首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of proteins S16, S17 and S20 with 16 S ribosomal RNA   总被引:9,自引:0,他引:9  
We have used rapid chemical probing methods to examine the effect of assembly of ribosomal proteins S16, S17 and S20 on the reactivity of individual residues of 16 S rRNA. Protein S17 strongly protects a compact region of the RNA between positions 245 and 281, a site previously assigned to binding of S20. Protein S20 also protects many of these same positions, albeit more weakly than S17. Strong S20-dependent protections are seen elsewhere in the 5' domain, most notably at positions 108, and in the 160-200 and 330 loop regions. Enenpectedly, S20 also causes protection of several bases in the 1430-1450 region, in the 3' minor domain. In the presence of the primary binding proteins S4, S8 and S20, we observe a variety of effects that result from assembly of the secondary binding protein S16. Most strongly protected are nucleotides around positions 50, 120, 300 to 330 and 360 in the 5' domain, and positions 606 to 630 in the central domain. In addition, numerous nucleotides in the 5' and central domains exhibit enhanced reactivity in response to S16. Interestingly, the strength of the S20-dependent effects in the 1430-1450 region is attenuated in the presence of S4 + S8 + S20, and restored in the presence of S4 + S8 + S20 + S16. Finally, the previously observed rearrangement of the 300 region stem-loop that occurs during assembly is shown to be an S16-dependent event. We discuss these findings with respect to assignment of RNA binding sites for these proteins, and in regard to the co-operativity of ribosome assembly.  相似文献   

2.
We have studied the effect of assembly of ribosomal proteins S7, S9 and S19 on the accessibility and conformation of nucleotides in 16 S ribosomal RNA. Complexes formed between 16 S rRNA and S7, S7 + S9, S7 + S19 or S7 + S9 + S19 were subjected to a combination of chemical and enzymatic probes, whose sites of attack in 16 S rRNA were identified by primer extension. The results of this study show that: (1) Protein S7 affects the reactivity of an extensive region in the lower half of the 3' major domain. Inclusion of proteins S9 or S19 with S7 has generally little additional effect on S7-specific protection of the RNA. Clusters of nucleotides that are protected by protein S7 are localized in the 935-945 region, the 950/1230 stem, the 1250/1285 internal loop, and the 1350/1370 stem. (2) Addition of protein S9 in the presence of S7 causes several additional effects principally in two structurally distal regions. We observe strong S9-dependent protection of positions 1278 to 1283, and of several positions in the 1125/1145 internal loop. These findings suggest that interaction of protein S9 with 16 S rRNA results in a structure in which the 1125/1145 and 1280 regions are proximal to each other. (3) Most of the strong S19-dependent effects are clustered in the 950-1050 and 1210-1230 regions, which are joined by base-pairing in the 16 S rRNA secondary structure. The highly conserved 960-975 stemp-loop, which has been implicated in tRNA binding, appears to be destabilized in the presence of S19. (4) Protein S7 causes enhanced reactivity at several sites that become protected upon addition of S9 or S19. This suggests that S7-induced conformational changes in 16 S rRNA play a role in the co-operativity of assembly of the 3' major domain.  相似文献   

