered the basal production of prostacyclin and also markedly suppressed bradykinin-stimulated prostacyclin released by endothelial cells. We propose that an important biological effect of thromboxane on vascular endothelial cells may be the suppression of prostacyclin production.  相似文献   

11.
Rats with delayed implantation, induced by ovariectomy or hypophysectomy, as well as those with normal pregnancy were used to examine the changes in uterine prostaglandin F2 alpha (PGF2 alpha) associated with implantation. In normal pregnant rats, while maximal uterine production of PGF2 alpha was found at 09:00, maximal catabolic enzyme activity (CEA) was seen at 17:00 of day 4. Uterine content of PGF2 alpha was high at 17:00 of day 4, but decreased by 80% within the next 24 h. There was no change in PGF2 alpha production during the first 6 h after injection of estradiol to hypophysectomized animals. There was, however, a dramatic decrease in production within the next 6 h. In contrast, CEA was not different in animals treated with estrogen than in those receiving only progesterone. In ovariectomized animals, uterine PGF2 alpha production also was lowered by estrogen but in these animals CEA was significantly elevated 18 h after injection of estradiol. Estrogen caused a greater increase in PGF2 alpha content in the hypophysectomized, compared to the ovariectomized, rats. The results are consistent with the view that ovarian steroids play an important role in controlling the changes in uterine PGF2 alpha around the time of implantation in rat.  相似文献   

12.
Prostaglandin production was studied in fetal and adult type II alveolar epithelial cells. Two culture systems were employed, fetal rat lung organotypic cultures consisting of fetal type II cells and monolayer cultures of adult lung type II cells. Dexamethasone, thyroxine, prolactin and insulin, hormones which influence lung development, each reduced the production of prostaglandin E and F alpha by the organotypic cultures. The fetal cultures produced relatively large quantities of prostaglandin E and F alpha and smaller quantities of 6-keto-prostaglandin F1 alpha and thromboxane B2. However, prostaglandin E2 production was predominant. In contrast, the adult type II cells in monolayer culture produced predominantly prostacyclin (6-keto-prostaglandin F1 alpha) along with smaller quantities of prostaglandin E2 and F2 alpha. The type II cells were relatively unresponsive to prostaglandins. Exogenously added prostaglandin E, had no effect on cell growth, and only a minimal effect on cyclic AMP levels in the monolayer cultures.  相似文献   

13.
To test the hypothesis that ovarian steroid hormones modulate oxytocin-induced release of prostaglandin F2alpha (PGF2alpha) from uterine endometrium, 2 ovariectomized rabbits were pretreated with progesterone (5 mg/day for 10 days), 2 with estradiol-17 beta (25 microgram/day for 10 days), 2 with both steroids, and one with sesame oil only. On the last day of treatment, endometrial fragments were excised and incubated in vitro with or without oxytocin (100 muU/ml). Although endometrium from rabbits pretreated with combined steroids released more PGF2alpha immediately after excision than did tissue from animals pretreated with either steroid by itself, endometrium from animals pretreated with estradiol-17 beta alone released the most PGF2alpha during sustained incubation in vitro. Moreover, only this tissue exhibited significant oxytocin-dependent release of PGF2alpha. At the dosages used, progesterone completely antagonized both of these effects of estradiol-17 beta. The results support the hypothesis that ovarian steroid hormones regulate oxytocin-dependent release of PGF2alpha from endometrial cells. A posible mechanism of action is suggested.  相似文献   

14.
The cerebral vasculature is a target tissue for sex steroid hormones. Estrogens, androgens, and progestins all influence the function and pathophysiology of the cerebral circulation. Estrogen decreases cerebral vascular tone and increases cerebral blood flow by enhancing endothelial-derived nitric oxide and prostacyclin pathways. Testosterone has opposite effects, increasing cerebral artery tone. Cerebrovascular inflammation is suppressed by estrogen but increased by testosterone and progesterone. Evidence suggests that sex steroids also modulate blood-brain barrier permeability. Estrogen has important protective effects on cerebral endothelial cells by increasing mitochondrial efficiency, decreasing free radical production, promoting cell survival, and stimulating angiogenesis. Although much has been learned regarding hormonal effects on brain blood vessels, most studies involve young, healthy animals. It is becoming apparent that hormonal effects may be modified by aging or disease states such as diabetes. Furthermore, effects of testosterone are complicated because this steroid is also converted to estrogen, systemically and possibly within the vessels themselves. Elucidating the impact of sex steroids on the cerebral vasculature is important for understanding male-female differences in stroke and conditions such as menstrual migraine and preeclampsia-related cerebral edema in pregnancy. Cerebrovascular effects of sex steroids also need to be considered in untangling current controversies regarding consequences of hormone replacement therapies and steroid abuse.  相似文献   

