首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional load measurements in an external fixator   总被引:1,自引:0,他引:1  
On the basis of a six-degree-of-freedom adjustable fracture reduction hexapod external fixator, a system which can be used for measuring axial and shear forces as well as torsion and bending moments in the fixator in vivo was developed. In a pilot study on 9 patients (7 fresh fractures and 2 osteotomies of the tibia), the load in the fixator during the healing process was measured after 2, 4, 8 and 12 weeks and at fixator removal. The measured values enabled both the type of fracture to be determined as well as the monitoring of the healing process. In well-reduced type A3 fractures small axial (direction of the bone axis) forces were found in the fixator. A2, B2 and C3 fractures showed distinct axial forces, which decreased during the healing process, according to an increasing load transfer over the bone. Bending moments in the fixator showed good correspondence with the clinical healing process, except in the case of a C3 fracture. A combination of bending moment and axial force proved to be particularly suitable to assess fracture healing. In transverse fractures, the well-known resorption phenomenon of bone in the fracture gap at approximately 4 weeks was detected by the system. Compared with other external fixator load measurements in vivo, the hexapod offers the advantage of being able to measure all forces and moments in the fixator separately and with a relatively simple mechanical arrangement. In our opinion, it will be possible to control fracture healing using this system, thereby minimizing radiation exposure from radiographs. Furthermore, the measurement system is a step towards the development of external fixator systems that enable automatic adjustments of the callus mechanical situation ("automatic dynamization") and inform the patients about the optimal weight bearing of their extremity ("intelligent fixator").  相似文献   

2.
This study aimed to mechanically produce a standardized ovine model for a critically delayed bone union. A tibial osteotomy was stabilized with either a rigid (group I) or mechanically critical (group II) external fixator in sheep. Interfragmentary movements and ground reaction forces were monitored throughout the healing period of 9 weeks. After sacrifice at 6 weeks, 9 weeks and 6 months, radiographs were taken and the tibiae were examined mechanically. Interfragmentary movements were considerably larger in group II throughout the healing period. Unlike group I, the operated limb in group II did not return to full weight bearing during the treatment period. Radiographic and mechanical observations showed significantly inferior bone healing in group II at 6 and 9 weeks compared to group I. After 6 months, five sheep treated with the critical fixator showed radiological bridging of the osteotomy, but the biomechanical strength of the repair was still inferior to group I at 9 weeks. The remaining three animals had even developed a hypertrophic non-union. In this study, mechanical instability was employed to induce a critically delayed healing model in sheep. In some cases, this approach even led to the development of a hypertrophic non-union. The mechanical induction of critical bone healing using an external fixation device is a reasonable attempt to investigate the patho-physiological healing cascade without suffering from any biological intervention. Therefore, the presented ovine model provides the basis for a comparative evaluation of mechanisms controlling delayed and standard bone healing.  相似文献   

3.
The answer to the question, ‘when is a fracture healed?’ is not simple, since the healing process is progressive and it is not possible to specify a time when the fracture can be said to have healed. In the past the assessment of fracture healing has, in the main, been subjective, relying upon the skill of the interpreter. A more objective method would be an advantage for many reasons, and since the bone is intended to be load bearing it is reasonable to assess healing by measuring the mechanical integrity of the bone. to do this a ‘clamp on’ transducer has been developed which, when fitted to the support column of an external fixator, enables the stiffness of a fracture to be determined during the healing process. Over the past 6 years this system has been used for both clinical and research work. It has enabled various forms of treatment to be evaluated in terms of ‘rate of healing’ and it also indicates the safe point at which the fixator can be removed.  相似文献   

