首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acinetobacter calcoaceticus is capable of growing on acetate or compounds that are metabolized to acetate. During adaptation to growth on acetate, A. calcoaceticus B4 exhibits an increase in NADP(+)-isocitrate dehydrogenase and isocitrate lyase activities. In contrast, during adaptation to growth on acetate, Escherichia coli exhibits a decrease in NADP(+)-isocitrate dehydrogenase activity that is caused by reversible phosphorylation of specific serine residues on this enzyme. Also, in E. coli, isocitrate lyase is believed to be active only in the phosphorylated form. This phosphorylation of isocitrate lyase may regulate entry of isocitrate into the glyoxylate bypass. To understand the relationships between these two isocitrate-metabolizing enzymes and the metabolism of acetate in A. calcoaceticus B4 better, we have purified isocitrate lyase to homogeneity. Physical and kinetic characterization of the enzyme as well as the inhibitor specificity and divalent cation requirement have been examined.  相似文献   

2.
The intracellular distribution and maximal activities of nine enzymes involved in the biosynthesis and degradation of citric acid in Aspergillus niger were determined under conditions of growth and of citric acid production. Under these conditions the intracellular location of the enzymes in most cases resembled that described for other filamentous fungi. Pyruvate carboxylase was found predominantly or exclusively in the cytosol. A single isoenzyme of NADP-isocitrate dehydrogenase was present, which appeared to be localised in the mitochondrion. No significant differences in maximal enzyme activities were observed except for NADP-isocitrate dehydrogenase, which showed decreased activity in production-phase mycelia. The results obtained support the scheme proposed by C.P. Kubicek for the intracellular organisation of citric acid formation but provide little evidence that this process is controlled at the level of the biosynthesis of any of the enzymes examined here.  相似文献   

3.
During growth on succinate, Acinetobacter calcoaceticus contains two forms of the enzyme isocitrate dehydrogenase. Addition of acetate to a lag-phase culture grown on succinate causes a dramatic increase in activity of form II of isocitrate dehydrogenase and in isocitrate lyase. Form II of isocitrate dehydrogenase may be responsible for the partition of isocitrate between the TCA cycle and the glyoxylate by-pass. This report describes the phosphorylation of the enzyme isocitrate lyase from A. calcoaceticus. This phosphorylation may be a regulatory mechanism for the glyoxylate by-pass.  相似文献   

4.
1. Superovulated rat ovary was found to contain high activities of NADP-malate dehydrogenase and NADP-isocitrate dehydrogenase. The activity of each enzyme was approximately four times that of glucose 6-phosphate dehydrogenase and equalled or exceeded the activities reported to be present in other mammalian tissues. Fractionation of a whole tissue homogenate of superovulated rat ovary indicated that both enzymes were exclusively cytoplasmic. The tissue was also found to contain pyruvate carboxylase (exclusively mitochondrial), NAD-malate dehydrogenase and aspartate aminotransferase (both mitochondrial and cytoplasmic) and ATP-citrate lyase (exclusively cytoplasmic). 2. The kinetic properties of glucose 6-phosphate dehydrogenase, NADP-malate dehydrogenase and NADP-isocitrate dehydrogenase were determined and compared with the whole-tissue concentrations of their substrates and NADPH; NADPH is a competitive inhibitor of all three enzymes. The concentrations of glucose 6-phosphate, malate and isocitrate in incubated tissue slices were raised at least tenfold by the addition of glucose to the incubation medium, from the values below to values above the respective K(m) values of the dehydrogenases. Glucose doubled the tissue concentration of NADPH. 3. Steroidogenesis from acetate is stimulated by glucose in slices of superovulated rat ovary incubated in vitro. It was found that this stimulatory effect of glucose can be mimicked by malate, isocitrate, lactate and pyruvate. 4. It is concluded that NADP-malate dehydrogenase or NADP-isocitrate dehydrogenase or both may play an important role in the formation of NADPH in the superovulated rat ovary. It is suggested that the stimulatory effect of glucose on steroidogenesis from acetate results from an increased rate of NADPH formation through one or both dehydrogenases, brought about by the increases in the concentrations of malate, isocitrate or both. Possible pathways involving the two enzymes are discussed.  相似文献   

