首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using an improved method to quantify the level of phosphorylation of the S6 ribosomal protein, we have analyzed the effect of growth stimuli on S6 phosphorylation in quiescent murine Swiss/3T3 cells to see if it can be dissociated from the later increase in DNA synthesis. Saturating concentrations of epidermal growth factor (EGF), insulin and serum each stimulate phosphorylation of the S6 ribosomal protein to the same maximal level; this is not so for DNA synthesis. Subsaturating concentrations of EGF and insulin act synergistically to stimulate both S6 phosphorylation and DNA synthesis, but qualitatively the two synergistic interactions are expressed differently. Insulin increases the maximal response of DNA synthesis to EGF, whereas it decreases the concentration of EGF required for half-maximal stimulation of S6 phosphorylation. We conclude that S6 phosphorylation is not a principal regulator of DNA synthesis, and that insulin and EGF regulate both S6 phosphorylation and DNA synthesis through different, but interacting, pathways of action.  相似文献   

2.
Regulation of cell proliferation by epidermal growth factor   总被引:27,自引:0,他引:27  
Epidermal Growth Factor (EGF) is a 6045 dalton polypeptide which stimulates the proliferation of various cell types in vitro and in vivo. EGF binds to diffusely distributed membrane receptors which rapidly cluster primarily on coated pits areas on the plasma membrane. Subsequently, the EGF-receptor complexes are endocytosed and degraded by lysosomal enzymes. The lateral diffusion coefficient (D) of EGF-receptor complexes on cultured cells increases gradually from D = 2.8 X 10(-10) cm2/sec at 5 degrees C to 8.5 X 10(-10) cm2/sec at 37 degrees C. In the same range of temperature the rotational correlation times change from 25 to 50 microseconds to approximately 350 microseconds. Hence, at 4 degrees C, the occupied EGF receptors translate and rotate rapidly in the plane of the membrane. At 37 degrees C, EGF receptors form microclusters composed of 10 to 50 molecules. Moreover, it is concluded that both at 4 degrees C and 37 degrees C lateral diffusion of the occupied receptors is not the rate determining step for either receptor clustering or internalization. EGF receptor is a 150,000 to 170,000 dalton glycoprotein. The receptor is in close proximity to an EGF-sensitive, cAMP-independent, tyrosine-specific protein kinase which also phosphorylates the receptor molecules itself. The EGF sensitive kinase is similar to the kinase activity which is associated with certain RNA tumor viruses. The fact that the non-mitogenic cyanogen-bromide cleaved EGF is as potent as native EGF in stimulating phosphorylation suggests that EGF-induced, protein phosphorylation is a necessary but insufficient signal for the induction of DNA synthesis by EGF. EGF receptor serves also as the binding site for Transforming Growth Factors (TGF) which compete with EGF and induce anchorage-independent growth of normal cells in soft agar. Tumor promoters such as phorbol ester effect the binding of EGF to its membrane receptors and its ability to stimulate DNA synthesis. EGF itself has also some tumor promoting activity. Hence, the membrane receptor for EGF seems to participate in the regulation of normal and neoplastic growth. Monoclonal antibodies against EGF receptor (IgM) induce various early and delayed effects of EGF, while their monovalent Fab' fragments are devoid of biological activity. These observations support the notions that EGF receptor rather than EGF itself is the active moiety and that the role of the hormone is to perturb the receptor in the appropriate way, probably by inducing the microaggregation of EGF receptors.  相似文献   