4.
The stiffness of the external fixation highly influences the fracture healing pattern. In this work we study this aspect by means of a finite element model of a simple transverse mid-diaphyseal fracture of an ovine metatarsus fixed with a bilateral external fixator. In order to simulate the regenerative process, a previously developed mechanobiological model of bone fracture healing was implemented in three dimensions. This model is able to simulate tissue differentiation, bone regeneration, and callus growth. A physiological load of 500 N was applied and three different stiffnesses of the external fixator were simulated (2300, 1725, and 1150 N/mm). The interfragmentary strain and load sharing mechanism between bone and the external fixator were compared to those recorded in previous experimental works. The effects of the stiffness on the callus shape and tissue distributions in the fracture site were also analyzed. We predicted that a lower stiffness of the fixator delays fracture healing and causes a larger callus, in correspondence to well-documented clinical observations.  相似文献   

5.
This study describes how an optimal single hinge axis position can be established for the application of articulated external fixation to the ankle joint. By deliberately introducing various amounts of relative mal-alignment between the optimal talocrural joint axis and the actual fixator hinge axis, it was possible to measure the corresponding amounts of additional resistance to joint motion. In a cadaveric study of six ankle specimens, we determined the instant axis of rotation of the talocrural joint from 3-D kinematic data. acquired by an electromagnetic motion tracking system. For each specimen, an optimal fixator hinge position was calculated from these motion data. Compared to the intact natural joint, aligning the fixator along the optimized axis position caused a moderate increase in energy (0.14 J) needed to rotate the ankle through a prescribed plantar/dorsiflexion range. However, malpositioning the hinge by 10 mm caused more than five times that amount of increase in motion resistance. While articulated external fixation with limited internal fixation can establish a favorable environment for the repair of severe injuries such as tibial pilon fractures, the large additional resistance to motion accompanying a malpositioned fixator axis suggests the development of untoward intra-articular forces that could act to disturb fragment alignment.  相似文献   

6.
In the preclinical field of orthopaedic and trauma surgery critical size bony defects (CDS) were used to evaluate the biocompatibility and allow to investigate the osteoinductivity and -conductivity of bone substitutes. Concerning the anatomical size the laboratory rat indicates a lower limit in small animals which are appropriate for experiments on bone. The aim of this study was to define a CSD, to develop a suitable fixation system to stabilize bony fragments in CSD and to point out the specialities of the surgical technique. These informations should help for to design and practice studies concerning bone healing on rat's femur. Based on previously acquired anatomical data of rat's femur, the technical challenges and anatomical specialities of different osteosynthesis techniques in rat's femur surgery are demonstrated. Our experiences with different fixation systems and techniques lead to the development of an external fixator, which guarantees for a stable bone fragment fixation, prevents severe soft tissue damage, allows of a roentgenologic evaluation of the defect zone and prevents from undesired direct biomaterial-implant interactions. Neither the proximal nor the distal femoral nailing technique is appropriate for a stable fixation in CSD of rat's femur. To evaluate the reliability of an own developed external fixator 42 nude rats with a 4.0 mm CSD were investigated clinically and roentgenologically over 10 weeks. The external fixator showed only a small implant failure rate. A solid fusion of the bone fragments was not observed within the 10 weeks follow-up period.  相似文献   

7.
A theoretical analysis by a finite elements model (FEM) of some external fixators (Hoffmann, Wagner, Orthofix and Ilizarov) was carried out. This study considered a logarithmic progress of callus elastic characteristics. A standard configuration of each fixator was defined where design and application characteristics were modified. A comparison among standard configurations and influence of every variation was made with regard to displacement and load transmission at the fracture site. An experimental evaluation of standard configurations was performed with a testing machine. After experimental validation of the theoretical model was achieved, an application of physiological loads which act on a fractured limb during normal gait was analysed. A minimal contribution from an external fixator to the total rigidity of the bone-callus-fixator system was assessed when a callus showing minimum elastic characteristics had just been established. Insufficient rigidity from the fixation devices to assure an adequate immobilization during the early stages of fracture healing was verified. However, regardless of the external fixator, callus development was the overriding element for the rigidity of the fixator-bone system.  相似文献   