5.
The activity and hormonal regulation of NAD- and NADP-linked isocitrate dehydrogenase (EC 1.1.1.41 and 1.1.1.42, respectively) in the brain and liver of rats of various ages were investigated. The activity of NAD-linked isocitrate dehydrogenase of the brain was greater than cytoplasmic or mitochondrial NADP-linked isocitrate dehydrogenase. In contrast, the cytoplasmic NADP-isocitrate dehydrogenase of the liver predominates over both NAD- and mitochondrial NADP-isocitrate dehydrogenases at the three ages studied. The activity of NAD-isocitrate dehydrogenase increased in the brain (139%) and liver (17%) of rats upt o 33 weeks of age and decreased (57 and 39%, respectively) in old rats (85-week-old). The activity of cytoplasmic NADP-isocitrate dehydrogenase was maximum in immature (6-week-old) rat brain and decreased as the age of the rats increased; whereas, in liver, the activity of this enzyme was found to be maximum in adult rats (33-week-old). Brain mitochondrial NADP-isocitrate dehydrogenase activity increased (64%) in adult rats, but in liver it decreased (45 and 33% in 33- and 85-week-old rats, respectively). In both tissues, adrenalectomy and hydrocortisone treatment showed differential age-dependent response. Hydrocortisone-mediated induction of the level of enzymes was inhibited by actinomycin D.  相似文献   

6.
Abstract A soluble NADP-dependent alcohol dehydrogenase activity (EC 1.1.1.2) was found in all five strains of Acinetobacter calcoaceticus tested. In A. calcoaceticus NCIB8250, this dehydrogenase was not induced by growth on ethanol, but was present at approximately the same specific activity when this strain was grown on a variety of carbon sources. The specific activity of the NADP-dependent alcohol dehydrogenase is about 10% of the activity of the NAD-dependent alcohol dehydrogenase found in bacteria grown on ethanol. The distinct biochemical properties of the NADP-dependent dehydrogenase showed that this activity was not due to lack of nucleotide specificity of the NAD-dependent dehydrogenase.  相似文献   

7.
In the brain of rats exposed to 5–7 hypoglycemic comas, at the 2nd day after the last coma, an increase of NADP-isocitrate dehydrogenase activity and acceleration of catabolism of adenyl nucleotides as well as a decrease of activities of NADH-dehydrogenase, mitochondrial NADP-isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase, glutathione reductase, and superoxide dismutase were found, whereas no changes of the rate of glycolysis were revealed. After placing sections of brain large hemispheres from experimental animals into hypoosmotic medium supplied with Fe2+ and ascorbate, the release of lactate dehydrogenase was increased. A considerable increase of concentration of malonic dialdehyde is observed in brain sections of experimental rats. The obtained results indicate that disturbances of energy metabolism and activation of processes of lipid peroxidation are involved in pathogenesis of post-hypoglycemic encephalopathy.  相似文献   

8.
1. Rat liver and heart major isoenzymes of NADP-isocitrate dehydrogenase have each been purified about 100-fold by a combination of ammonium sulphate fractionation and chromatography on ion-exchange cellulose and their properties compared. 2. The properties were similar in respect of pH, inhibition by Hg(2+) and Michaelis constants for isocitrate and NADP. 3. Some of the properties of the isoenzymes were different. 4. The heart isoenzyme was activated about 210% by 0.8m-ammonium sulphate whereas the liver isoenzyme was unaffected. The heart isoenzyme showed greater sensitivity to inactivation by heat (30 degrees C for 30min), whereas the liver isoenzyme was more sensitive to inactivation by p-chloromercuribenzoate and by Cu(2+). 5. The Michaelis constants with 3-acetylpyridine-adenine dinucleotide phosphate showed a twofold difference between liver and heart isoenzyme. 6. The differential sensitivity to heat and its mainly non-cytoplasmic location may be an explanation of the failure of plasma isocitrate dehydrogenase activity to increase after a myocardial infarction.  相似文献   

9.
目的:在乙酸钙不动杆菌Y2004中表达山梨糖脱氢酶。方法:将酮古龙酸菌山梨糖脱氢酶基因sdh以及从pWH1266质粒上扩增的复制原点ori先后酶切连接到pBBR1MCS2质粒上,构建pBBR1MCS2-ori-sdh穿梭质粒;再以pBBR1MCS2-ori-sdh/DH5α为供体菌、乙酸钙不动杆菌Y2004为受体菌、pRK2013/HB101为辅助菌进行三亲本接合转移;从氨苄青霉素和卡那霉素双抗平板上挑取转化子进行培养,通过菌落PCR和提取质粒复转筛选阳性克隆,再通过活性电泳和体外糖酸转化实验检测阳性克隆的山梨糖脱氢酶活性。结果:构建了pBBRMCS2-ori-sdh质粒并转入乙酸钙不动杆菌Y2004中,活性电泳和体外实验证实阳性克隆具有山梨糖脱氢酶活性。结论:实现了山梨糖脱氢酶在乙酸钙不动杆菌Y2004中的表达,为单菌糖酸转化的进一步研究奠定了基础。  相似文献   

