首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat hearts were treated with a cryoprotectant solution composed of glycerol and DMSO in concentrations ranging from 10–25% vv, and then frozen in liquid nitrogen. Creatine phosphokinase activity was then measured spectrophotometrically and activities were compared with activities of frozen-untreated hearts, unfrozen-treated hearts, and unfrozen-untreated hearts. Independently freezing or treating increased enzyme activity, but when hearts were treated and then frozen, activity diminished below that of the unfrozen-untreated group. Evidence suggests (1) DMSO-glycerol solution either has a toxic effect that increases with concentration and freezing additionally aggravates this effect, or the concentrations of cryoprotectants used do not adequately protect the tissue during freezing which causes damage to the contractile mechanism; and (2) the anoxic state of the tissue causes depletion of ATP and creatine phosphate such that creatine phosphokinase is inactive or not able to function.  相似文献   

2.
Steinernema feltiae is a moderately freeze-tolerant entomopathogenic nematode which survives intracellular freezing. We have detected by gas chromatography that infective juveniles of S. feltiae produce cryoprotectants in response to cold acclimation and to freezing. Since the survival of this nematode varies with temperature, we analyzed their cryoprotectant profiles under different acclimation and freezing regimes. The principal cryoprotectants detected were trehalose and glycerol with glucose being the minor component. The amount of cryoprotectants varied with the temperature and duration of exposure. Trehalose was accumulated in higher concentrations when nematodes were acclimated at 5°C for two weeks whereas glycerol level decreased from that of the non-acclimated controls. Nematodes were seeded with a small ice crystal and held at -1°C, a regime that does not produce freezing of the nematodes but their bodies lose water to the surrounding ice (cryoprotective dehydration). This increased the levels of both trehalose and glycerol, with glycerol reaching a higher concentration than trehalose. Nematodes frozen at -3°C, a regime that produces freezing of the nematodes and results in intracellular ice formation, had elevated glycerol levels while trehalose levels did not change. Steinernema feltiae thus has two strategies of cryoprotectant accumulation: one is an acclimation response to low temperature when the body fluids are in a cooled or supercooled state and the infective juveniles produce trehalose before freezing. During this process a portion of the glycerol is converted to trehalose. The second strategy is a rapid response to freezing which induces the production of glycerol but trehalose levels do not change. These low molecular weight compounds are surmised to act as cryoprotectants for this species and to play an important role in its freezing tolerance.  相似文献   

3.
Thylakoid membranes isolated from spinach leaves (Spinacia oleracea L. cv. Monatol) were subjected to a freeze-thaw cycle in the presence of various concentrations of sugars, polyhydric alcohols, and NaCl. Functional integrity of the membranes was assayed by means of cyclic photophosphorylation. From the nonideal activity—concentration profiles of the carbohydrates the effective NaCl concentrations in the surroundings of the membranes at the respective freezing temperatures were calculated.Comparison of the cryoprotective efficiency of the various polyols revealed that cryopreservation by low-molecular-weight compounds is predominantly due to colligative action of the solutes. In addition, specific effects of carbohydrates which cannot be explained by the colligative concept are involved in cryoprotection. At NaCl concentrations exceeding 15 mm, the relative contribution of noncolligative membrane protection of a given polyol to overall cryopreservation was independent of the salt concentration. However, during freezing in the presence of very low salt concentrations, for instance 1–4 mm NaCl, cryoprotection due to colligative phenomena is reduced in favor of other mechanisms.  相似文献   