8.
Ulnar longitudinal deficiency (ULD) is a rare condition of the upper limbs. Although radius lengthening for radial longitudinal deficiencies (RLD) was found to be successful, no ulnar lengthening for ULD without RLD and hand deformities has been reported. Herein, we present a Bayne type II ULD case report of the ulnar lengthening and gradual reduction of the dislocated radial head in an 11-year-old boy using a half-ring sulcated external fixator. For ulnar lengthening/radial longitudinal traction for radial head reduction, transverse osteotomy in mid ulna was performed and half-ring sulcated external fixator was used for ulnar distraction lengthening. Radial longitudinal traction and stabilization of external fixator were achieved by transverse pins through ulna and radius. Distraction (1 mm/day) began at 5th day and was completed at 95th postoperative day. External fixator was applied for 7 months. Successful ulnar lengthening (81 mm; 62 % gain) was achieved 1-year after the surgery and the range of elbow motion at 2 years was >40°. Forearm rotation and wrist extension/flexion were also preserved with no complaints of pain. We concluded that ulnar distraction lengthening and gradual reduction of radial head could improve appearance of the arm and were of significant benefit to the patient.  相似文献   

9.
A monitoring system for measuring movement occurring in a dynamic external fixator used to treat fractures is described. The system measures shortening during fracture healing, micromovement at the fracture site on weight bearing and detects pin loosening. The method of calibration including cadaver experiments is presented. The clinical application is described and the reasons for measuring movement are discussed.  相似文献   

10.
Axial movement occurring at the fracture site has been determined in a group of healing tibial fractures treated by external skeletal fixation. Fracture movement was determined via a strain gauge transducer which was attached to the column of the external fixator and measured the deflection of the bone screw adjacent to the fracture site and the active loading or weight bearing given by the patient to the fractured limb was monitored using a force platform. The results for 27 subjects show that, with a rigid unilateral fixator, the axial movement occurring at the fracture site was initially small (mean = 0.28 mm at 5 weeks post fracture). This movement increases to reach a mean maximum value of 0.43 mm at 11 weeks post-fracture and then decreases, despite increased weight bearing, as fracture healing progresses. In the early stages of healing, the movement can be increased slightly if the fixator is fitted with a module which permits additional fracture site movement, although the resultant increase in movement is only a small proportion of the potential available with this module.  相似文献   

11.
Mechanical conditions have a significant influence on the biological processes of bone healing. Small animal models that allow controlling the mechanical environment of fracture and bone defect healing are needed. The aim of this study was to develop a new animal model that allows to reliably control the mechanical environment in fracture and bone defect healing in rats using different implant materials. An external fixator was designed and mounted in vitro to rat femurs using four Kirschner-wires (titanium (T) or steel (S)) of 1.2mm diameter. The specimens were distracted to a gap of 1.5mm. Axial and torsional stiffness of the device was tested increasing the offset (distance between bone and fixator crossbar) from 5 to 15mm. In vivo performance (well-being, infection, breaking of wires and bone healing) was evaluated in four groups of 24 Sprague-Dawley rats varying in offset (7.5 and 15mm) and implant material (S/T) over 6 weeks. Torsional and axial stiffness were higher in steel compared to titanium setups. A decrease in all configurations was observed by increasing the offset. The offset 7.5mm showed a significantly higher torsional (S: p<0.01, T: p<0.001) and axial in vitro stiffness (S: p<0.001, T: p<0.001) compared to 15mm offset of the fixator. Although in vitro designed to be different in mechanical stiffness, no difference was found between the groups regarding complication rate. The overall-complication rate was 5.2%. In conclusion, we were able to establish a small animal model for bone defect healing which allows modeling the mechanical conditions at the defect site in a defined manner.  相似文献   

