首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K A Santarius 《Cryobiology》1982,19(2):200-210
The cryoprotective properties of dextrans have been investigated in freezing experiments with isolated spinach thylakoids (Spinacia oleracea L.). The activity of cyclic photophosphorylation was used as an assay for membrane integrity.Dextrans of average molecular weights between 10,000 and 70,000 daltons proved to be fairly nontoxic to chloroplast membranes. On a molar basis, cryoprotective action increased with increasing molecular weight; on a unit weight basis, the cryoprotective effectiveness of different dextrans was comparable. In the presence of low dextran concentrations which are not sufficient for complete membrane preservation, the effectiveness of the polymers could be considerably increased by the addition of electrolytes. This is in contrast to cryoprotection exerted by sugars. At a given dextran concentration, membrane activity is a function of the electrolyte concentration and follows an optimum curve. If membrane-toxic action of the electrolytes and salt crystallization during freezing which complicate the situation, are not taken into consideration, the increase in membrane protection during freezing by salts was dependent on the concentration of the salts and was not much influenced by the nature of the cations and anions. At 0 °C, dextrans delayed the inactivation of thylakoids suspended in NaCl solutions.From the results it is concluded that cryoprotection produced by dextrans is caused in part by specific membrane stabilization.  相似文献   

2.
3.
Chenopods synthesize betaine in the chloroplast via a two-step oxidation of choline: choline → betaine aldehyde → betaine. Our previous experiments with intact chloroplasts, and in vivo18O2 labeling studies, led us to propose that the first step is mediated by a monooxygenase which uses photosynthetically generated reducing power (C Lerma, AD Hanson, D Rhodes [1988] Plant Physiol 88: 695-702). Here, we report the detection of such an activity in vitro. In the presence of O2 and reduced ferredoxin, the stromal fraction from spinach (Spinacia oleracea) chloroplasts converted choline to betaine aldehyde at rates similar to those in intact chloroplasts (20-50 nanomoles per hour per milligram protein). Incorporation of 18O from 18O2 by the in vitro reaction was demonstrated by fast atom bombardment mass spectrometry. Ferredoxin could be reduced either with thylakoids in the light, or with NADPH plus ferredoxin-NADP reductase in darkness; NADPH alone could not substitute for ferredoxin. No choline-oxidizing activity was detected in the stromal fraction of pea (Pisum sativum L.), a species that does not accumulate betaine. The spinach choline-oxidizing enzyme was stimulated by 10 millimolar Mg2+, had a pH optimum close to 8, and was insensitive to carbon monoxide. The specific activity was increased threefold in plants growing in 200 millimolar NaCl. Gel filtration experiments gave a molecular weight of 98 kilodaltons for the choline-oxidizing enzyme, and provided no evidence for other electron carriers which might mediate the reduction of the 98-kilodalton enzyme by ferredoxin.  相似文献   

4.
Chloroplasts isolated from young spinach leaves incorporate [3H]uridine into RNA species which co-electrophorese with 5-S rRNA and tRNA, but show very little incorporation into 4.5-S rRNA. Chloroplast 4.5-S rRNA is labelled in vivo after a distinct lag period relative to 5-S rRNA and tRNA. The kinetics of labelling in vivo of chloroplast 5-S rRNA are similar to those of the immediate precursors to the 1.05 x 10(6)-Mr and 0.56 x 10(6)-Mr rRNAs, whereas the kinetics of labelling of the 4.5-S rRNAare similar to those of mature 1.05 x 10(6)-Mr and 0.56 x 10(6)-Mr rRNAs. Chloramphenicol inhibits the labelling of chloroplast 4.5-S rRNA in vivo, and concomitantly inhibits the processing of the immediate precursors to the 1.05 x 10(6)-Mr and 0.56 x 10(6)-Mr rRNAs, but has little effect on the appearance of label in chloroplast 5-S rRNA. DNA/RNA hybridization using 125I-labelled RNAs suggests that chloroplast DNA contains a 2--3-fold excess of 4.5-S and 5-S rRNA genes relative to the high-molecular-weight rRNA genes. Competition hybridization experiments show that the immediate precursor to the 1.05 x 10(6)-Mr rRNA effectively competes with 125I-labelled 4.5-S rRNA for hybridization with chloroplast DNA, and is therefore a likely candidate for a common precursor to both the 1.05 x 10(6)-Mr and 4.5-S rRNAs.  相似文献   