4.
The present study employed cryomicroscopy to derive an optimal sperm freezing protocol for guppy (Poecilia reticulata) sperm. Evaluation criteria during the freezing-thawing process were assessed for nucleation temperature (Tn), temperature when more than 50% of sperm display bending mid-piece (Tb), temperature when more than 80% of sperm stop moving (Tm), thawing temperature (Tt), and post-thaw motility. We compared four different cryoprotectants: 5% N-dimethyl formamide (DMF), 6% methanol (MEOH), 10% dimethyl sulfoxide (DMSO), and 14% glycerol, as well as glycerol at different concentrations of 7-50%; cooling and rewarming rates ranged from 5 to 100 °C/min. The protocol that yielded the highest post-thaw motility was samples suspended in 14% glycerol, cooled at 25 °C/min, and thawed at 100 °C/min, which was in complete agreement with our previous findings derived from a controlled-rate freezer. In addition, Tb and Tm were found to be negatively correlated with post-thaw motility, suggesting their possible role in predicting freezing success. The present study for the first time demonstrated the usefulness of cryomicroscopy in deriving an optimal sperm freezing protocol for aquatic species.  相似文献   

5.
Strong evidence suggests that cryoprotectant accumulation during pre-cold acclimation protects cells against freezing injuries caused by cellular dehydration. In this study, the concentrations of trehalose and glycerol were measured in Meloidogyne incognita and it was found that both cryoprotectants were significantly accumulated in second-stage juveniles (J2) of M. incognita after acclimation at 4°C. However, compared with non-acclimated samples, only a higher level of trehalose was induced in the egg masses of M. incognita in response to cold treatment. Further characterizations indicated that pre-cold acclimation efficiently accelerated the speed of larvae hatching from egg masses that were subjected to freezing at −1°C. In addition, the survival rate and pathogenicity of M. incognita J2 that had been acclimated prior to freezing were significantly enhanced when compared with non-acclimated J2 individuals. As far as we know, this is the first time that this phenomenon has been reported in M. incognita.  相似文献   

6.
《Cryobiology》2009,58(3):286-291
The freeze tolerance and accumulation of cryoprotectants was investigated in three geographically different populations of the enchytraeid Enchytraeus albidus (Oligochaeta). E. albidus is widely distributed from the high Arctic to temperate Western Europe. Our results show that E. albidus is freeze tolerant, with freeze tolerance varying extensively between Greenlandic and European populations. Two populations from sub Arctic (Nuuk) and high Arctic Greenland (Zackenberg) survived freezing at −15 °C, whereas only 30% of a German population survived this temperature. When frozen, E. albidus responded by catabolising glycogen to glucose, which likely acted as a cryoprotectant. The average glucose concentrations were similar in the three populations when worms were frozen at −2 °C, approximately 50 μg glucose mg−1 tissue dry weight (DW). At −14 °C the glucose concentrations increased to between 110 and 170 μg mg−1 DW in worms from Greenland. The average glycogen content of worms from Zackenberg and Nuuk were about 300 μg mg−1 DW, but only 230 μg mg−1 DW in worms from Germany showing that not all glycogen was catabolised during the experiment. Nuclear magnetic resonance spectrometry (NMR) was used to screen for other putative cryoprotectants. Proline, glutamine and alanine were up regulated in frozen worms at −2 °C but only in relatively small concentrations suggesting that they were of little significance for freeze survival. The present study confirms earlier reports that freeze tolerant enchytraeids, like other freeze tolerant oligochaete earthworms, accumulate high concentrations of glucose as a primary cryoprotectant.  相似文献   

7.
Insect cold hardiness is often mediated by low molecular weight cryoprotectants, such as sugars, polyols, and amino acids (AA). While many free-living northern insects must cope with extended periods of freezing ambient temperatures (Ta), the ectoparasitic deer ked Lipoptena cervi imago can encounter subfreezing Ta only during a short autumnal period between hatching and host location. Subsequently, it benefits from the body temperature of the cervid host for survival in winter. This study investigated the cold tolerance of the species by determining its lower lethal temperature (100% mortality, LLT100) during faster and slower cold acclimation, by determining the supercooling point (SCP) and by measuring the concentrations of potential low molecular weight cryoprotectants. The LLT100 of the deer ked was approximately -16 ° C, which would enable it to survive freezing nighttime Ta not only in its current area of distribution but also further north. The SCP was -7.8 ° C, clearly higher than the LLT100 , indicating that the deer ked displays freezing tolerance. The concentrations of free AA, especially nonessential AA, were higher in the cold-acclimated deer keds similar to several other insects. The concentrations of proline increased together with γ-aminobutyrate, arginine, asparagine, cystine, glutamate, glutamine, hydroxylysine, sarcosine, serine, and taurine. AA could be hypothesized to act as cryoprotectants by, e.g., protecting enzymes and lipid membranes from damage caused by cold.  相似文献   

