首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-beta (TGF-beta) signals through two transmembrane serine/threonine kinases, T beta R-I and T beta R-II. TGF-beta binds to T beta R-II, allowing this receptor to associate with and phosphorylate T beta R-I which then propagates the signal. T beta R-I is phosphorylated within its GS domain, a region immediately preceding the kinase domain. To further understand the function of T beta R-I in this complex, we analyzed T beta R-I-inactivating mutations identified in cell lines that are defective in TGF-beta signaling yet retain ligand binding ability. The three mutations identified here all fall in the kinase domain of T beta R-I. One mutation disrupts the kinase activity of T beta R-I, whereas the other two mutations prevent ligand-induced T beta R-I phosphorylation, and thus activation, by T beta R-II. Unexpectedly, a kinase-defective T beta R-I mutant can functionally complement an activation- defective T beta R-I mutant, by rescuing its T beta R-II- dependent phosphorylation. Together with evidence that the ligand-induced receptor complex contains two or more T beta R-I molecules, these results support a model in which the kinase domain of one T beta R-I molecule interacts with the GS domain of another, enabling its phosphorylation and activation by T beta R-II. This cooperative interaction between T beta R-I molecules appears essential for TGF-beta signal transduction.  相似文献   

2.
3.
F Ventura  J Doody  F Liu  J L Wrana    J Massagué 《The EMBO journal》1994,13(23):5581-5589
Transforming growth factor-beta (TGF-beta) signals by contacting two distantly related transmembrane serine/threonine kinases called receptors I (T beta R-I) and II (T beta R-II). TGF-beta binds to T beta R-II, which is a constitutively active kinase and this complex recruits T beta R-I, causing its phosphorylation and signal propagation to downstream substrates. The biochemical properties of this interaction were analyzed with reconstituted receptor systems. T beta R-I and T beta R-II baculovirally expressed at high levels in insect cells have the ligand binding properties of receptors expressed in mammalian cells, and form a complex in which T beta R-I phosphorylation is dependent on the kinase activity of T beta R-II. Furthermore, T beta R-I and T beta R-II can form a complex in vitro, and their cytoplasmic domains can specifically interact in a yeast two-hybrid system. In vitro complex formation with catalytically active T beta R-II is necessary and sufficient for T beta R-I phosphorylation, which within this complex does not require the catalytic activity of T beta R-I, thus mimicking T beta R-I phosphorylation in intact cells. In addition, T beta R-I phosphorylated in vitro remains associated with T beta R-II. These results suggest that T beta R-I and T beta R-II have affinity for each other, however, the ligand is required for stable complex formation under physiological conditions. Once formed, this complex is sufficient for T beta R-I phosphorylation by T beta R-II.  相似文献   

4.
5.
6.
Smad proteins are intracellular mediators of transforming growth factor-beta (TGF-beta) and related cytokines. Although ligand-induced nuclear translocation of Smad proteins is clearly established, the pathway mediating this import is yet to be determined. We previously identified a nuclear localization signal (NLS) in the N-terminal region of Smad 3, the major Smad protein involved in TGF-beta signal transduction. This basic motif (Lys(40-)Lys-Leu-Lys-Lys(44)), conserved among all the pathway-specific Smad proteins, is required for Smad 3 nuclear import in response to ligand. Here we studied the nuclear import pathway of Smad 3 mediated by this NLS. We demonstrate that the isolated Smad 3 MH1 domain displays significant specific binding to importin beta, which is diminished or eliminated by mutations in the NLS. Full-size Smad 3 exhibits weak but specific binding to importin beta, which is enhanced after phosphorylation by the type I TGF-beta receptor. In contrast, no interaction was observed between importin alpha and Smad 3 or its MH1 domain, indicating that nuclear translocation of Smad proteins may occur through direct binding to importin beta. We propose that activation of all of the pathway-specific Smad proteins (Smads 1, 2, 3, 5, 8, and 9) exposes the conserved NLS motif, which then binds directly to importin beta and triggers nuclear translocation.  相似文献   