3.
Cyanogen bromide-cleaved epidermal growth factor (CNBr-EGF) binds to EGF receptors with reduced affinity compared to the native hormone but fails to induce DNA synthesis. However, at similar receptor occupancy, CNBr-EGF is as potent as EGF in activating early cell responses to the hormone. The phosphorylation of membrane proteins, the stimulation of Na+-K+-ATPase as reflected by the ouabain-sensitive uptake of 86Rb of fibroblasts, changes in the organization of microfilaments and in cell-morphology, and the activation of the enzyme ornithine-decarboxylase are all induced by CNBr-EGF as well as EGF Our results are consistent with the notion that EGF-induced phosphorylation could act as a "second messenger" for the action of various EGF-induced responses such as activation of Na+-K+-ATPase, changes in the cytoskeleton and cell morphology, and the activation of the enzyme ornithine decarboxylase. However, the stimulation of phosphorylation of membrane proteins and other early responses are either not required or necessary but insufficient for the induction of DNA synthesis. Suboptimal concentrations of EGF together with CNBr-EGF stimulate DNA synthesis in human fibroblasts. Other growth factors such as insulin, fibroblast growth factor, and prostaglandin F2 alpha, which potentiate the mitogenic response of EGF, do not effect the response to CNBr-EGF. This suggests that the restoration of the mitogenic properties of CNBr-EGF by suboptimal doses of EGF occurs at the level of EGF receptors or during their processing.  相似文献   

4.
To test the connection between S6 phosphorylation and the activation of protein and DNA synthesis, we compared the effects of serum, epidermal growth factor (EGF), prostaglandin F (PGF) and insulin (which is not mitogenic in these cells). Increasing concentrations of serum or EGF produced roughly parallel effects on all three processes, though the maximum response elicited by EGF (10?9 M) was only a portion of that caused by saturating levels of serum (7.5% to 10%). PGF (8.5 × 10?7 M) alone acted similarly to EGF (10?9 M) and with EGF produced a synergistic effect on all three processes. Insulin (10?9 M) alone stimulated both S6 phosphorylation and protein synthesis to approximately the same level as EGF or PGF, but had no effect on initiation of DNA synthesis. Thus neither stimulation of S6 phosphorylation nor activation of protein synthesis is sufficient for initiation of DNA synthesis. The requirement for S6 phosphorylation could not be dissociated from the activation of protein synthesis. Ribosomes containing the most highly phosphorylated forms of S6 appear to have a selective advantage in entering polysomes.  相似文献   

5.
Murine epidermal growth factor: structure and function   总被引:4,自引:0,他引:4  
Murine epidermal growth factor (EGF), a 53 amino acid protein, has been modified by enzymic digestion, site-specific chemical reactions, and recombinant DNA technology. After trypsin digestion the EGF derivatives EGF1-48 (called EGF-T) and EGF1-45 (called EGF-T2) were separated from the residual EGF and the C-terminal pentapeptide by reversed-phase high-performance liquid chromatography. EGF-T competes for binding to EGF receptors with the same efficiency as EGF. The EGF-T2 derivative had no detectable receptor binding activity even at 100 nM. The in vitro mitogenic potencies of EGF and EGF-T for Balb/c 3T3 cells were indistinguishable. Treatment of EGF-T with carboxypeptidase Y yielded two derivatives, EGF-T-(des-Arg48) and EGF-T-des(Leu47-Arg48). There was only a 3-7-fold diminution in the binding efficiency and mitogenic potency for EGF-T-(des-Arg48). However, there was more than a 100-fold decrease in the binding efficiency and mitogenic activity of EGF-T-des (Leu47-Arg48). These results indicated that Leu47 is intimately involved in the formation of the ligand-receptor complex. Studies with a number of proteases indicated that the C-terminus of EGF was susceptible to enzymic digestion; however, the N-terminus appears to be folded into a conformation which prevents access to proteolytic digestion. Consequently, the N-terminus was modified by preparing an analogue with recombinant DNA technology. Oligonucleotides corresponding to EGF(3-48). Met3 Lys21 residues were ligated in frame to a beta-galactosidase expression vector. The beta-Gal-EGF fusion protein was cleaved with cyanogen bromide and EGF(4-48).Lys21 purified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Protein 1 from the outer membrane of Escherichia coli K-12 and protein 2 from a phage PA-2 lysogen of the same strain were isolated by differential sodium dodecyl sulfate extraction and purified by ion-exchange and gel filtration chromatography. Rabbit antisera were prepared against these proteins and showed no cross-reaction between proteins 1 and 2. The proteins have the same N-terminal amino acid but show small yet significant differences in amino acid composition. The proteins were cleaved with cyanogenbromide in solvents containing both formic acid and trifluoroacetic acid. By comparing the cleavage in these solvents, it was established that protein 1 yielded 5 cyanogen bromide peptides, and the sum of the molecular weights of these was equivalent to the molecular weight of the uncleaved protein. Protein 2 yielded 4 cyanogen bromide peptides, none of which was identical to those of protein 1, and the sum of these peptides was also equivalent to the apparent molecular weight of the uncleaved protein. Significant differences were also observed when tryptic peptides from the two proteins were compared. These results indicate that protein 1 and the phage-directed protein 2 are distinct, different, and apparently homogeneous proteins.  相似文献   