8.
Slices of rabbit renal cortex were frozen in 0.64 or 1.92 M dimethyl sulfoxide (Me2SO) to various subzero temperatures, thawed, and assayed for viability. Salt and Me2SO concentrations were calculated and correlated with the injury taking place during freezing. In separate experiments, slices were treated with NaCl or Me2SO in concentrations sufficient to simulate the exposure brought about as a result of freezing. The effects of these treatments on cortical viability were compared with the results of freezing to equivalent concentrations of either NaCl or Me2SO. The results show that whereas slices will tolerate exposure to at least six times the isotonic concentration of NaCl at 0 °C, they are unable to tolerate even three times the isotonic salt concentration when frozen in 1.92 M Me2SO. They can, however, tolerate 3 × NaCl when frozen in 0.64 M Me2SO. Freezing damage did not depend upon the amount of ice formed per se, since slices frozen in the low concentration of Me2SO tolerated removal of about 75% of the initial fluid content of the system, whereas slices frozen in 1.92 M Me2SO did not tolerate an identical removal of unfrozen solution. It was found that treatment of slices with high concentrations of Me2SO at subzero temperatures in accordance with Elford's application (14) of Farrant's method (20) produced damage which correlated approximately with the damage observed when the same concentrations of Me2SO were produced by freezing. It is concluded that most of the damage caused by freezing in 1.92 M Me2SO is produced either directly or indirectly by Me2SO. Possible mechanisms for this injury are discussed.  相似文献   

9.
The development of cryopreservation methods for microalgae opens great prospects for marine biotechnology and aims to establish a bank of cryopreserved cultures. Eight of ten marine microalgae species used in this study (the diatoms, green, red, and golden algae), including five previously untested species, were successfully recovered after freezing to ultra-low temperatures (?196 °C) using penetrating (dimethyl sulfoxide, glycerol, and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants. We found that ethylene glycol in combination with trehalose possessed the most effective cryoprotective activity among the algae cryoprotectants tested. However, the chief factor for the successful preservation of microalgal cells during freeze–thawing was shown to be the cooling rate. Cooling was performed in two ways: step or fast droplet freezing. The droplet freezing described here was effective only for cryopreserving green algae, whereas step freezing was optimal for all other algal species. Three diatoms of the genus Attheya were successfully cryopreserved for the first time, but none of the tested protocols had a positive result for the diatoms belonging to Pseudo-nitzschia. The failure may be explained rather by peculiarities in the cell wall composition (higher content of silica and fewer organic components) than by the specific (long and thin) shape of these cells. The pigment content in all of the studied species tended to decrease after thawing as compared with unfrozen cells and increase significantly during cell recovery. Cryosensitivity of marine algae depended on the differences in natural intrinsic characteristics rather than their taxonomic position.  相似文献   