7.
G蛋白偶联受体激酶相互作用蛋白2(G protein-coupled receptor kinase interacting proteins 2,GIT2)是一种信号支架蛋白,可募集多种信号通路的关键分子,参与肌动蛋白细胞骨架组装、整合素介导的细胞粘附、G蛋白偶联受体的内化及胞内信号传递等生物学过程. 采用酵母双杂交实验证明,TGF-β1信号通路的转录因子Smad3是GIT2的相互作用蛋白质,内、外源免疫共沉淀实验均证实,GIT2与Smad3存在蛋白质相互作用. 报告基因实验及免疫印迹结果表明,GIT2增加Smad3的转录活性并增强TGF-β1诱导的Smad3的磷酸化.研究还发现,Git2-/-小鼠骨髓间充质干细胞(MSC)的Smad3磷酸化受到抑制,其骨形成相关靶基因的表达水平也低于Git2+/+小鼠. 本研究表明,GIT2通过与Smad3的相互作用调节其转录活性并活化TGF-β1信号通路,可能参与调节骨髓间充质干细胞的分化.  相似文献   

8.
9.
Transforming growth factor-beta (TGF-beta) is a pleiotropic growth factor that plays a critical role in modulating cell growth, differentiation, and plasticity. There is increasing evidence that after cells lose their sensitivity to TGF-beta-mediated growth inhibition, autocrine TGF-beta signaling may potentially promote tumor cell motility and invasiveness. To understand the molecular mechanisms by which autocrine TGF-beta may selectively contribute to tumor cell motility, we have generated MDA-MB-231 breast cancer cells stably expressing a kinase-inactive type II TGF-beta receptor (T beta RII-K277R). Our data indicate that T beta RII-K277R is expressed, can associate with the type I TGF-beta receptor, and block both Smad-dependent and -independent signaling pathways activated by TGF-beta. In addition, wound closure and transwell migration assays indicated that the basal migratory potential of T beta RII-K277R expressing cells was impaired. The impaired motility of T beta RII-K277R cells could be restored by reconstituting TGF-beta signaling with a constitutively active TGF-beta type I receptor (ALK5(TD)) but not by reconstituting Smad signaling with Smad2/4 or Smad3/4 expression. In addition, the levels of ALK5(TD) expression sufficient to restore motility in the cells expressing T beta RII-K277R were associated with an increase in phosphorylation of Akt and extracellular signal-regulated kinase 1/2 but not Smad2. These data indicate that different signaling pathways require different thresholds of TGF-beta activation and suggest that TGF-beta promotes motility through mechanisms independent of Smad signaling, possibly involving activation of the phosphatidylinositol 3-kinase/Akt and/or mitogen-activated protein kinase pathways.  相似文献   

10.
We have investigated glycogen synthase (GS) activation in L6hIR cells expressing a peptide corresponding to the kinase regulatory loop binding domain of insulin receptor substrate-2 (IRS-2) (KRLB). In several clones of these cells (B2, F4), insulin-dependent binding of the KRLB to insulin receptors was accompanied by a block of IRS-2, but not IRS-1, phosphorylation, and insulin receptor binding. GS activation by insulin was also inhibited by >70% in these cells (p < 0.001). The impairment of GS activation was paralleled by a similarly sized inhibition of glycogen synthase kinase 3 alpha (GSK3 alpha) and GSK3 beta inactivation by insulin with no change in protein phosphatase 1 activity. PDK1 (a phosphatidylinositol trisphosphate-dependent kinase) and Akt/protein kinase B (PKB) activation by insulin showed no difference in B2, F4, and in control L6hIR cells. At variance, insulin did not activate PKC zeta in B2 and F4 cells. In L6hIR, inhibition of PKC zeta activity by either a PKC zeta antisense or a dominant negative mutant also reduced by 75% insulin inactivation of GSK3 alpha and -beta (p < 0.001) and insulin stimulation of GS (p < 0.002), similar to Akt/PKB inhibition. In L6hIR, insulin induced protein kinase C zeta (PKC zeta) co-precipitation with GSK3 alpha and beta. PKC zeta also phosphorylated GSK3 alpha and -beta. Alone, these events did not significantly affect GSK3 alpha and -beta activities. Inhibition of PKC zeta activity, however, reduced Akt/PKB phosphorylation of the key serine sites on GSK3 alpha and -beta by >80% (p < 0.001) and prevented full GSK3 inactivation by insulin. Thus, IRS-2, not IRS-1, signals insulin activation of GS in the L6hIR skeletal muscle cells. In these cells, insulin inhibition of GSK3 alpha and -beta requires dual phosphorylation by both Akt/PKB and PKC zeta.  相似文献   