3.
The co-operative interaction of 30 S ribosomal subunit proteins S6, S8, S15 and S18 with 16 S ribosomal RNA from Escherichia coli was studied by (1) determining how the binding of each protein is influenced by the others and (2) characterizing a series of protein-rRNA fragment complexes. Whereas S8 and S15 are known to associate independently with the 16 S rRNA, binding of S18 depended upon S8 and S15, and binding of S6 was found to require S8, S15 and S18. Ribonucleoprotein (RNP) fragments were derived from the S8-, S8/S15- and S6/S8/S15/S18-16 S rRNA complexes by partial RNase hydrolysis and isolated by electrophoresis through Mg2+-containing polyacrylamide gels or by centrifugation through sucrose gradients. Identification of the proteins associated with each RNP by gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated the presence of S8, S8 + S15 and S6 + S8 + S15 + S18 in the corresponding fragment complexes. Analysis of the rRNA components of the RNP particles confirmed that S8 was bound to nucleotides 583 to 605 and 624 to 653, and that S8 and S15 were associated with nucleotides 583 to 605, 624 to 672 and 733 to 757. Proteins S6, S8, S15 and S18 were shown to protect nucleotides 563 to 605, 624 to 680, 702 to 770, 818 to 839 and 844 to 891, which span the entire central domain of the 16 S rRNA molecule (nucleotides 560 to 890). The binding site for each protein contains helical elements as well as single-stranded internal loops ranging in size from a single bulged nucleotide to 20 bases. Three terminal loops and one stem-loop structure within the central domain of the 16 S rRNA were not protected in the four-protein complex. Interestingly, bases within or very close to these unprotected regions have been shown to be accessible to chemical and enzymatic probes in 30 S subunits but not in 70 S ribosomes. Furthermore, nucleotides adjacent to one of the unprotected loops have been cross-linked to a region near the 3' end of 16 S rRNA. Our observations and those of others suggest that the bases in this domain that are not sequestered by interactions with S6, S8, S15 or S18 play a role involved in subunit association or in tertiary interactions between portions of the rRNA chain that are distant from one-another in the primary structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
5.
Interaction of ribosomal proteins S5, S6, S11, S12, S18 and S21 with 16 S rRNA   总被引:21,自引:0,他引:21  
We have examined the effects of assembly of ribosomal proteins S5, S6, S11, S12, S18 and S21 on the reactivities of residues in 16 S rRNA towards chemical probes. The results show that S6, S18 and S11 interact with the 690-720 and 790 loop regions of 16 S rRNA in a highly co-operative manner, that is consistent with the previously defined assembly map relationships among these proteins. The results also indicate that these proteins, one of which (S18) has previously been implicated as a component of the ribosomal P-site, interact with residues near some of the recently defined P-site (class II tRNA protection) nucleotides in 16 S rRNA. In addition, assembly of protein S12 has been found to result in the protection of residues in both the 530 stem/loop and the 900 stem regions; the latter group is closely juxtaposed to a segment of 16 S rRNA recently shown to be protected from chemical probes by streptomycin. Interestingly, both S5 and S12 appear to protect, to differing degrees, a well-defined set of residues in the 900 stem/loop and 5'-terminal regions. These observations are discussed in terms of the effects of S5 and S12 on streptomycin binding, and in terms of the class III tRNA protection found in the 900 stem of 16 S rRNA. Altogether these results show that many of the small subunit proteins, which have previously been shown to be functionally important, appear to be associated with functionally implicated segments of 16 S rRNA.  相似文献   

6.
Assembly of the 30S ribosomal subunit occurs in a highly ordered and sequential manner. The ordered addition of ribosomal proteins to the growing ribonucleoprotein particle is initiated by the association of primary binding proteins. These proteins bind specifically and independently to 16S ribosomal RNA (rRNA). Two primary binding proteins, S8 and S15, interact exclusively with the central domain of 16S rRNA. Binding of S15 to the central domain results in a conformational change in the RNA and is followed by the ordered assembly of the S6/S18 dimer, S11 and finally S21 to form the platform of the 30S subunit. In contrast, S8 is not part of this major platform assembly branch. Of the remaining central domain binding proteins, only S21 association is slightly dependent on S8. Thus, although S8 is a primary binding protein that extensively contacts the central domain, its role in assembly of this domain remains unclear. Here, we used directed hydroxyl radical probing from four unique positions on S15 to assess organization of the central domain of 16S rRNA as a consequence of S8 association. Hydroxyl radical probing of Fe(II)-S15/16S rRNA and Fe(II)-S15/S8/16S rRNA ribonucleoprotein particles reveal changes in the 16S rRNA environment of S15 upon addition of S8. These changes occur predominantly in helices 24 and 26 near previously identified S8 binding sites. These S8-dependent conformational changes are consistent with 16S rRNA folding in complete 30S subunits. Thus, while S8 binding is not absolutely required for assembly of the platform, it appears to affect significantly the 16S rRNA environment of S15 by influencing central domain organization.  相似文献   