10.
Embryos and oocytes were first successfully cryopreserved more than 30 years ago, when Whittingham et al.1 and Wilmut 2 separately described that mouse embryos could be frozen and stored at -196 °C and, a few years later, Parkening et al. 3 reported the birth of live offspring resulting from in vitro fertilization (IVF) of cryopreserved oocytes. Since then, the use of cryopreservation techniques has rapidly spread to become an essential component in the practice of human and animal assisted reproduction and in the conservation of animal genetic resources. Currently, there are two main methods used to cryopreserve oocytes and embryos: slow freezing and vitrification. A wide variety of approaches have been used to try to improve both techniques and millions of animals and thousands of children have been born from cryopreserved embryos. However, important shortcomings associated to cryopreservation still have to be overcome, since ice-crystal formation, solution effects and osmotic shock seem to cause several cryoinjuries in post-thawed oocytes and embryos. Slow freezing with programmable freezers has the advantage of using low concentrations of cryoprotectants, which are usually associated with chemical toxicity and osmotic shock, but their ability to avoid ice-crystal formation at low concentrations is limited. Slow freezing also induces supercooling effects that must be avoided using manual or automatic seeding 4. In the vitrification process, high concentrations of cryoprotectants inhibit the formation of ice-crystals and lead to the formation of a glasslike vitrified state in which water is solidified, but not expanded. However, due to the toxicity of cyroprotectants at the concentrations used, oocytes/embryos can only be exposed to the cryoprotectant solution for a very short period of time and in a minimum volume solution, before submerging the samples directly in liquid nitrogen 5. In the last decade, vitrification has become more popular because it is a very quick method in which no expensive equipment (programmable freezer) is required. However, slow freezing continues to be the most widely used method for oocyte/embryo cryopreservation. In this video-article we show, step-by-step, how to collect and slowly freeze hamster oocytes with high post-thaw survival rates. The same procedure can also be applied to successfully freeze and thaw mouse embryos at different stages of preimplantation development.Open in a separate windowClick here to view.(106M, flv)  相似文献   

11.
Populations of three isolates of Bursaphelenchus xylophilus, the pinewood nematode, and one of B. mucronatus were treated with three cryoprotectants at -70 C for 24 hours followed by deep freezing at -180 C in liquid nitrogen for different periods of time. A solution of 15% glycerol, 35% buffer S, and 50% M9, or 1% aqueous solution of dimethylsulfoxide (DMSO), or a mixture of 60% M9 and 40% S buffer were used as cryoprotectants. A significantly larger number of juveniles than adults survived deep freezing. Significantly more nematodes were motile after cryopreservation in the 15% glycerol-S-M9 soludon than in the M9-S buffer solution or the DMSO aqueous solution. When cryopreserved nematodes that had been treated with glycerol solution were plated onto Botrytis cinerea, they reproduced rapidly over several generations. Cryopreserved nematodes were as pathogenic as untreated nematodes to Scots pines.  相似文献   

12.
The freeze tolerance and accumulation of cryoprotectants was investigated in three geographically different populations of the enchytraeid Enchytraeus albidus (Oligochaeta). E. albidus is widely distributed from the high Arctic to temperate Western Europe. Our results show that E. albidus is freeze tolerant, with freeze tolerance varying extensively between Greenlandic and European populations. Two populations from sub Arctic (Nuuk) and high Arctic Greenland (Zackenberg) survived freezing at −15 °C, whereas only 30% of a German population survived this temperature. When frozen, E. albidus responded by catabolising glycogen to glucose, which likely acted as a cryoprotectant. The average glucose concentrations were similar in the three populations when worms were frozen at −2 °C, approximately 50 μg glucose mg−1 tissue dry weight (DW). At −14 °C the glucose concentrations increased to between 110 and 170 μg mg−1 DW in worms from Greenland. The average glycogen content of worms from Zackenberg and Nuuk were about 300 μg mg−1 DW, but only 230 μg mg−1 DW in worms from Germany showing that not all glycogen was catabolised during the experiment. Nuclear magnetic resonance spectrometry (NMR) was used to screen for other putative cryoprotectants. Proline, glutamine and alanine were up regulated in frozen worms at −2 °C but only in relatively small concentrations suggesting that they were of little significance for freeze survival. The present study confirms earlier reports that freeze tolerant enchytraeids, like other freeze tolerant oligochaete earthworms, accumulate high concentrations of glucose as a primary cryoprotectant.  相似文献   

