首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keratins I and II form the largest subgroups of mammalian intermediate filament (IF) proteins and account as obligatory heteropolymers for the keratin filaments of epithelia. All human type I genes except for the K18 gene are clustered on chromosome 17q21, while all type II genes form a cluster on chromosome 12q13, that ends with the type I gene K18. Highly related keratin gene clusters are found in rat and mouse. Since fish seem to lack a keratin II cluster we screened the recently established draft genomes of a bird (chicken) and an amphibian (Xenopus). The results show that keratin I and II gene clusters are a feature of all terrestrial vertebrates. Because hair with its multiple hair keratins and inner root sheath keratins is a mammalian acquisition, the keratin gene clusters of chicken and Xenopus tropicalis have only about half the number of genes found in mammals. Within the type I clusters all genes have the same orientation. In type II clusters there is a rare gene of opposite orientation. Finally we show that the genes for keratins 8 and 18, which are the first expression pair in embryology, are not only adjacent in mammals, but also in Xenopus and three different fish. Thus neighboring K8 and K18 genes seem a feature shared by all vertebrates. In contrast to the two well defined keratin gene clusters of terrestrial vertebrates, three teleost fish show an excess of type I over type II genes, the lack of a keratin type II gene cluster and a striking dispersal of type I genes, that are probably the result of the teleost-specific whole genome duplication followed by a massive gene loss. This raises the question whether keratin gene clusters extend beyond the ancestral bony vertebrate to cartilage fish and lamprey. We also analyzed the complement of non-keratin IF genes of the chicken. Surprisingly, an additional nuclear lamin gene, previously overlooked by cDNA cloning, is documented on chromosome 10. The two splice variants closely resemble the lamin LIII a + b of amphibia and fish. This lamin gene is lost on the mammalian lineage.  相似文献   

2.
Our laboratories are interested in characterizing genes involved in the myriad of heritable diseases affecting the domestic dog, Canis lupus familiaris, and in development of detailed genetic and physical maps of the canine genome. Included in these efforts is examination of conservation of the genetic organization, structure, and function of gene families involved in diseases of the canine skin, skeleton, and eye. To that end, study of the highly conserved keratin gene family was undertaken. Keratins belong to the superfamily of intermediate filaments and are the major structural proteins of the epidermis, hair, and nail. The keratins are highly conserved throughout vertebrate evolution both at the DNA and amino acid sequence levels. Mutations in genes encoding epithelial keratins are known to cause various diseases in humans, and similar histopathological presentations have been reported in the dog. The keratins are divided into two groups, type I (acidic) and type II (basic). In the human, the genes encoding the acidic and basic keratins are clustered on Chrs 17 and 12, respectively. The same genetic arrangement is seen in the mouse with the acidic and basic keratin gene clusters found on Chrs 11 and 15, respectively. Reported here are the chromosomal localization of acidic and basic canine keratin genes as well as supportive sequence data. Fluorescence in situ hybridization (FISH) experiments with clones isolated from a canine genomic library suggest that the acidic keratin gene cluster resides on CFA9 and the basic keratin gene cluster is located on CFA27. Received: 25 September 1998 / Accepted: 1 December 1998  相似文献   

3.
Comprehensive analysis of keratin gene clusters in humans and rodents   总被引:1,自引:0,他引:1  
Here, we present the comparative analysis of the two keratin (K) gene clusters in the genomes of man, mouse and rat. Overall, there is a remarkable but not perfect synteny among the clusters of the three mammalian species. The human type I keratin gene cluster consists of 27 genes and 4 pseudogenes, all in the same orientation. It is interrupted by a domain of multiple genes encoding keratin-associated proteins (KAPs). Cytokeratin, hair and inner root sheath keratin genes are grouped together in small subclusters, indicating that evolution occurred by duplication events. At the end of the rodent type I gene cluster, a novel gene related to K14 and K17 was identified, which is converted to a pseudogene in humans. The human type II cluster consists of 27 genes and 5 pseudogenes, most of which are arranged in the same orientation. Of the 26 type II murine keratin genes now known, the expression of two new genes was identified by RT-PCR. Kb20, the first gene in the cluster, was detected in lung tissue. Kb39, a new ortholog of K1, is expressed in certain stratified epithelia. It represents a candidate gene for those hyperkeratotic skin syndromes in which no K1 mutations were identified so far. Most remarkably, the human K3 gene which causes Meesmann's corneal dystrophy when mutated, lacks a counterpart in the mouse genome. While the human genome has 138 pseudogenes related to K8 and K18, the mouse and rat genomes contain only 4 and 6 such pseudogenes. Our results also provide the basis for a unified keratin nomenclature and for future functional studies.  相似文献   