5.
Because the envelope phosphatidate phosphatase plays a pivotal role in chloroplast glycerolipid metabolism, we have analyzed whether diacylglycerol could be a regulatory factor of the enzyme. Using isolated envelope membranes in which the level of diacylglycerol was modified by thermolysin treatment of intact chloroplasts to destroy the galactolipid:galactolipid galactosyltransferase, we have demonstrated that phosphatidate phosphatase activity was reduced when the membrane was enriched in diacylglycerol. All 1,2-diacylglycerol molecular species assayed were demonstrated to inhibit the enzyme to about the same extent. Kinetic studies with envelope from thermolysin-treated chloroplasts were performed in the absence and presence of diacylglycerol, and diacylglycerol was shown to be a powerful competitive inhibitor of the reaction. Finally, using isolated intact spinach chloroplasts, we have demonstrated that in situ phosphatidate phosphatase activity can be modulated by the level of diacylglycerol present in the membrane. The relevance of phosphatidate phosphatase inhibition by diacylglycerol in the regulation of chloroplast glycerolipid biosynthesis is discussed.  相似文献   

6.
A three-phase, discontinuous sucrose gradient yielded two distinct fractions of envelope membranes from spinach (Spinacia oleracea L.) chloroplasts. Their buoyant densities were 1.08 g cm−3 and 1.11 g cm−3. Electron micrographs showed the lighter and heavier fractions to consist primarily of single and double membranes, respectively. The milligrams of lipid-milligrams of protein ratio for the complete envelope membrane (double membrane fraction) was 1.74. Thin layer chromatograms showed that the lipids of the complete envelope membranes were similar to those found in earlier preparations which consisted of single and double membranes. This isolation procedure is superior to earlier methods in that the percentage of complete envelope membranes is greater and the yield is almost three times as great. Enzymatic and chemical analyses and microscopic examination showed the complete envelope membranes were free of bacterial, fungal, microsomal, mitochondrial, and lamellar membrane contamination as well as stromal contamination. The specific activities of nonlatent Mg2+ -dependent ATPase (80 μmoles of phosphate released hr−1 mg protein−1) were about 10-fold higher than those values found with earlier preparations consisting of single and double membranes, indicating that the ATPase is largely lost in preparations containing single membranes. These higher values show that the ATPase is located in the double membrane and probably functions in the transport processes of the envelope membrane.  相似文献   

7.
Isolation and lipid composition of spinach chloroplast envelope membranes   总被引:12,自引:0,他引:12  
The quenching of the Chl a2 fluorescence from spinach chloroplasts and chloroplast fragments by nitroaromatic compounds and the effect of added metal cations on the quenching rate is investigated. The extent of the quenching with nitrobenzene and 1,3-dinitrobenzene was found to be independent of whether Chl a is excited directly, or through Chl b by means of electronic energy transfer. On the basis of this, the contribution from a purely static mechanism is considered as unlikely.Nitroaromatics substituted with ionizable groups are almost equally effective quenchers for the fluorescence of Chl ain vivo and in methanol. On the other hand, nitroaromatics which are slightly soluble, or nearly insoluble, in water quench more strongly the fluorescence of Chl ain vivo. The overriding factor that determines the relation between the apparent and the true quenching constant appears to be the partition of the quencher in the lipid and the aqueous phases of the membrane suspension.Divalent metal cations enhance the quenching by nitrobenzene dramatically, most likely by increasing the hydrophobic character of the chloroplast membranes. This enhancement occurs at cation concentrations higher than those corresponding to the maximal turbidity increase of the membrane suspension; hence, it is attributed to ultrastructural changes of the membrane rather than to volume changes of the thylakoid. These changes may affect the extent of the quenching both by an increase in the local concentration of the nitroaromatic, and by an enhanced rate of excitation exchange among the chlorophylls.  相似文献   