7.
We have used rapid probing methods to follow the changes in reactivity of residues in 16 S rRNA to chemical and enzymatic probes as ribosomal proteins S2, S3, S10, S13 and S14 are assembled into 30 S subunits. Effects observed are confined to the 3' major domain of the RNA and comprise three general classes. (1) Monospecific effects, which are attributable to a single protein. Proteins S13 and S14 each affect the reactivities of different residues which are adjacent to regions previously found protected by S19. S10 effects are located in two separate regions of the domain, the 1120/1150 stem and the 1280 loop; both of these regions are near nucleotides previously found protected by S9. Both S2 and S3 protect different nucleotides between positions 1070 and 1112. In addition, S2 protects residues in the 1160/1170 stem-loop. (2) Co-operative effects, which include residues dependent on the simultaneous presence of both proteins S2 and S3 for their reactivities to appear similar to those observed in native 30 S subunits. (3) Polyspecific effects, where proteins S3 and S2 independently afford the same protection and enhancement pattern in three distal regions of the domain: the 960 stem-loop, the 1050/1200 stem and in the upper part of the domain (nucleotides 1070 to 1190). Proteins S14 and S10 also weakly affect the reactivities of several residues in these regions. We believe that several of the protected residues of the first class are likely sites for protein-RNA contact while the third class is indicative of conformational rearrangement in the RNA during assembly. These results, in combination with the results from our previous study of proteins S7, S9 and S19, are discussed in terms of the assembly, topography and involvement in ribosomal function of the 3' major domain.  相似文献   

8.
9.
10.
We have examined the effect of binding ribosomal protein S4 to 16 S rRNA on the susceptibility of the RNA to a variety of chemical and enzymatic probes. We have used dimethyl sulfate to probe unpaired adenines (at N-1) and cytosines (at N-3), kethoxal to probe unpaired guanines (at N-1 and N-2) and cobra venom (V1) ribonuclease as a probe of base-paired regions of 16 S rRNA. Sites of attack by the probes were identified by primer extension using synthetic oligodeoxynucleotides. Comparison of probing results for naked and S4-bound rRNA shows: Protein S4 protects a relatively compact region of the 5' domain of 16 S rRNA from chemical and enzymatic attack. This region is bounded by nucleotides 27 to 47 and 394 to 556, and has a secondary structure characterized by the junction of five helical elements. Phylogenetically conserved irregular features (bulged nucleotides, internal loops and flanking unpaired nucleotides) and helical phosphodiester bonds of four of the helices are specifically protected in the S4-RNA complex. We conclude that this is the major, and possibly sole region of contact between 16 S rRNA and S4. Many of the S4-dependent changes mimic those observed on assembly of 16 S rRNA into 30 S ribosomal subunits. Binding of S4 causes enhanced chemical reactivity coupled with protection from V1 nuclease outside the S4 junction region in the 530, 720 and 1140 loops. We interpret these results as indicative of loss of structure, and suggest that S4 binding causes disruption of adventitious pairing in these regions, possibly by stabilizing the geometry of the RNA such that these interactions are prevented from forming.  相似文献   