15.
Freshly isolated neonatal porcine aortic tissue (smooth muscle with or without endothelium present) produced approximately 30 ng/mg wet tissue of 6-oxo-prostaglandin F1 alpha (the stable hydrolysis product from prostacyclin) and approximately 15 ng/mg of prostaglandin E2, as measured by radioimmunoassay after 24 h incubation in culture medium. Primary cultures of porcine endothelial and smooth muscle cells (isolated by enzymic digestion of aortic tissue) exhibited the same pattern of prostaglandin production, but absolute values were greater than for fresh tissue, particularly in the case of endothelium. Subcultures of endothelium produced smaller amounts of prostaglandins, although the pattern remained similar. In contrast, subcultures of smooth muscle cells produced a greater total amount of prostaglandins than did primary cultures, and the main product was prostaglandin E2. Experiments with [14C] prostaglandin H2 or [14C]arachidonic acid confirmed that aortic tissue, cultured endothelium, and primary cultures or aortic smooth muscle cells synthesized prostacyclin, and demonstrated that subcultured smooth muscle cells enzymically isomerised prostaglandin H2 to prostaglandin E2. Kinetic studies showed that prostaglandin production by cultured vascular cells was transiently increased by subculture or changing the growth medium, and that production per cell declined with increasing cell density. The change in pattern of prostaglandin production during culture was shown to be due to a rapid decline in the rate of prostacyclin production (which apparently began immediately after tissue isolation), together with a more gradual rise in prostaglandin E2 production. These results indicate that the amounts and ratios of prostaglandins produced by vascular endothelial and smooth muscle cells are greatly affected by the conditions used to isolate and culture the cells; vascular cells in vivo may similarly alter their pattern of prostaglandin production in response to local changes in their environment.  相似文献   

16.
Chorioamnionitis is frequently associated with preterm labour. We have used a cell culture model system to examine the effects of leukocytes upon the metabolism of endogenous arachidonic acid from within amnion cells. We have demonstrated that activated leukocytes release substances which increase the overall release and metabolism of endogenous arachidonic acid within amnion cells causing an increase in prostaglandin E2 production as well as a smaller increase in non-cyclo-oxygenase metabolism. When amnion cells and leukocytes are cultured together, in addition to prostaglandin E2 production by amnion cells, arachidonic acid released by the amnion cells appears to be metabolised by leucocytes to prostaglandin F2 alpha, prostacyclin and thromboxane A2. Prostaglandins E2 and F2 alpha are the principal cyclo-oxygenase products of this interaction. We postulate that chorioamnionitis stimulates preterm labour not only by causing an increase in prostaglandin E2 synthesis by amnion cells but by metabolism of amnion derived arachidonic acid to the powerfully oxytocic prostaglandin F2 alpha by leukocytes.  相似文献   

17.
The effect of sex steroids on the regulation of hepatocyte resting membrane potential (Em) was investigated. In adult rat liver snips, Em was significantly lower in males than females. In prepubertal animals no sex related difference was observed and the Em was comparable to that of adult females. Exposure of the human liver cell line, HepG2 cells, to 10 microM testosterone resulted in a significant hyperpolarization. These data indicate that the more negative Em found in male animals is specifically due to the influence of testosterone. In addition, they also suggest that sex hormone regulation of Em is maintained by HepG2 cells. This cell line may prove to be a good model for the study of liver cell function.  相似文献   