7.
In contrast to the intact EGF, a cyanogen bromide derivative of EGF (EGF-CNBr) does not induce an increase in uridine phosphorylation rate in 3T3 cells, the ability of the EGF-CNBr to stimulate autophosphorylation of the EGF-receptor in A-431 cells being reserved. EGF and EGF-CNBr were used in concentrations promoting their equivalent binding with EGF receptor in both the series of experiments, which was necessary because of a decreased affinity to binding EGF-CNBr. Thus, the EGF-induced receptor autophosphorylation was not enough for uridine kinase activation. The differences between EGF and EGF-CNBr cellular processing made it possible to discuss potential ways of uridine-kinase activity regulation during the early period of stimulation of quiescent cell cultures.  相似文献   

8.
Phospholipase C-gamma (PLC-gamma) and GTPase activating protein (GAP) are substrates of EGF, PDGF and other growth factor receptors. Since either PLC-gamma or GAP also bind to the activated receptors it was suggested that their SH2 domains are mediating this association. We attempted to delineate the specific region of the EGF receptor that is responsible for the binding, utilizing EGF receptor mutants, PLC-gamma, and a bacterially expressed TRP E fusion protein containing the SH2 domains of GAP. As previously shown, tyrosine autophosphorylation of the wild-type receptor wsa crucial in mediating the association and in agreement, a kinase negative EGF receptor could bind PLC-gamma or TRP E GAP SH2, but only when cross tyrosine phosphorylated by an active EGF receptor kinase. The importance of autophosphorylation for association was confirmed by demonstrating that a carboxy-terminal deletion of the EGFR missing four autophosphorylation sites bound these proteins poorly. To study the role of EGF receptor autophosphorylation further, a 203 amino acid EGF receptor fragment was generated with cyanogen bromide that contained all known tyrosine autophosphorylation sites. This fragment bound both TRP E GAP SH2 and PLC-gamma but only when tyrosine phosphorylated. This data localizes a major binding site for SH2 domain containing proteins to the carboxy-terminus of the EGF receptor and points to the importance of tyrosine phosphorylation in mediating this association.  相似文献   

9.
Single-chain urokinase-type plasminogen activator (scu-PA) can be cleaved by thrombin into a virtually inactive form called thrombin-cleaved two-chain urokinase-type plasminogen activator (tcu-PA/T), a process accelerated by thrombomodulin, which contains six epidermal growth factor (EGF)-like domains. In this study, we identified the EGF-like domains of thrombomodulin required for the acceleration of the inactivation of scu-PA by thrombin using various forms of thrombomodulin (TM). scu-PA was treated with thrombin in the absence and presence of full-length rabbit TM (containing EGF1-6), recombinant TM comprising all of the extracellular domains including EGF1-6 (TMLEO) and recombinant TM comprising EGF4-6 plus the interconnecting region between EGF3 and EGF4 (TMEi4-6), and the tcu-PA/T generated was quantitated in each case. Rabbit TM accelerated the inactivation of scu-PA approximately 35-fold, while both recombinant forms accelerated it only threefold due to the absence of a critical chondroitin sulfate moiety. Subsequently, TME5-6 was prepared by cyanogen bromide digestion of TMEi4-6. TME5-6 bound to thrombin but did not accelerate the activation of protein C. In contrast, the inactivation of scu-PA by thrombin was accelerated to the same extent as that induced by TMLEO and TMEi4-6. This study demonstrates that, in addition to the chondroitin sulfate moiety, only EGF-like domains 5 and 6 are essential for the acceleration of the inactivation of scu-PA by thrombin. This differs from the domains that are critical for activation of protein C (EGF-like domains i4-6) and thrombin activatable fibrinolysis inhibitor (EGF-like domains 3-6).  相似文献   