11.
12.
We have studied the effects of protein mutations on the higher order structure of 16 S rRNA in Escherichia coli ribosomes, using a set of structure-sensitive chemical probes. Ten mutant strains were studied, which contained alterations in ribosomal proteins S4 and S12, including double mutants containing both altered S4 and S12. Two ribosomal ambiguity (ram) S4 mutant strains, four streptomycin resistant (SmR) S12 mutant strains, one streptomycin pseudodependent (SmP) S12 mutant strain, one streptomycin dependent (SmD) S12 mutant strain and two streptomycin independent (Sm1) double mutants (containing both-SmD and ram mutations) were probed and compared to an isogenic wild-type strain. In ribosomes from strains containing S4 ram mutations, nucleotides A8 and A26 become more reactive to dimethyl sulfate (DMS) at their N-1 positions. In ribosomes from strains bearing the SmD allele, A908, A909, A1413 and G1487 are significantly less reactive to chemical probes. These same effects are observed when the S4 and S12 mutations are present simultaneously in the double mutants. An interesting correlation is found between the reactivity of A908 and the miscoding potential of SmR, SmD, SmP and wild-type ribosomes; the reactivity of A908 increases as the translational error frequency of the ribosomes increases. In the case of ram ribosomes, the reactivity of A908 resembles that of wild-type, unless tRNA is bound, in which case it becomes hyper-reactive. Similarly, streptomycin has little effect on A908 in wild-type ribosomes unless tRNA is bound, in which case its reactivity increases to resemble that of ram ribosomes with bound tRNA. Finally, interaction of streptomycin with SmP and SmD ribosomes causes the reactivity of A908 to increase to near-wild-type levels. A simple model is proposed, in which the reactivity of A908 reflects the position of an equilibrium between two conformational states of the 30 S subunit, one of which is DMS-reactive, and the other DMS-unreactive. In this model, the balance between these two states would be influenced by proteins S4 and S12. Mutations in S12 generally cause a shift toward the unreactive conformer, and in the case of SmD and SmP ribosomes, this shift can be suppressed phenotypically by streptomycin, ram mutations in protein S4 cause a shift toward the reactive conformer, but only when tRNA is bound. This suggests that the opposing effects of these two classes of mutations influence the proof-reading process by somewhat different mechanisms.  相似文献   

13.
The purified 30 S ribosomal proteins from Escherichia coli strain Q13 were chemically modified by reaction with ethyleneimine, specifically converting cysteine residues to S-2-aminoethylcysteine residues. Proteins S1, S2, S4, S8, S11, S12, S13, S14, S17, S18 and S21 were found to contain aminoethylcysteine residues after modification, whereas proteins S3, S5, S6, S7, S9, S10, S15, S16, S19 and S20 did not. Aminoethylated proteins S4, S13, S17 and S18 were active in the reconstitution of 30 S ribosomes and did not have altered functional activities in poly(U)-dependent polyphenylalanine synthesis, R17-dependent protein synthesis, fMet-tRNA binding and Phe-tRNA binding. Aminoethylated proteins S2, S11, S12, S14 and S21 were not active in the reconstitution of complete 30 S ribosomes, either because the aminoethylated protein did not bind stably to the ribosome (S2, S11, S12 and S21) or because the aminoethylated protein did not stabilize the binding of other ribosomal proteins (S14). The functional activities of 30 S ribosomes reconstituted from a mixture of proteins containing one sensitive aminoethylated protein (S2, S11, S12, S14 or S21) were similar to ribosomes reconstituted from mixtures lacking that protein. These results imply that the sulfhydryl groups of the proteins S4, S13, S17 and S18 are not necessary for the structural or functional activities of these proteins, and that aminoethylation of the sulfhydryl groups of S2, S11, S12, S14 and S21 forms either a kinetic or thermodynamic barrier to the assembly of active 30 S ribosomes in vitro.  相似文献   

14.
Assembly of 30S ribosomal subunits from Escherichia coli has been dissected in detail using an in vitro system. Such studies have allowed characterization of the role for ribosomal protein S15 in the hierarchical assembly of 30S subunits; S15 is a primary binding protein that orchestrates the assembly of ribosomal proteins S6, S11, S18, and S21 with the central domain of 16S ribosomal RNA to form the platform of the 30S subunit. In vitro S15 is the sole primary binding protein in this cascade, performing a critical role during assembly of these four proteins. To investigate the role of S15 in vivo, the essential nature of rpsO, the gene encoding S15, was examined. Surprisingly, E. coli with an in-frame deletion of rpsO are viable, although at 37 degrees C this DeltarpsO strain has an exaggerated doubling time compared to its parental strain. In the absence of S15, the remaining four platform proteins are assembled into ribosomes in vivo, and the overall architecture of the 30S subunits formed in the DeltarpsO strain at 37 degrees C is not altered. Nonetheless, 30S subunits lacking S15 appear to be somewhat defective in subunit association in vivo and in vitro. In addition, this strain is cold sensitive, displaying a marked ribosome biogenesis defect at low temperature, suggesting that under nonideal conditions S15 is critical for assembly. The viability of this strain indicates that in vivo functional populations of 70S ribosomes must form in the absence of S15 and that 30S subunit assembly has a plasicity that has not previously been revealed or characterized.  相似文献   