13.
The aim of the present study was to focus on the impact of two different methods and the effects of cryoprotectants on the survival of a probiotic bacterium, Streptococcus phocae PI80, during storage. For the protection of freeze dried cells, the optimal storage conditions were determined with a high survival rate. After the freeze drying process, all cryoprotectants exhibited a protective effect on cell viability at all storage temperatures. High relative cell viability was observed when cells were incubated at ?20°C, which was optimum for the protection of S. phocae PI80. Trehalose was the most promising cryoprotectant at all temperatures during the storage period of bacterial cells. The combination of trehalose + skim milk showed more than 85% survivability compared to other combinations at ?20°C for 60 days. In addition, encapsulation of probiotic cells into alginate-chitosan gel capsules showed better survival of S. phocae cells (5.468 ± 0.15 LogCFU/mL) with high bacteriocin activity at ?20°C for six months. The cell-loaded microcapsules remained stable when treated with simulated gastric and intestinal fluids. After 6 h in vivo treatment, the capsules were found to be broken, releasing the probiotic cells directly into the intestinal system of rats. Therefore, microencapsulation was found to be the most efficient technique, which not only protected the cells for a longer time but also released the cells into the in vivo intestinal system.  相似文献   

14.
Saccharides have bioprotective properties, with a high capacity to preserve biological proteins and membranes during sperm cryopreservation. The aim of this study was to evaluate how replacing the lactose of cryopreservation media by sucrose (SUC) or trehalose (TRE) at concentrations of 0.2 M (SUC-1 and TRE-1) and 0.25 M (SUC-2 and TRE-2) affects frozen/thawed pig spermatozoa. The media used were composed of medium A (saccharide/egg yolk) and B (saccharide/egg yolk/glycerol), their osmolality being determined prior to freezing. Cell viability, membrane lipid disorder, acrosome integrity, mitochondrial membrane potential (MMP), lipid peroxidation, thiol group oxidation, total reactive oxygen species (ROS), peroxynitrite and superoxide anion (O2●-) were determined through flow cytometry; total motility (TM), progressive motility (PM) and kinetic parameters motility were determined immediately after thawing (T0) and again 30 (T30) and 60 (T60) minutes later. The SUC-2 and TRE-2 groups maintained viability significantly and presented fewer lipid membrane disorders, respectively, both with a significant increase in MMP. The production of O2●- and peroxynitrite was lower in the TRE-2 groups compared to the control (P < 0.05). Total motility at T0 was greater in the TRE-2 group (P < 0.05). Sperm kinetics was not affected by the treatment. The use of saccharides SUC and TRE at a concentration of 0.25 M improves sperm quality, so that both non-penetrating cryoprotectants can be utilized in pig sperm freezing media.  相似文献   

15.
Culture collections of microalgae represent a biological resource for scientific research and biotechnological applications. When compared to the current methods of maintenance and sub-culturing, cryopreservation minimizes labor costs and is an effective method for maintaining a large range of species over long periods with high stability. In order to determine the best cryopreservation method for microalgae species with great biotechnological potential, three freezing protocols were employed using different cryoprotectants (dimethyl sulfoxide—Me2SO; methanol—MeOH). Three marine microalgae species (Thalassiosira weissflogii; Nannochloropsis oculata, and Skeletonema sp.) were cooled by directly plunging into liquid nitrogen (?196°C) and with two-step controlled cooling protocols (?18°C and ?80°C pre-treatments). After storage periods ranging from 10 to 120 days, viability was determined by the ability of cells to actively grow again. Results obtained for T. weissflogii showed that this species could be preserved at ultra-low temperature (?196°C) for 10 and 30 days with 10?% Me2SO and 5?% MeOH when employed a controlled cooling protocol (?80°C). N. oculata was successfully cryopreserved either by direct freezing or with controlled cooling protocols. N. oculata samples presented good responses when treated with 5?% Me2SO, 10?% Me2SO, 5?% MeOH and even without any cryoprotectant. Skeletonema sp. did not survive cryopreservation in any of the tested conditions. The results indicate the difficulty in establishing common protocols for different microalgae species, being necessary further studies for a better understanding of cell damages during freezing and thawing conditions for each species.  相似文献   