4.
Type I and type II keratins are major constituents of intermediate filaments that play a fundamental role in the cytoskeletal network. By using both somatic cell hybrids and conventional and interspecific linkage crosses, several genes encoding type I keratins, including the epidermal keratin K10, were shown to be closely linked to the homeobox-2 complex and the rex locus on mouse chromosome 11. The absence of crossovers between type I keratin-encoding genes and rex (N = 239), a locus affecting hair development, raises the possibility that mutations at rex and neighboring loci affecting skin and hair development involve type I keratin genes.  相似文献   

5.
We present the nucleotide and amino acid sequence for a novel human type I hair keratin, which could be identified through its high sequence homology and strict carboxyterminal length identity as a human ortholog of the murine hair keratin mHa3. Our hHa3 sequence differs, however, from that of a previously described hHa3 hair keratin (published only as an amino acid sequence; [13]) in 24 amino acid positions, 8 of which occur in the middle of the carboxyterminal domain. PCR of genomic DNA from 25 normal human subjects using a primer pair derived from sequence segments located in the 3-region of our hHa3 clone that encode conserved amino acid sequences in both keratins, resulted in the amplification of two distinct products of 0.38 kbp and 1.0 kbp. DNA sequence analysis of the cloned PCR products allowed identification of the 0.38 kb sequence as that originating from Yuet al. [13] and the 1.0 kb sequence as that being derived from our data. The difference in fragment length was due to unique intron 6 sequences, indicating that these two keratin species are encoded by genes of their own. Moreover, extensive Southern blot analyses with DNA from 25 unrelated individuals of different races using a 3-noncoding sequence from our keratin and the intron 6 sequence of the keratin of Yuet al. [13], as hybridization probes showed that both keratin genes are present as single copy sequences occurring ubiquitously and without gross alterations in the human genome. Collectively, these data demonstrate that the human type I hair keratin described in this paper represents an isoform of the previously described hHa3 keratin. We propose that these hHa3 isoforms be named in chronological order of discovery hHa3-I and hHa3-II.  相似文献   

6.
The human type I keratins K16 and K14 are coexpressed in a number of epithelial tissues, including esophagus, tongue, and hair follicles. We determined that two genes encoding K16 and three genes encoding K14 were clustered in two distinct segments of chromosome 17. The genes within each cluster were tightly linked, and large parts of the genome containing these genes have been recently duplicated. The sequences of the two K16 genes showed striking homology not only within the coding sequences, but also within the intron positions and sequences and extending at least 400 base pairs 5' upstream and 850 base pairs 3' downstream from these genes. Despite the strong homologies between these two genes, only one of the genes encoded a protein which assembled into keratin filaments when introduced into simple epithelial cells. While there were no obvious abnormalities in the sequence of the other gene, its promoter seemed to be significantly weaker, and even a hybrid gene with the other gene's promoter gave rise to a much reduced mRNA level after gene transfection. To demonstrate that the functional K16 gene that we identified was in fact responsible for the K16 expressed in human tissues, we made a polyclonal antiserum which recognized our functional K16 gene product in both denatured and filamentous form and which was specific for bona fide human K16.  相似文献   

7.
A Waseem  A C Gough  N K Spurr  E B Lane 《Genomics》1990,7(2):188-194
Many human genes encoding keratin intermediate filament proteins are clustered on chromosomes 17 (the type I genes) and 12 (the type II genes). Some have not yet been localized, notably the genes for the primary embryonic keratins 8 and 18, normally expressed in simple epithelia: this is because the numerous pseudogenes for these keratins have made it difficult to identify the true functional gene in each case. Through the use of human-specific primers from within introns of the published gene sequence for human type I keratin 18, human genomic DNA has been specifically amplified using the polymerase chain reaction. A single reaction product was obtained. DNA from a characterized series of mouse-human somatic cell hybrid lines was tested for the presence of sequences able to initiate the chain reaction from these primers, and the presence or absence of this genomic DNA PCR product allowed us to assign a gene for human keratin 18 to chromosome 12 unambiguously. This differs from the location of other human type I keratins on chromosome 17 and may indicate the early divergence of the genes for stratifying cell keratins from that of simple, or embryonic, keratin 18.  相似文献   