10.
The age changes of enzymes of activity catalyzing several links of energy metabolism (hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, NADP-isocitrate dehydrogenase, cytochrome c-oxidase) and antioxidant system (superoxide dismutase and glutathione reductase) in bone marrow myeloid cells and blood leukocytes of pig in the 10-day period after birth were investigated. The bone marrow cells and leukocytes of the new born piglets were characterized by low intensity of oxidative steps of energy metabolism as well as by low activity of antioxidant enzymes. In the period of neonatal adaptation reorganization of energy metabolism, particularly, intensification of oxidative processes in the investigated cells occurred. It included the pentose phosphate way and cytochrome c-oxidase activation. During the neonatal period of development the functional activity of antioxidant enzymes in the investigated cells of piglets increased.  相似文献   

11.
Abstract— Lactate dehydrogenase and malate dehydrogenase isoenzyme patterns of chicken brain and retina have been investigated by cellulose acetate electrophoresis, during embryonic and post-hatching development. The proportion of M-type lactate dehydrogenase subunits decreases significantly in brain and retina with development. A marked increase in the H-type subunits is observed in retina. Lactate dehydrogenase isoenzyme distribution appears to change in both organs in parallel with the metabolic changes of differentiation.
Malate dehydrogenase isoenzyme patterns do not reveal any consistent change of the ratio between the mitochondrial and cytoplasmic forms.  相似文献   

12.
Chloroplastic NADP-isocitrate dehydrogenase isoenzyme (NADP-IDH2; EC 1.1.1.42) from the eukaryotic microalga Chlamydomonas reinhardtii was purified to electrophoretic homogeneity by a procedure which included affinity chromatography on Red-Sepharose as the key step. The 70-kDa isoenzyme was found to be a dimer formed by 40-kDa subunits. Antibodies raised against a recombinant tobacco cytosolic NADP-IDH cross-reacted strongly with the cytosolic NADP-IDH1 and weakly with the NADP-IDH2 isoenzyme from this alga. NADPH and GTP were found to inhibit both isoenzymes, whereas intermediates of the tricarboxylic acid cycle, glycolysis or reductive pentose phosphate cycle had no significant effect. The simultaneous presence of isocitrate and Mn2+ protected NADP-IDH2 against thermal inactivation or inhibition by reagents specific for arginine or lysine.  相似文献   

13.
Fast protein liquid chromatography (FPLC) has been shown to be a rapid and effective method of separating isoenzymes of citrate synthase and isocitrate dehydrogenase in extracts of Pseudomonas aeruginosa and Acinetobacter calcoaceticus. The advantages of FPLC over conventional methods of fractionation are discussed and it is suggested that this may be a valuable and more general technique for isoenzyme resolution.  相似文献   

14.
Lipogenesis in rat and guinea-pig isolated epididymal fat-cells   总被引:14,自引:13,他引:1       下载免费PDF全文
Fat-cells were prepared from rat and guinea-pig epididymal adipose tissue and compared on the basis of the intracellular distributions and activities of enzymes and with respect to their utilization of various U-(14)C-labelled substrates for lipogenesis. 1. Compared with the rat, guinea-pig extramitochondrial enzyme activities differed in that aconitate hydratase, alanine aminotransferase, ATP-citrate lyase, lactate dehydrogenase, NAD-malate dehydrogenase, NADP-malate dehydrogenase and phosphoenolpyruvate carboxykinase activities were appreciably lower, whereas aspartate aminotransferase, glucose 6-phosphate dehydrogenase, NADP-isocitrate dehydrogenase and 6-phosphogluconate dehydrogenase activities were appreciably higher. Mitochondrial activities of citrate synthase, NADP-isocitrate dehydrogenase and pyruvate carboxylase were appreciably lower, whereas mitochondrial activities of aspartate aminotransferase, glutamate dehydrogenase, NAD-malate dehydrogenase and phosphoenolpyruvate carboxykinase were higher in the guinea pig compared with the rat. 2. In general guinea-pig fat-cells incorporated acetate and lactate into fatty acids more readily than rat fat-cells, whereas rat fat-cells incorporated glucose and pyruvate more readily than guinea-pig fat-cells. 3. Acetate stimulated the incorporation of glucose into fatty acids in rat fat-cells, but had no appreciable effect upon this process in guinea-pig fat-cells. Acetate greatly decreased the incorporation of lactate into fatty acids in cells from both species. 4. Lactate/pyruvate ratios produced by incubation of guinea-pig cells with glucose+insulin were very low compared with those found with rat cells under the same conditions. 5. With glucose (+insulin) or with glucose+acetate (+insulin) as substrates guinea-pig cells produced enough NADPH by the hexose monophosphate pathway to satisfy the NADPH requirements of lipogenesis. In rat fat-cells under the same conditions, hexose monophosphate-pathway NADPH provision was not sufficient to meet the requirements of lipogenesis. 6. These results are discussed, particularly in relationship to the disposition of cytosolic reducing equivalents in the cells.  相似文献   