10.
11.
Glycogen synthase kinase-3 (ATP:protein phosphotransferase, EC 2.7.1.37) phosphorylated K-casein 20-fold more rapidly than beta-casein, while alpha S1-casein was not a substrate. This distinguished it from casein kinase-I and casein kinase-II, which phosphorylate the beta-casein variant preferentially. Glycogen synthase kinase-3 phosphorylated a serine residue(s) in the C-terminal cyanogen bromide fragment on K-casein. In contrast, cyclic AMP-dependent protein kinase phosphorylated the N-terminal fragment, and phosphorylase kinase the N-terminal and intermediate cyanogen bromide fragments. The results emphasize the potential value of casein phosphorylation as a means of classifying protein kinases.  相似文献   

12.
Integral membrane proteins have not been readily amenable to the general methods developed for mass spectrometric (or internal Edman degradation) analysis of soluble proteins. We present here a sample preparation method and high performance liquid chromatography (HPLC) separation system which permits online HPLC-electrospray ionization mass spectrometry (ESI-MS) and -tandem mass spectrometry (MS/MS) analysis of cyanogen bromide cleavage fragments of integral membrane proteins. This method has been applied to wild type (WT) bacteriorhodopsin (bR), cysteine containing mutants of bR, and the prototypical G-protein coupled receptor, rhodopsin (Rh). In the described method, the protein is reduced and the cysteine residues pyridylethylated prior to separating the protein from the membrane. Following delipidation, the pyridylethylated protein is cleaved with cyanogen bromide. The cleavage fragments are separated by reversed phase HPLC using an isopropanol/acetonitrile/aqueous TFA solvent system and the effluent peptides analyzed online with a Finnigan LCQ Ion Trap Mass Spectrometer. With the exception of single amino acid fragments and the glycosylated fragment of Rh, which is observable by matrix assisted laser desorption ionization (MALDI)-MS, this system permits analysis of the entire protein in a single HPLC run. This methodology will enable pursuit of chemical modification and crosslinking studies designed to probe the three dimensional structures and functional conformational changes in these proteins. The approach should also be generally applicable to analysis of other integral membrane proteins.  相似文献   

13.
J P van Eerd  K Takahshi 《Biochemistry》1976,15(5):1171-1180
The amino acid sequence of bovine cardiac troponin C has been completely determined. The protein was cleaved by cyanogen bromide and the resulting peptides were isolated. All of the 161 residues of the protein could be accounted for in 12 cyanogen bromide peptides. Overlapping peptides were generated by tryptic digestion of citraconylated troponin C and isolation of the resulting five peptides. The primary structure of cardiac troponin C was elucidated by sequential manual Edman degradation of these peptides. It consists of four homologous regions, one of which probably has lost the ability to bind calcium ions. By comparing the amino acid sequence of cardiac troponin C with the sequence of skeletal troponin C, it was found that the mutation rate of the region that does not bind calcium is almost twice as high as the mutation rate of the three homologous regions that do bind calcium.  相似文献   

14.
The amino acid sequence of thiogalactoside transacetylase, a dimer, has been determined. The monomer contains 202 amino acid residues in a single polypeptide chain and has a molecular weight of 22,671. The analysis was carried out by treatment of the carboxymethylated protein with cyanogen bromide and with trypsin. All seven cyanogen bromide peptides were isolated in pure form and were ordered by peptides isolated from tryptic digests. The sequence analysis was aided by determination of the DNA sequence of the lacA gene. The amino terminus of the protein is heterogenous because the initiator methionine is only partially cleaved. Another rather unusual feature of this cytoplasmic protein is a very hydrophobic segment in the center portion of the chain. Comparison of the amino acid sequence of thiogalactoside transacetylase to those of the lac repressor, beta-galactosidase, and lactose permease did not reveal any marked similarities. Therefore, there is no obvious evolutionary relatedness among proteins of the Lactose Operon.  相似文献   