8.
9.
In addition to nine functional genes, the human type I hair keratin gene cluster contains a pseudogene, phihHaA (KRTHAP1), which is thought to have been inactivated by a single base-pair substitution that introduced a premature TGA termination codon into exon 4. Large-scale genotyping of human, chimpanzee, and gorilla DNAs revealed the homozygous presence of the phihHaA nonsense mutation in humans of different ethnic backgrounds, but its absence in the functional orthologous chimpanzee (cHaA) and gorilla (gHaA) genes. Expression analyses of the encoded cHaA and gHaA hair keratins served to highlight dramatic differences between the hair keratin phenotypes of contemporary humans and the great apes. The relative numbers of synonymous and non-synonymous substitutions in the phihHaA and cHaA genes, as inferred by using the gHaA gene as an outgroup, suggest that the human hHaA gene was inactivated only recently, viz., less than 240,000 years ago. This implies that the hair keratin phenotype of hominids prior to this date, and after the Pan-Homo divergence some 5.5 million years ago, could have been identical to that of the great apes. In addition, the homozygous presence of the phihHaA exon 4 nonsense mutation in some of the earliest branching lineages among extant human populations lends strong support to the "single African origin" hypothesis of modern humans.  相似文献   

10.
In this review article the data about synthesis and gene regulation of keratin by hair follicles have been summarized. It has been shown that both differentiation of hair follicle matrix cells and normal growth of hair require the coordinated activities of the genes encoding structural proteins. The keratin genes are clustered in families and are usually 5-10 kb in the genome. The separate clusters of two keratin IF gene families and five KAP gene families have been discovered and some of them have been mapped. The close relation between these clusters suggests that the "global" regulatory domains might govern their expression.  相似文献   

11.
Two families of keratins, type I and type II, can be distinguished within the intermediate filament family of proteins, and at least 20 genes in the human genome code for the 20 known keratin proteins. In epithelial intermediate filaments, keratins from both families appear to be coordinately expressed. We have screened a library of human genomic DNA and have identified several cases of linkage among homologous and heterologous pairs of keratin genes. Genes coding for type I keratins were found linked to those coding for type II keratins. Linkage was discovered also among homologous genes coding for type I keratins and among genes encoding type II keratins. In addition, we found genes coding for glycine-rich keratins linked to genes coding for those that do not contain glycine-rich regions. Our results raise the possibility that all keratin genes are linked in a single region of the human genome.  相似文献   

12.
The keratins 8 and 18 of simple epithelia differ from stratified epithelial keratins in tissue expression and regulation. To examine the specific properties of human keratin 8, we cloned and sequenced the cDNA from a placental mRNA expression library and defined the optimum state of such clones for expression in bacterial plasmid vectors. Using the polymerase chain reaction we identified and sequenced three introns and located the single active gene for keratin 8, out of a background of 9 to 24 pseudogenes, on chromosome 12. This chromosome contains several genes for type II keratins and also the gene for keratin 18, the type I keratin that is coexpressed with keratin 8. This location of both members of a keratin pair on a single chromosome is thus far unique among the keratin genes; it is consistent with the hypothesis that keratins 8 and 18 may be closer to an ancestral keratin gene than the keratins of more highly differentiated epithelia.  相似文献   

13.
From a teleost fish, the rainbow trout Oncorhynchus mykiss, we have cloned and sequenced cDNAs encoding five different type II keratins. The corresponding protein spots, as separated by 2D-PAGE of trout cytoskeletal preparations, have been identified by peptide mass mapping using MALDI mass spectrometry. Three of the sequenced keratins are expressed in the epidermis (subtype IIe), and two in simple epithelia and mesenchymal cells (subtype IIs). The IIs keratins are both orthologs of human K8. This leaves unsequenced only the trace component S3 of the biochemically established trout keratin catalog. A phylogenetic tree has been constructed from a multiple alignment of the rod domains of the new keratin sequences together with type II sequences from other vertebrates such as shark, zebrafish, and human; lamprey K8 (recently sequenced in our laboratory) has been used as outgroup. This tree suggests, in a highly bootstrap-supported manner, that the teleost IIe keratins diversified independently from the mammalian IIe keratins. In contrast, all the species investigated express K8-like keratins, suggesting that the different IIe branches evolved from K8-like progenitors. The tree also indicates that the published zebrafish sequences represent IIe keratins and that the biochemically identified K8 ortholog in zebrafish has not yet been sequenced.  相似文献   