8.
A topoisomerase I activity has been partially purified from crude extracts of spinach chloroplasts. This activity relaxes the supercoiled covalently closed circular DNA of pBR322. The enzyme requires Mg++, but not ATP, and has an apparent molecular weight of about 115,000. It catalyzes a unit change in the linkage number of supercoiled DNA but cannot relax positive supercoiled DNA. These characteristics of the topoisomerase suggest it is of the prokaryotic type and would tend to support the endosymbiotic theory of plastid origin and evolution.  相似文献   

9.
Kurt A. Santarius 《Planta》1984,161(6):555-561
Freezing of isolated spinach thylakoids in the presence of NaCl uncoupled photophosphorylation from electron flow and increased the permeability of the membranes to protons. Addition of ATP prior to freezing diminished membrane inactivation. On a molar basis, ATP was at least 100 times more effective in protecting thylakoids from freezing damage than low-molecularweight carbohydrates such as sucrose and glucose. The cryoprotective effectiveness of ATP was increased by Mg2+. In the absence of carbohydrates, preservation of thylakoids during freezing in 100 mM NaCl was saturated at about 1–2 mM ATP, but under these conditions membranes were not fully protected. However, in the presence of small amounts of sugars which did not significantly prevent thylakoid inactivation during freezing, ATP concentrations considerably lower than 0.5 mM caused nearly complete membrane protection. Neither ADP nor AMP could substitute for ATP. These findings indicate that cryoprotection by ATP cannot be explained by a colligative mechanism. It is suggested that ATP acts on the chloroplast coupling factor, either by modifying its conformation or by preventing its release from the membranes. The results are discussed in regard to freezing injury and resistance in vivo.Abbreviations CF1 chloroplast coupling factor - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - PMS phenazine methosulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propandiol  相似文献   

10.
Extraction of an aqueous suspension of spinach chloroplast lamellae with a chloroform/methanol mixture leads to solubilization of about 1/3 of the total membrane protein. Amino acid analysis of the chloroform/methanol-soluble protein shows that this fraction is largely enriched in the hydrophobic residues proline, leucine, alanine and phenylalanine and considerably depleted in polar amino acids, namely lysine and arginine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the solubilized material reveals the presence of a variety of low molecular weight polypeptides (molecular weight less than or equal to 25 000), with more than 50% of the total fraction being contributed by a 25 000 dalton band. This band, which accounts for about 25% of the total chloroplast lamellar protein, has recently been identified as the main component of the light-harvesting chlorophyll-protein complex. The physiological role of most of the chloroform/methanol-soluble protein fraction is not known at present. From its chemical properties and apparent biological inertness, we propose that it plays mainly a structural role in situ, interacting with the lipid moiety of the chloroplast membrane. The material insoluble in the aqueous chloroform/methanol mixture is largely enriched in manganese, iron, cytochrome and water-soluble proteins, such as chloroplast coupling factor and ribulose diphosphate carboxylase.  相似文献   

11.
12.
Bone marrow cells and peripheral blood leukocytes have been exposed to a 15% solution of polyethylene oxide of molecular weight 400 (PEO-400) and the effect on DNA synthesis, oxygen uptake, and the activity of oxidative-reductive enzymes has been studied. All the metabolic activities studied were reduced during exposure to PEO-400, but in each case the effect was completely reversed when the cryoprotective agent was removed. It is suggested that the cryoprotective action of PEO-400 may be linked with its ability not only to dehydrate cells but also to depress oxidative metabolism.  相似文献   

13.
14.
Shain Y  Gibbs M 《Plant physiology》1971,48(3):325-330
A reconstituted preparation requiring fructose 6-phosphate, transketolase, triphosphopyridine nucleotide, ferredoxin, fragmented spinach chloroplasts, and light capable of forming glycolate at rates of about 10 micromoles per milligram of chlorophyll per hour has been characterized. The glycolaldehyde-transketolase addition product could be substituted for fructose 6-phosphate and transketolase. The stoichiometry of the reaction was: 1 mole of fructose 6-phosphate consumed for each mole of glycolate and of reduced triphosphopyridine nucleotide produced. Evidence was presented indicating that glycolate formation was coupled to the photosystems of the photosynthetic electron transport chain. Synthesis of glycolate is envisaged as the result of either (a) a reaction between the upper two carbon atoms derived from fructose 6-phosphate and an uncharacterized oxidant generated by photosystem 2 or (b) hydrogen peroxide produced by the reoxidation of reduced triphos-phopyridine nucleotide or reduced ferredoxin by molecular oxygen.  相似文献   