15.
The structure of bovine rhodopsin   总被引:26,自引:0,他引:26  
We have isolated 16 peptides from a cyanogen bromide digest of rhodopsin. These cyanogen bromide peptides account for the complete composition of the protein. Methionine-containing peptides from other chemical and enzymatic digests of rhodopsin have allowed us to place the cyanogen bromide peptides in order, yielding the sequence of the protein. We have completed the sequence of most of the cyanogen bromide peptides. This information, in conjunction with that from other laboratories, forms the basis for our prediction of the secondary structure of the protein and how it may be arranged in the disk membrane.  相似文献   

16.
T Kimura  D J Prockop 《Biochemistry》1982,21(22):5482-5488
[14C]Proline-labeled protocollagen, the unhydroxylated form of procollagen, was isolated from cartilage cells incubated with alpha, alpha'-dipyridyl. For examination of the initial steps in the hydroxylation of the protein, it was incubated in vitro with prolyl hydroxylase so that an average of 1.3-2.7 prolyl residues per chain was hydroxylated. The partially hydroxylated alpha chain were cleaved with cyanogen bromide, and the fragments were separated by polyacrylamide gel electrophoresis or column chromatography. The cyanogen bromide fragments were hydroxylated to the same degree. The results indicated, therefore, that in the initial hydroxylation of alpha chains in vitro, there was no preferential hydroxylation of any specific regions of the protein. In a second series of experiments, cartilage cells were incubated with [14C]proline and alpha, alpha'-dipyridyl so that prolyl hydroxylase in the cells was extensively, but not completely, inhibited. Partially hydroxylated alpha chains were isolated, and cyanogen bromide fragments of the alpha chains from the cells were assayed for hydroxy[14C]proline. The alpha chains contained an average of two residues of hydroxyproline per chain, and the cyanogen bromide fragments were hydroxylated to about the same degree. The results indicated, therefore, that when prolyl hydroxylase activity in cells is low relative to the rate at which pro alpha chains are synthesized, hydroxylation of prolyl residues occurs as it does in vitro, and there is no preferential hydroxylation of a specific region of the protein.  相似文献   

17.
A synthetic gene for human platelet factor 4 (hPF4) has been expressed at high levels as a fusion protein in Escherichia coli. The hPF4 sequence has been cleaved from the fusion protein by cyanogen bromide treatment and purified by column chromatography. Like hPF4, our recombinant hPF4 (rhPF4) is tetrameric under physiological conditions, binds heparin, and inhibits angiogenesis. Extensive purification to remove trace amounts of uncleaved fusion protein completely from the desired product rhPF4 was difficult. We have exploited recombinant DNA technology by modifying the fusion moiety to accomplish separation. This type of modification, which did not affect expression level, could be applied to other recombinant fusion proteins.  相似文献   

18.
Estrogen-stimulated growth of the human mammary adenocarcinoma cell line MCF-7 is significantly inhibited by monoclonal antibodies to the epidermal growth factor (EGF) receptor that act as antagonists of EGF's mitogenic events by competing for high-affinity EGF receptor binding sites. These antibodies likewise inhibit the EGF or transforming growth factor-alpha (TGF-alpha)-stimulated growth of these MCF-7 cells. An analogous pattern of specific EGF or TGF-alpha growth inhibitory activity was obtained using a synthetic peptide analog encompassing the third disulfide loop region of TGF-alpha, but containing additional modifications designed for increased membrane affinity [( Ac-D-hArg(Et)2(31),Gly32,33]HuTGF-alpha(31-43)NH2). The growth factor antagonism by this synthetic peptide was specific in that it inhibited EGF, TGF-alpha, or estrogen-stimulated growth of MCF-7 cells but did not inhibit insulin-like growth factor-1 (IGF-1)-stimulated cell growth. Altogether, these results suggest that a significant portion of the estrogen-stimulated growth of these MCF-7 cells is mediated in an autocrine/paracrine manner by release of EGF or TGF-alpha-like growth factors. The TGF-alpha peptide likewise inhibited EGF- but not fibroblast growth factor (FGF)- or platelet-derived growth factor (PDGF)-stimulated growth of NIH-3T3 cells in completely defined media; but had no effect on growth or DNA synthesis of G0-arrested cells, nor did it effect growth of NR-6 cells, which are nonresponsive to EGF. Although this synthetic peptide did not directly compete with EGF for cell surface receptor binding, it exhibited binding to a cell surface component (followed by internalization), which likewise was not competed by EGF. The peptide did not directly inhibit EGF-stimulated phosphorylation of the EGF receptor, nor did it inhibit phosphorylation of an exogenous substrate, angiotensin II, by activated EGF receptor. The TGF-alpha peptide did, however, affect the structure of laminin as manifested by laminin self-aggregation; this affect on laminin may, in turn, have a modulatory effect on EGF-mediated cell growth.  相似文献   