14.
15.
The fine structure and cornification of marsupial hairs are unknown. The distribution of keratins, trichohyalin, and transglutaminase in marsupial hairs was studied here for the first time by electron microscopy and immunocytochemistry. The localization of acidic and basic keratins in marsupial hairs is similar to that of hairs in placental mammals, and the keratins are mainly localized in the outer root sheath and surrounding epidermis. Marsupial trichohyalin in both medulla and inner root sheath (IRS) cross-reacts with a trichohyalin antibody that recognizes trichohyalin across placental species, indicating a common epitope(s) among mammalian trichohyalin. Roundish to irregular trichohyalin granules are composed of a network of immunolabeled 10-15-nm-thick coarse filaments within an amorphous matrix in which a weak labeling for transglutaminases is present. This suggests that the enzyme, and its substrate trichohyalin, are associated in mature granules. Transglutaminase labeling mainly occurs in condensing chromatin of mature cells of the outer and inner root sheaths, suggesting formation of the nuclear envelope connected with terminal differentiation of these cells. In mature Huxley or Henle layers the filaments lose the immunolabeling for trichohyalin when they are reoriented into parallel rows linked by short bridges, thus suggesting that the filaments with their reactive epitopes are chemically modified during cornification, as seen in the IRS of hairs of placental mammals. The Huxley layer probably acts as a cushion, absorbing the tensions connected with the distalward movement of the growing hair fiber. Variations in stratification of the Huxley layer are probably related to the diameter of the hair shaft. The cytoplasmic and junctional connections between cells of the Huxley layer and the companion layer and the outer root sheath enhance the grip of the IRS and hair fiber within the follicle. The role of cells of the IRS in sculpturing the fiber cuticle and in the mechanism of shedding that allows the exit of hair on the epidermal surface in mammals are discussed.  相似文献   

16.
Keratins K14 and K5 have long been considered to be biochemical markers of the stratified squamous epithelia, including epidermis (Moll, R., W. Franke, D. Schiller, B. Geiger, and R. Krepler. 1982. Cell. 31:11-24; Nelson, W., and T.-T. Sun. 1983. J. Cell Biol. 97:244-251). When cells of most stratified squamous epithelia differentiate, they downregulate expression of mRNAs encoding these two keratins and induce expression of new sets of keratins specific for individual programs of epithelial differentiation. Frequently, as in the case of epidermis, the expression of differentiation-specific keratins also leads to a reorganization of the keratin filament network, including denser bundling of the keratin fibers. We report here the use of monospecific antisera and cRNA probes to examine the differential expression of keratin K14 in the complex tissue of human skin. Using in situ hybridizations and immunoelectron microscopy, we find that the patterns of K14 expression and filament organization in the hair follicle are strikingly different from epidermis. Some of the mitotically active outer root sheath (ORS) cells, which give rise to ORS under normal circumstances and to epidermis during wound healing, produce only low levels of K14. These cells have fewer keratin filaments than basal epidermal cells, and the filaments are organized into looser, more delicate bundles than is typical for epidermis. As these cells differentiate, they elevate their expression of K14 and produce denser bundles of keratin filaments more typical of epidermis. In contrast to basal cells of epidermis and ORS, matrix cells, which are relatively undifferentiated and which can give rise to inner root sheath, cuticle and hair shaft, show no evidence of K14, K14 mRNA expression, or keratin filament formation. As matrix cells differentiate, they produce hair-specific keratins and dense bundles of keratin filaments but they do not induce K14 expression. Collectively, the patterns of K14 and K14 mRNA expression and filament organization in mitotically active epithelial cells of the skin correlate with their relative degree of pluripotency, and this suggests a possible basis for the deviation of hair follicle programs of differentiation from those of other stratified squamous epithelia.  相似文献   