18.
This study investigated the response of bovine pulmonary artery endothelial cells to incubation in hyperoxia (95% O2-5% CO2). Changes in cell number and morphology, release of lactate dehydrogenase, and production of arachidonic acid metabolites were assessed during continuous exposure of confluent endothelial monolayers to air (air-5% CO2, "controls") or O2 (95% O2-5% CO2, "O2-exposed") for periods of 12-72 h. Control monolayer cell numbers remained constant (approximately 2,000,000 cells/flask), whereas the number of cells in O2-exposed monolayers decreased progressively to 30% of controls (P less than 0.01) by 72 h. As assessed by radioimmunoassay, both control and O2-exposed cells produced the prostacyclin metabolite, 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), and prostaglandin F2 alpha (PGF2 alpha), but no thromboxane metabolite (TxB2) was detected. The O2-exposed cells released significantly more 6-keto-PGF1 alpha and PGF2 alpha than control cells when apparent net production rates over the entire 72-h period were compared. In addition, both control and O2-exposed (48 h) endothelial monolayers released immunoreactive leukotriene B4 (LTB4) on stimulation with calcium ionophore (10 microM A23187). As with the cyclooxygenase products, O2-exposed cells released more immunoreactive LTB4 than did controls. Both cyclooxygenase and lipoxygenase metabolites of arachidonic acid are released by cultured endothelial cells during the development of O2 toxicity.  相似文献   

19.
Plasma patterns of prostaglandin F2 alpha (PGF2 alpha) and sex hormones (progesterone, androgens and 17 beta-estradiol) have been studied in the male crested newt, Triturus carnifex (Laur.), during the sexual cycle. The effects of exogenous PGF2 alpha on sex steroids have also been observed. In addition, effects of one week's captivity are reported. The patterns of plasma sex hormones, during the annual cycle, are consistent with the results previously reported for the same newt species. PGF2 alpha plasma level peaks in April, is low in summer, and progressively increases during autumn to peak again in December. The April PGF2 alpha peak coincides with a plasma estradiol increase and with an androgens drop. In April-collected newts, moreover, PGF2 alpha treatment induces a significant estradiol increase. These findings lead us to suppose that at the end of the breeding season (April) a PGF2 alpha-dependent estradiol synthesis occurs which could be implied in reproductive period termination. In several vertebrates, including some amphibian species, in fact, chronic administration of estradiol results in a strong inhibition of testicular endocrine tissue activity. The putative role of PGF2 alpha-dependent estradiol production in the gonadal regulation in amphibia living in temperate zones is discussed. The autumn PGF2 alpha increase has been tentatively related to the recovery gonadal processes and secondary sexual character development.  相似文献   

20.
The mechanisms regulating sexual behaviours in female vertebrates are still poorly understood, mainly because in most species sexual displays in females are more subtle and less frequent than displays in males. In a sex-role reversed population of a teleost fish, the peacock blenny Salaria pavo, an external fertilizer, females are the courting sex and their sexual displays are conspicuous and unambiguous. We took advantage of this to investigate the role of ovarian-synthesized hormones in the induction of sexual displays in females. In particular, the effects of the sex steroids oestradiol (E2) and testosterone (T) and of the prostaglandin F2α (PGF2α) were tested. Females were ovariectomized and their sexual behaviour tested 7 days (sex steroids and PGF2α) and 14 days (sex steroids) after ovariectomy by presenting females to an established nesting male. Ovariectomy reduced the expression of sexual behaviours, although a significant proportion of females still courted the male 14 days after the ovary removal. Administration of PGF2α to ovariectomized females recovered the frequency of approaches to the male''s nest and of courtship displays towards the nesting male. However, E2 also had a positive effect on sexual behaviour, particularly on the frequency of approaches to the male''s nest. T administration failed to recover sexual behaviours in ovariectomized females. These results suggest that the increase in E2 levels postulated to occur during the breeding season facilitates female mate-searching and assessment behaviours, whereas PGF2α acts as a short-latency endogenous signal informing the brain that oocytes are mature and ready to be spawned. In the light of these results, the classical view for female fishes, that sex steroids maintain sexual behaviour in internal fertilizers and that prostaglandins activate spawning behaviours in external fertilizers, needs to be reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号