19.
The proliferative effects of EGF in liver have been extensively investigated in cultured hepatocytes. We studied the effects of EGF, insulin, and other growth regulators on the expression, interaction, and signaling of ErbB receptors in primary cultures of adult rat hepatocytes. Using immunological methods and ErbB tyrosine kinase inhibitors, we analyzed the expression and signaling patterns of the ErbB kinases over 120 h of culture. Basal and EGF-stimulated protein tyrosine phosphorylation increased as cells adapted in vitro. EGF receptor (EGFr) expression declined in the first 24 h, whereas ErbB3 expression rose. Although ErbB2 was not present in freshly isolated hepatocytes, EGF and insulin independently induced ErbB2 while suppressing ErbB3 expression. Low concentrations of EGF and insulin synergistically stimulated ErbB2 expression and DNA synthesis. The greatest increase in ErbB2, which is normally expressed by fetal and neonatal hepatocytes, occurred shortly before the onset of DNA synthesis (> 40 h). EGF promoted EGFr and ErbB2 coassociation, stimulating tyrosine phosphorylation of both proteins. In contrast, heregulin beta1 (HRG-beta1) did not promote ErbB2 and ErbB3 coassociation. A selective tyrphostin inhibitor of ErbB2 suppressed EGF-stimulated DNA synthesis, but maximum suppression required the blockade of the EGFr kinase as well. Maximal EGF stimulation of DNA synthesis in vitro depends on the induction of ErbB2 and involves an EGFr-ErbB2 heterodimer. The ability of insulin to induce ErbB2 suggests both a mechanism for the synergy between insulin and EGF and a possible metabolic control of ErbB2 in vivo.  相似文献   

20.
The hydrophobic, photoactivatable probe TID [3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine] was used to label the plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. The H(+)-ATPase accounted for 43% of the total label associated with plasma membrane protein and incorporated 0.3 mol of [125I]TID per mol of 100 kDa polypeptide. The H(+)-ATPase was purified by octyl glucoside extraction and glycerol gradient centrifugation, and was cleaved by either cyanogen bromide digestion or limited tryptic proteolysis to isolate labeled fragments. Cyanogen bromide digestion resulted in numerous labeled fragments of mass less than 21 kDa. Seven fragments suitable for microsequence analysis were obtained by electrotransfer to poly(vinylidene difluoride) membranes. Five different regions of amino-acid sequence were identified, including fragments predicted to encompass both membrane-spanning and cytoplasmic protein structure domains. Most of the labeling of the cytoplasmic domain was concentrated in a region comprising amino acids 347 to 529. This catalytic region contains the site of phosphorylation and was previously suggested to be hydrophobic in character (Goffeau, A. and De Meis, L. (1990) J. Biol. 265, 15503-15505). Complementary labeling information was obtained from an analysis of limited tryptic fragments enriched for hydrophobic character. Six principal labeled fragments, of 29.6, 20.6, 16, 13.1, 11.4 and 9.7 kDa, were obtained. These fragments were found to comprise most of the putative transmembrane region and a portion of the cytoplasmic region that overlapped with the highly labeled active site-containing cyanogen bromide fragment. Overall, the extensive labeling of protein structure domains known to lie outside the bilayer suggests that [125I]TID labeling patterns cannot be unambiguously interpreted for the purpose of discerning membrane-embedded protein structure domains. It is proposed that caution should be applied in the interpretation of [125I]TID labeling patterns of the yeast plasma membrane H(+)-ATPase and that new and diverse approaches should be developed to provide a more definitive topology model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号