11.
12.
13.
Smads transduce intracellular signals initiated by members of the transforming growth factor beta (TGF beta) family, including activins, TGF betas, and bone morphogenetic proteins. Recently, various models concerning the mechanism of Smad action have been proposed; however, these models are basically qualitative. Quantitative verification of the validity of the models requires significant amounts of purified Smad proteins, but purification of full-length Smad protein has not been straightforward even using recombinant protein expression systems. Here, we report purification of Smad proteins expressed in E. coli as glutathione S-transferase-fused proteins. By glutathione-Sepharose affinity purification, ATP treatment, DEAE-Sepharose and hydroxylapatite columns, expressed Smads were purified to near homogeneity as judged by SDS-PAGE; protein recovery was ca. 1 mg/l culture for Smad2 and 100 microg/l culture for Smad4. The purified Smad proteins had three known in vitro activities: Smad2 phosphorylation by TGF beta receptor complexes immunoprecipitated from COS7 cells, Smad4 binding to Smad-binding DNA element, and Smad2 interaction with calmodulin. The data suggest that purified proteins could be useful for biochemical analyses to evaluate the current models quantitatively.  相似文献   

14.
The beta(2)-adrenergic receptor (beta(2)-AR) negatively regulates T cell activity through the activation of the G(s)/adenylyl cyclase/cAMP pathway. beta(2)-AR desensitization, which can be induced by its phosphorylation, may have important consequences for the regulation of T cell function in asthma. In the present study we demonstrate that the C-C chemokine thymus and activation-regulated chemokine (TARC) impairs the ability of beta(2)-agonist fenoterol to activate the cAMP downstream effector cAMP-responsive element binding protein (CREB) in freshly isolated human T cells. The TARC-induced activation of Src kinases resulted in membrane translocation of both G protein-coupled receptor kinase (GRK) 2 and beta-arrestin. Moreover, TARC was able to induce Src-dependent serine phosphorylation of the beta(2)-AR as well as its association with GRK2 and beta-arrestin. Finally, in contrast to CREB, phosphorylation of Src and extracellular signal-regulated kinase was enhanced by fenoterol upon TARC pretreatment. In summary, we show for the first time that TARC exposure impairs beta(2)-AR function in T cells. Our data suggest that this is mediated by Src-dependent activation of GRK2, resulting in receptor phosphorylation, binding to beta-arrestin, and a switch from cAMP-dependent signaling to activation of the MAPK pathway. We propose that aberrant T cell control in the presence of endogenous beta-agonists promotes T cell-mediated inflammation in asthma.  相似文献   

15.
16.
17.
18.
19.
Overexpression of the inhibitory Smad, Smad7, is used frequently to implicate the Smad pathway in cellular responses to transforming growth factor beta (TGF-beta) signaling; however, Smad7 regulates several other proteins, including Cdc42, p38MAPK, and beta-catenin. We report an alternative approach for more specifically disrupting Smad-dependent signaling using a peptide aptamer, Trx-SARA, which comprises a rigid scaffold, the Escherichia coli thioredoxin A protein (Trx), displaying a constrained 56-amino acid Smad-binding motif from the Smad anchor for receptor activation (SARA) protein. Trx-SARA bound specifically to Smad2 and Smad3 and inhibited both TGF-beta-induced reporter gene expression and epithelial-to-mesenchymal transition in NMuMG murine mammary epithelial cells. In contrast to Smad7, Trx-SARA had no effect on the Smad2 or 3 phosphorylation levels induced by TGF-beta1. Trx-SARA was primarily localized to the nucleus and perturbed the normal cytoplasmic localization of Smad2 and 3 to a nuclear localization in the absence of TGF-beta1, consistent with reduced Smad nuclear export. The key mode of action of Trx-SARA was to reduce the level of Smad2 and Smad3 in complex with Smad4 after TGF-beta1 stimulation, a mechanism of action consistent with the preferential binding of SARA to monomeric Smad protein and Trx-SARA-mediated disruption of active Smad complexes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号