15.
Growth of Acinetobacter calcoaceticus on Ethanol   总被引:3,自引:2,他引:1       下载免费PDF全文
A soil microorganism, identified as Acinetobacter calcoaceticus, was cultivated on ethanol as a sole source of carbon. This organism grew with a maximum specific growth rate of 0.7/h. The pH optimum for growth was between 6.5 and 7.5, and the temperature optimum was between 32 and 35 C. Ethanol metabolism by this organism was inducible by ethanol, and the presence of acetate led to the repression of ethanol dehydrogenase. At higher cell densities the cessation of growth on ethanol was accompanied by the accumulation of acetate or acetaldehyde, or both. These accumulations were attributed to a reduction in the magnesium or sulfur content of the medium and a lack of feedback inhibition by acetate of alcohol dehydrogenase.  相似文献   

16.
Treatment of E. coli extract with iron/ascorbate preferentially inactivated NADP-isocitrate dehydrogenase without affecting glucose-6-phosphate dehydrogenase. NADP-Isocitrate dehydrogenase required divalent metals such as Mg2+, Mn2+ or Fe2+ ion. Iron/ascorbate-dependent inactivation of the enzyme was accompanied with the protein fragmentation as judged by SDS-PAGE. Catalase protecting the enzyme from the inactivation suggests that hydroxyl radical is responsible for the inactivation with fragmentation. TOF-MS analysis showed that molecular masses of the enzyme fragments were 36 and 12, and 33 and 14 kDa as minor components. Based on the amino acid sequence analyses of the fragments, cleavage sites of the enzyme were identified as Asp307-Tyr308 and Ala282-Asp283, which are presumed to be the metal-binding sites. Ferrous ion bound to the metal-binding sites of the E. coli NADP-isocitrate dehydrogenase may generate superoxide radical that forms hydrogen peroxide and further hydroxyl radical, causing inactivation with peptide cleavage of the enzyme. Oxidative inactivation of NADP-isocitrate dehydrogenase without affecting glucose 6-phosphate dehydrogenase shows only a little influence on the antioxidant activity supplying NADPH for glutathione regeneration, but may facilitate flux through the glyoxylate bypass as the biosynthetic pathway with the inhibition of the citric acid cycle under aerobic growth conditions of E. coli.  相似文献   

17.
Two NADP-isocitrate dehydrogenase isoenzymes designated as NADP-IDH1 and NADP-IDH2 (EC 1.1.1.42) were identified in pea (Pisum sativum) leaf extracts by diethylaminoethylcellulose chromatography. The predominant form was found to be NADP-IDH1 while NADP-IDH2 represented only about 4% of the total leaf enzyme activity. These enzymes share few common epitopes as NADP-IDH2 was poorly recognized by the specific polyclonal antibodies raised against NADP-IDH1, and as a consequence NADP-IDH2 does not result from a post-translational modification of NADP-IDH1. Subcellular fractionation and isolation of chloroplasts through a Percoll gradient, followed by the identification of the associated enzymes, showed that NADP-IDH1 is restricted to the cytosol and NADP-IDH2 to the chloroplasts. Compared with the cytosolic isoenzyme, NADP-IDH2 was more thermolabile and exhibited a lower optimum pH. The data reported in this paper constitute the first report that the chloroplastic NADP-IDH and the cytosolic NADP-IDH are two distinct isoenzymes. The possible functions of the two isoenzymes are discussed.Abbreviations BSA bovine serum albumin - DEAE diethylaminoethyl - NADP-IDH NADP-isocitrate dehydrogenase - NADP-IDH1 cytosolic NADP-IDH - NADP-IDH2 chloroplastic NADP-IDH  相似文献   