16.
Studies were conducted on the viability of Micrococcus varians strain M95 and Lactobacillus plantarum strain L4 upon freezing and freeze-drying using five cryoprotectants (sucrose, lactose, sodium glutamate, peptone, dry nonfat milk) singly or in combinations with gelatin, glutamic acid, and sodium acetate. The number of survivals was determined immediately after treatment and after storage at room temperature or refrigeration temperatures, under vacuum or in air. Dry nonfat milk and peptone introduced at the levels of 8 and 5%, respectively, to broth culture, were found to be the best cryoprotectants providing a 100% viability determined immediately after the treatment of the strains under investigation.Immediately after freezing and freeze-drying, the numbers of viable micrococci remain high, the percentage viability in the presence of almost all the protectants used being 100%. During storage, those numbers decrease rapidly, reaching zero in 3 months upon storage at room temperature in air. The storage ability of lactobacilli is considerably better and, regardless of the fact that the percentage viability decreases, sufficient numbers of viable cells remain after 6 months of storage at both test temperatures.The best results are obtained on storing the microoganisms under vacuum in ampoules under reduced temperatures (+5 °C).  相似文献   

17.
Expanding cryopreservation methods to include a wider range of cell types, such as those sensitive to freezing, is needed for maintaining the viability of cell-based regenerative medicine products. Conventional cryopreservation protocols, which include use of cryoprotectants such as dimethylsulfoxide (Me2SO), have not prevented ice-induced damage to cell and tissue matrices during freezing. A family of antifreeze proteins (AFPs) produced in the larvae of the beetle, Dendroides canadensis allow this insect to survive subzero temperatures as low as −26 °C. This study is an assessment of the effect of the four hemolymph D. canadensis AFPs (DAFPs) on the supercooling (nucleating) temperature, ice structure patterns and viability of the A10 cell line derived from the thoracic aorta of embryonic rat. Cryoprotectant solution cocktails containing combinations of DAFPs in concentrations ranging from 0 to 3 mg/mL in Unisol base mixed with 1 M Me2SO were first evaluated by cryomicroscopy. Combining multiple DAFPs demonstrated significant supercooling point depressing activity (∼9 °C) when compared to single DAFPs and/or conventional 1 M Me2SO control solutions. Concentrations of DAFPs as low as 1 μg/mL were sufficient to trigger this effect. In addition, significantly improved A10 smooth muscle cell viability was observed in cryopreservation experiments with low DAFP-6 and DAFP-2 concentrations in combination with Me2SO. No significant improvement in viability was observed with either DAFP-1 or DAFP-4. Low and effective DAFP concentrations are advantageous because they minimize concerns regarding cell cytotoxicity and manufacturing cost. These findings support the potential of incorporating DAFPs in solutions used to cryopreserve cells and tissues.  相似文献   

18.
A previous study had suggested the use of a mixture of propanediol and trehalose for the preservation of tissues by vitrification. In this paper, we describe experiments in which stepwise procedures were developed for adding these cryoprotectants to high final concentrations in two rabbit tissues—carotid artery and cornea. The tissue concentration of the additives was measured at the end of each step so that the temperature of the next step could be chosen to reduce toxicity but avoid freezing. This process was arrested when a concentration had been reached that should permit vitrification if the tissues were cooled rapidly to −175 °C. They were stored at that temperature; warmed rapidly by conduction; the cryoprotectants removed by stepwise dilution; and appropriate active functions measured. These were contraction and relaxation for arteries and endothelial integrity and ability to control stromal swelling for the corneas. In control experiments the exposure and functional assays were carried out without vitrification. It was shown that the tissue concentration of propanediol was 33%w/w in artery and 30% in cornea. These permitted cooling to −175 °C without freezing but devitrification occurred during the warming of the arteries, though not of the corneas, despite the lower tissue concentration reached in the cornea. The function of the vitrified arteries was severely reduced but the endothelium of the corneas was substantially intact although we were unable to demonstrate any ability to control stromal swelling during normothermic perfusion. It appears that concentrations of cryoprotectants sufficient to prevent freezing in these tissues during cooling were well tolerated so long as appropriate stepwise means of addition and removal were used. Devitrification during warming remained a major problem with arteries, but not with corneas. We suggest that the composition of the aqueous phase in the tissue with respect to components other than the vitrifying agents may be crucial here and that the search for agents that will suppress devitrification is an important avenue for further study.  相似文献   