15.
Extraction of an aqueous suspension of spinach chloroplast lamellae with a chloroform/methanol mixture leads to solubilization of about 13 of the total membrane protein. Amino acid analysis of the chloroform/methanol-soluble protein shows that this fraction is largely enriched in the hydrophobic residues proline, leucine, alanine and phenylalanine and considerably depleted in polar amino acids, namely lysine and arginine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the solubilized material reveals the presence of a variety of low molecular weight polypeptides (molecular weight ? 25 000), with more than 50% of the total fraction being contributed by a 25 000 dalton band. This band, which accounts for about 25% of the total chloroplast lamellar protein, has recently been identified as the main component of the light-harvesting chlorophyll-protein complex. The physiological role of most of the chloroform/methanol-soluble protein fraction is not known at present. From its chemical properties and apparent biological inertness, we propose that it plays mainly a structural role in situ, interacting with the lipid moiety of the chloroplast membrane. The material insoluble in the aqueous chloroform/methanol mixture is largely enriched in manganese, iron, cytochrome and water-soluble proteins, such as chloroplast coupling factor and ribulose diphosphate carboxylase.  相似文献   

16.
A galactolipid lipase has been isolated and partially purified from the chloroplast fraction of the primary leaves of Phaseolus vulgaris var. Kentucky Wonder. The lipase hydrolyzed monogalactosyl diglyceride rapidly and phosphatidyl choline relatively slowly. Triolein and p-nitrophenyl stearate were not hydrolyzed.  相似文献   

17.
18.
19.
The effects of tentoxin on the ATPase activities of coupling factor 1 proteins (CF1) and photophosphorylation with isolated chloroplasts and chloroplasts reconstituted with coupling factor proteins have been examined. 1. The calcium-dependent ATPase activities of coupling factors isolated from spinach, lettuce and Nicotiana otophora are completely inhibited by tentoxin. The ATPase activities of coupling factors isolated from Nicotiana tabacum and Nicotiana knightiana are not affected by tentoxin. 2. Phenazine methosulfate-catalyzed cyclic photophosphorylation with chloroplasts isolated from spinach, lettuce and N. otophora is completely inhibited by tentoxin, whereas chloroplasts isolated from N. knightiana and N. tabacum are relatively insensitive to tentoxin. 3. Spinach chloroplasts, partially depleted in CF1, can be reconstituted with coupling factors isolated from a wide variety of plants including lettuce, radish, N. tabacum, N. knightiana and N. otophora. 4. Spinach chloroplasts reconstituted with spinach, lettuce and N. otophora CF1 retain their sensitivity to tentoxin; however, when reconstituted with N. knightiana and N. tabacum coupling factor proteins, a significant fraction of the reconstituted rate remains tentoxin insensitive. These data are interpreted as evidence that coupling factors that reconstitute with spinach thylakoid membranes have both a catalytic and structural function.  相似文献   

20.
Klaus J. Lendzian 《Planta》1978,143(3):291-296
In a preparation of soluble components from isolated spinach (Spinecia oleracea L.) chloroplasts, the activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) is strongly increased by 6-phosphogluconate or by NADPH at pH 8.0. When the thylakoid system is added to these soluble components (reconstituted chloroplast system) plus ferredoxin, the carboxylase is even more strongly activated in the light. This light activation appears to be due to reduction of endogenous NADP+ by electrons from the light reactions transferred via ferredoxin, since NADPH alone can activate the purified enzyme in the dark while reduced ferredoxin does not. The regulatory properties of the enzyme in the reconstituted chloroplast system are compared with those of the isolated enzyme, and their possible physiologic significance is discussed.Abbreviations Fd ferredoxin - PPC pentose phosphate cycle - 6-PGluA 6-phosphogluconate - Rib-5-P ribose-5-phosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号