15.
D Moazed  H F Noller 《Cell》1986,47(6):985-994
Binding of tRNAPhe to ribosomes shields a set of highly conserved nucleotides in 16S rRNA from attack by a combination of structure-specific chemical probes. The bases can be classified according to whether or not their protection is strictly poly(U)-dependent (G529, G530, U531, A1408, A1492, and A1493) or poly(U)-independent (A532, G693, A794, C795, G926, 2mG966, G1338, A1339, U1381, C1399, C1400, and G1401). A third class (A790, G791, and A909) is shielded by both tRNA and 50S ribosomal subunits. Similar results are obtained when the protecting ligand is tRNAPhe E. Coli, tRNAPhe yeast, tRNAPhe E. Coli lacking its 3' terminal CA, or the 15 nucleotide anticodon stem-loop fragment of tRNAPhe yeast. Implications for structural correlates of the classic ribosomal A- and P-sites and for the possible involvement of 16S rRNA in translational proofreading are discussed.  相似文献   

16.
Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA.   总被引:11,自引:3,他引:8       下载免费PDF全文
Complexes between 16S rRNA and purified ribosomal proteins, either singly or in combination, were assembled in vitro and probed with hydroxyl radicals generated from free Fe(II)-EDTA. The broad specificity of hydroxyl radicals for attack at the ribose moiety in both single- and double-stranded contexts permitted probing of nearly all of the nucleotides in the 16S rRNA chain. Specific protection of localized regions of the RNA was observed in response to assembly of most of the ribosomal proteins. The locations of the protected regions were in good general agreement with the footprints previously reported for base-specific chemical probes, and with sites of RNA-protein crosslinking. New information was obtained about interaction of ribosomal proteins with 16S rRNA, especially with helical elements of the RNA. In some cases, 5' or 3' stagger in the protection pattern on complementary strands suggests interaction of proteins with the major or minor groove, respectively, of the RNA. These results reinforce and extend previous data on the localization of ribosomal proteins with respect to structural features of 16S rRNA, and offer many new constraints for three-dimensional modeling of the 30S ribosomal subunit.  相似文献   

17.
Previous studies have shown that the 30S ribosomal subunit of Escherichia coli can be reconstituted in vitro from individually purified ribosomal proteins and 16S ribosomal RNA, which were isolated from natural 30S subunits. We have developed a 30S subunit reconstitution system that uses only recombinant ribosomal protein components. The genes encoding E. coli ribosomal proteins S2-S21 were cloned, and all twenty of the individual proteins were overexpressed and purified. Reconstitution, following standard procedures, using the complete set of recombinant proteins and purified 16S ribosomal RNA is highly inefficient. Efficient reconstitution of 30S subunits using these components requires sequential addition of proteins, following either the 30S subunit assembly map (Mizushima & Nomura, 1970, Nature 226:1214-1218; Held et al., 1974, J Biol Chem 249:3103-3111) or following the order of protein assembly predicted from in vitro assembly kinetics (Powers et al., 1993, J MoI Biol 232:362-374). In the first procedure, the proteins were divided into three groups, Group I (S4, S7, S8, S15, S17, and S20), Group II (S5, S6, S9, Sll, S12, S13, S16, S18, and S19), and Group III (S2, S3, S10, S14, and S21), which were sequentially added to 16S rRNA with a 20 min incubation at 42 degrees C following the addition of each group. In the second procedure, the proteins were divided into Group I (S4, S6, S11, S15, S16, S17, S18, and S20), Group II (S7, S8, S9, S13, and S19), Group II' (S5 and S12) and Group III (S2, S3, S10, S14, and S21). Similarly efficient reconstitution is observed whether the proteins are grouped according to the assembly map or according to the results of in vitro 30S subunit assembly kinetics. Although reconstitution of 30S subunits using the recombinant proteins is slightly less efficient than reconstitution using a mixture of total proteins isolated from 30S subunits, it is much more efficient than reconstitution using proteins that were individually isolated from ribosomes. Particles reconstituted from the recombinant proteins sediment at 30S in sucrose gradients, bind tRNA in a template-dependent manner, and associate with 50S subunits to form 70S ribosomes that are active in poly(U)-directed polyphenylalanine synthesis. Both the protein composition and the dimethyl sulfate modification pattern of 16S ribosomal RNA are similar for 30S subunits reconstituted with either recombinant proteins or proteins isolated as a mixture from ribosomal subunits as well as for natural 30S subunits.  相似文献   