17.
Keratins are a family of structurally related proteins that form the intermediate filament cytoskeleton in epithelial cells. Mutations in K1 and K5 result in the autosomal dominant disorders epidermolytic hyperkeratosis/bullous congenital ichthyosiform erythroderma and epidermolysis bullosa simplex, respectively. Most disease-associated mutations are within exons encoding protein domains involved in keratin filament assembly. However, some mutations occur outside the mutation hot-spots and may perturb intermolecular interactions between keratins and other proteins, usually with milder clinical consequences. To screen the entire keratin 1 and keratin 5 genes we have characterized their intron-exon organization. The keratin 1 gene comprises 9 exons spanning approximately 5.6 kb on 12q, and the keratin 5 gene comprises 9 exons spanning approximately 6.1 kb on 12q. We have also developed a comprehensive PCR-based mutation detection strategy using primers placed on flanking introns followed by direct sequencing of the PCR products.  相似文献   

18.
The genomic structure of the mouse 59-kDa keratin gene, a Type I intermediate filament (IF) gene is presented. A comparison of the organization of this gene with that of the human 67-kDa keratin, a Type II IF gene, and hamster vimentin, a Type III IF gene, suggests a common evolutionary origin for Type I, II, and III IF genes. Most introns in these three types of IF genes occur at similar positions within the region encoding sequences predicted to form coiled-coils, but do not delineate structural subdomains. Interestingly though, most of the introns interrupt at or near the beginning of the characteristic 7-residue (heptad) repeat of sequences which form the coiled-coil. These data suggest that the three types of IF genes arose from a common ancestor which may have been assembled from smaller units containing multiple heptad repeats. Subsequent duplication events may then have formed the three known alpha-helical types and each of their various members.  相似文献   

19.
Keratin intermediate filaments are the major components of the cytoskeleton in epithelial cells. Mutations in keratin genes have been documented in many disorders of the skin, nails, hair, and mucous membranes. Although no mutations have been described in either keratin 15 or keratin 19, they are good candidates for other as yet uncharacterized genetic disorders of keratinization, particularly as the skin, nails, hair, and conjunctiva are sites of keratin 15 and 19 expression. To facilitate future mutation detection analyses, we have therefore characterized the intron-exon organization of the human keratin 15 and keratin 19 genes. The keratin 15 gene comprises 8 exons spanning approximately 5.1 kb on 17q21, and the keratin 19 gene consists of 6 exons covering approximately 4.7 kb on 17q21. We have also developed a PCR-based mutation detection strategy using primers placed on flanking introns followed by direct sequencing of the PCR products.  相似文献   

20.
The isolation of genes for alpha‐keratins and keratin‐associated beta‐proteins (formerly beta‐keratins) has allowed the production of epitope‐specific antibodies for localizing these proteins during the process of cornification epidermis of reptilian sauropsids. The antibodies are directed toward proteins in the alpha‐keratin range (40–70 kDa) or beta‐protein range (10–30 kDa) of most reptilian sauropsids. The ultrastructural immunogold study shows the localization of acidic alpha‐proteins in suprabasal and precorneous epidermal layers in lizard, snake, tuatara, crocodile, and turtle while keratin‐associated beta‐proteins are localized in precorneous and corneous layers. This late activation of the synthesis of keratin‐associated beta‐proteins is typical for keratin‐associated and corneous proteins in mammalian epidermis (involucrin, filaggrin, loricrin) or hair (tyrosine‐rich or sulfur‐rich proteins). In turtles and crocodilians epidermis, keratin‐associated beta‐proteins are synthesized in upper spinosus and precorneous layers and accumulate in the corneous layer. The complex stratification of lepidosaurian epidermis derives from the deposition of specific glycine‐rich versus cysteine‐glycine‐rich keratin‐associated beta‐proteins in cells sequentially produced from the basal layer and not from the alternation of beta‐ with alpha‐keratins. The process gives rise to Oberhäutchen, beta‐, mesos‐, and alpha‐layers during the shedding cycle of lizards and snakes. Differently from fish, amphibian, and mammalian keratin‐associated proteins (KAPs) of the epidermis, the keratin‐associated beta‐proteins of sauropsids are capable to form filaments of 3–4 nm which give rise to an X‐ray beta‐pattern as a consequence of the presence of a beta‐pleated central region of high homology, which seems to be absent in KAPs of the other vertebrates. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号