19.
《Cryobiology》2016,72(3):442-447
We verify the effects of different cryoprotectants on the cryopreservation of agouti (Dasyprocta leporina) epididymal sperm. We used 16 pairs of testes–epididymis complexes of sexually mature animals. We immediately evaluated epididymal sperm obtained by retrograde flushing for concentration, motility, vigor, viability, osmotic response, and morphology. Samples were extended in a coconut water extender plus 20% egg yolk, containing glycerol, ethylene glycol, dimethylsulfoxide – DMSO, or dimethylformamide. Finally, samples were stored in 0.25 mL straws, frozen in liquid nitrogen, and thawed after one week, being reevaluated and assessed for membrane integrity using fluorescent probes. The higher values for postthawing sperm motility, vigor, and membrane integrity were achieved by the usage of glycerol, when compared to ethylene glycol and dimethylformamide (P < 0.05); however, no differences were found between glycerol and DMSO (P > 0.05). All cryoprotectants provided a similar effect on the preservation of sperm morphology, osmotic response, and viability (P > 0.05). Therefore, here onwards, there was testing of glycerol and DMSO at 3 and 6% concentrations using the same freezing–thawing protocol reported previously. As the main result, DMSO at 6% concentration provided a decrease in sperm parameters, as well as in the chromatin integrity and in the binding capability of sperm. In conclusion, glycerol 3 or 6% and DMSO 3% can be used as alternative cryoprotectants for agouti epididymal sperm cryopreservation.  相似文献   

20.
The objective of this study was to develop an ideal freezing extender and method for rat epididymal sperm cryopreservation. Epididymal sperm collected from 30 Wistar males was frozen, and experiments were conducted to study its post-thaw characteristics when freezing with raffinose-free buffer or various concentrations of raffinose and egg yolk dissolved in distilled and deionised water, PBS, or modified Krebs–Ringer bicarbonate (mKRB)-based extender. Different concentrations of glycerol, Equex STM, or sodium dodecyl sulfate (SDS) dissolved in either PBS or mKRB containing egg yolk were also tested. Based on the data from these experiments, further experiments tested how different sugars such as raffinose, trehalose, lactose, fructose, and glucose dissolved in mKRB with Equex STM, SDS and egg yolk supplementation affected the post-thaw characteristics of cryopreserved sperm. Cryosurvival of frozen-thawed sperm were judged by microscopic assessment of the sperm motility index (SMI), and acrosome integrity was measured using FITC-PNA staining. Thawed sperm were subjected to 3 h of a thermal resistance test. Beneficial effects on the post-thaw survival of sperm were obtained when 0.1 M raffinose in mKRB was used with 0.75% Equex STM, 0.05% SDS, and 20% egg yolk. Sperm cryopreserved with this treatment exhibited a higher motility index and maintained greater SMI and acrosome integrity throughout incubation when compared to sperm frozen in various concentrations of other cryoprotectants and trehalose, lactose, fructose, glucose. In conclusion, cryopreservation in an extender solution of raffinose dissolved in mKRB containing Equex STM, SDS and egg yolk greatly enhances the freezability of rat epididymal sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号