18.
The RS-isomers of beta-mercapto-alpha-ketoglutarate, beta-methylmercapto-alpha-ketoglutarate and beta-methylmercapto-alpha-hydroxyglutarate have been synthesized. Beta-Mercapto-alpha-ketoglutarate was a potent inhibitor, competitive with isocitrate and noncompetitive with NADP+, of the mitochondrial NADP-specific isozyme from pig heart (Ki = 5 nM; Km (DL-isocitrate)/Ki(RS-beta-mercapto-alpha-ketoglutarate) = 650) and pig liver, the cytosolic isozyme from pig liver (I0.5 = 23 nM), and the NADP-linked enzymes from yeast (Ki = 58 nM) and Escherichia coli (Ki = 58 nM) at pH 7.4 and with Mg2+ as activator. beta-Mercapto-alpha-ketoglutarate was also an effective inhibitor of NADP-isocitrate-dehydrogenase activity in intact liver mitochondria. beta-Mercapto-alpha-ketoglutarate was a much less potent inhibitor for heart NAD-isocitrate dehydrogenase (Ki = 520 nM) than for the NADP-specific enzyme. beta-Methylmercapto-alpha-ketoglutarate (I0.5 = 10 microM) was a much less effective inhibitor than the beta-mercapto derivative for heart NADP-isocitrate dehydrogenase. The beta-sulfur substituted alpha-ketoglutarates were substrates for the oxidation of NADPH by heart NADP-isocitrate dehydrogenase without requiring CO2. beta-Methylmercapto-alpha-hydroxyglutarate, the expected product of reduction of beta-methylmercapto-alpha-ketoglutarate, did not cause reduction of NADP+ but it was an inhibitor competitive with isocitrate for NADP-isocitrate dehydrogenase. The beta-sulfur substituted alpha-ketoglutarate derivatives were alternate substrates for alpha-ketoglutarate dehydrogenase and the cytosolic and mitochondrial isozymes of heart aspartate aminotransferase but had no effect on glutamate dehydrogenase or alanine aminotransferase.  相似文献   

19.
The intensity of lipid peroxidation (LPO), reduced and oxidized glutathione (GSH and GSSG) contents, glutathione reductase, glutathione peroxidase, glutathione-S-transferase, glucose-6-phosphate dehydrogenase (G-6-PDH), and NADP-isocitrate dehydrogenase (NADP-IDH) activities were studied in the heart of male rats exposed to two modes of intermittent hypoxic training (IHT): I-breathing in normobaric chamber with 7% O2 gas mixture for 5 min with 15 min normoxic intervals 4 times daily during 3 weeks; II-breathing by 12% O2 gas mixture in the same manner). After adaptation to hypoxia, the rats were subjected to 6h-immobilization stress. It has been shown that stress action after IHT (regime I) caused the increase in LPO and the shift of GSH/GSSG to disulfides. A disbalance in antioxidative defense system was determined by the decrease in glutatione peroxidase, G-6-PDH activities, and GSH content. The support of glutathione reductase activity under stress in this group with simultaneous decrease of enzyme activity in the pentose phosphate pathway was realized through the participation of NADP-IDH. Hypoxic training in regime II induced LPO decrease in the heart tissue after stress. The increase in the heart GSH content, optimal balance of glutathione-related enzymes in this group evidences for the dependence of adaptation effects on the vigor of hypoxic exposition. Our results suggest the active participation of glutathione system in the formation of adaptation reactions under the extreme factor influences through the action on intracellular red/ox potential as well as effectiveness of antioxidant defense.  相似文献   

20.
Ridong Chen 《Planta》1998,207(2):280-285
The isoenzyme patterns of NADP-isocitrate dehydrogenase (NADP-IDH; EC 1.1.1.42) have been investigated in 15 species of higher plants using dietylaminoethyl ion-exchange chromatography and immunological techniques. The obtained results unambiguously demonstrate that the cytosolic enzyme is the predominant form in leaf extracts of all the surveyed plant species. The chloroplastic isoenzyme, previously reported in pea (Pisum sativum L.) leaves (R.D. Chen et al., 1989, Planta 178; 157–163), is a minor form in ferns and dicotyledonous angiosperms and is undetectable in gymnosperms and monocotyledonous angiosperms. Comparison of immunological relatedness suggests that the proteins of cytosolic isoenzymes have been highly conserved in the course of plant evolution. The data support the previously proposed idea that the cytosol is the major site for α-ketoglutarate production to be used for nitrogen assimilation. Received: 18 June 1998 / Accepted: 6 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号