18.
The primary structure of rat ribosomal protein S18   总被引:2,自引:0,他引:2  
The amino acid sequence of the rat 40S ribosomal subunit protein S18 was deduced from the sequence of nucleotides in a recombinant cDNA. S18 has 152 amino acids and has a molecular weight of 17,707. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 10-13 copies of the S18 gene. The mRNA for the protein is about 600 nucleotides in length. Rat S18 is identical to mouse S18 (also referred to as KE3) and is related to Escherichia coli S13 and to other S13-like ribosomal proteins from Bacillus subtilis, from Bacillus stearothermophilus, and from plant mitochondria (Nicotiana tabacum and Zea mays).  相似文献   

19.
Ribosomal protein S15 recognizes a highly conserved target on 16 S rRNA, which consists of two distinct binding regions. Here, we used extensive site-directed mutagenesis on a Escherichia coli 16 S rRNA fragment containing the S15 binding site, to investigate the role of conserved nucleotides in protein recognition and to evaluate the relative contribution of the two sites. The effect of mutations on S15 recognition was studied by measuring the relative binding affinity, RNA probing and footprinting. The crystallographic structure of the Thermus thermophilus complex allowed molecular modelling of the E. coli complex and facilitated interpretation of biochemical data. Binding is essentially driven by site 1, which includes a three-way junction constrained by a conserved base triple and cross-strand stacking. Recognition is based mainly on shape complementarity, and the role of conserved nucleotides is to maintain a unique backbone geometry. The wild-type base triple is absolutely required for protein interaction, while changes in the conserved surrounding nucleotides are partially tolerated. Site 2, which provides functional groups in a conserved G-U/G-C motif, contributes only modestly to the stability of the interaction. Binding to this motif is dependent on binding at site 1 and is allowed only if the two sites are in the correct relative orientation. Non-conserved bulged nucleotides as well as a conserved purine interior loop, although not directly involved in recognition, are used to provide an appropriate flexibility between the two sites. In addition, correct binding at the two sites triggers conformational adjustments in the purine interior loop and in a distal region, which are known to be involved for subsequent binding of proteins S6 and S18. Thus, the role of site 1 is to anchor S15 to the rRNA, while binding at site 2 is aimed to induce a cascade of events required for subunit assembly.  相似文献   

20.
Selected groups of isolated 14C-labelled proteins from E. coli 30S ribosomal subunits were reconstituted with 32P-labelled 16S RNA, and the reconstituted complexes were partially digested with ribonuclease A. RNA fragments protected by the proteins were separated by gel electrophoresis and subjected to sequence analysis. Complexes containing proteins S7 and S19 protected an RNA region comprising helices 29 to 32, part of helix 41, and helices 42 and 43 of the 16S RNA secondary structure. Addition of protein S9 had no effect. When compared with previous data for proteins S7, S9, S14 and S19, these results suggest that S14 interacts with helix 33, and that S9 and S14 together interact with the loop-end of helix 41. Complexes containing proteins S8, S15 and S17 protected helices 7 to 10 as well as the "S8-S15 binding site" (helices 20, 22 and parts of helices 21 and 23). When protein S15 was omitted, S8 and S18 showed protection of part of helix 44 in addition to the latter regions. The results are discussed in terms of our model for the detailed arrangement of proteins and RNA in the 30S subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号