12.
The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair.  相似文献   

13.
Joint distraction and mobilization with a hinged external fixator preserves elbow stability and mobility. However, the alignment of both elbow and fixator hinges was the initial prerequisite of the arthrodiatasis technique. The main goal of this study was to numerically evaluate the kinematic influence of the device, surgery, and joint factors on hinge alignment. The kinetic effects of the pins placement and elbow angle on concentric distraction and mobilization were also discussed. A unilaterally hinged elbow-fixator system with a 14 links and 10 degrees-of-freedom was instrumented into a humeroulnar model. The Denavit–Hartenberg method with the homogeneous transformation matrixes was applied to perform kinematic analysis of the linkage system. The predicted results revealed that the concurrence of hinge alignment (i.e., kinematic) and concentric distraction (i.e., kinetic) necessitates two telescopic tubes orthogonal to the elbow hinge. The degrees-of-freedom arrangement of the fixator articulators plays a significant role in hinge alignment. After joint distraction, two hinges might be misaligned due to the difference in the structural rigidity of the pins, fixator, and stiffened elbow. Furthermore, those two prerequisite are interactive and sensitive to elbow angle, fixator design, and pin placement of the bridged elbow-pin-fixator construct. In addition, the ideally concentric distraction might occur only at an elbow angle of 120° owing to the ulnar anatomy. Meticulous planning is necessary for such highly technically demanding surgery.  相似文献   

14.
目的治疗近关节骨折、复杂骨折、骨缺损及骨不连等的一种新型可透x线骨外固定器。方法由固定部件、连接杆、万向头、连接杆锁紧螺帽、骨折固定螺钉、固定螺钉锁紧螺帽构成,通过x线能够全方位地观察骨折情况,调整骨外固定器使骨折对位对线。结果可避免因传统金属骨外固定器对术后骨折愈合情况观察,固定安全可靠,特别适用于战时、紧急情况下对骨折的固定,固定不超关节,故可以术后即刻关节功能锻炼。结论固定器设计合理,构思新颖,值得推广应用。  相似文献   

15.
朱光宏  吴翔  赵俊  陈力奇  唐欣  刘唐浩 《生物磁学》2011,(3):558-559,507
目的:探讨长骨骨不连的一种治疗方法。方法:2007年1月至2009年8月,采用镶嵌式外固定架治疗17例长骨骨不连。本组17例,男11例,女6例,年龄16-64岁,平均31岁。2例为血源性骨髓炎病理性骨折后,股骨、胫骨各1例;6例为创伤性骨髓炎后骨折不愈,肱骨1例,股骨1例,胫骨4例;9例为手术后无感染性骨不连,肱骨2例,股骨2例,胫骨5例;7例有不同程度畸形,6例有1.5-8cm骨短缩,其中2例同时行骨痂延长术。结果:全部病人均获随访,随访时间9-20个月,以1975年天津全国骨科会议制定的骨折愈合标准为依据,本组17例病人均获得临床愈合,骨不连处平均愈合时间为4~9月(平均6.2月),1例延长8cm,另1例延长6cm。结论:利用镶嵌式外固定架治疗长骨骨不连一种简单有效的方法。  相似文献   

16.
Among other stressors, age and mechanical constraints significantly influence regeneration cascades in bone healing. Here, our aim was to identify genes and, through their functional annotation, related biological processes that are influenced by an interaction between the effects of mechanical fixation stability and age. Therefore, at day three post-osteotomy, chip-based whole-genome gene expression analyses of fracture hematoma tissue were performed for four groups of Sprague-Dawley rats with a 1.5-mm osteotomy gap in the femora with varying age (12 vs. 52 weeks - biologically challenging) and external fixator stiffness (mechanically challenging). From 31099 analysed genes, 1103 genes were differentially expressed between the six possible combinations of the four groups and from those 144 genes were identified as statistically significantly influenced by the interaction between age and fixation stability. Functional annotation of these differentially expressed genes revealed an association with extracellular space, cell migration or vasculature development. The chip-based whole-genome gene expression data was validated by q-RT-PCR at days three and seven post-osteotomy for MMP-9 and MMP-13, members of the mechanosensitive matrix metalloproteinase family and key players in cell migration and angiogenesis. Furthermore, we observed an interaction of age and mechanical stimuli in vitro on cell migration of mesenchymal stromal cells. These cells are a subpopulation of the fracture hematoma and are known to be key players in bone regeneration. In summary, these data correspond to and might explain our previously described biomechanical healing outcome after six weeks in response to fixation stiffness variation. In conclusion, our data highlight the importance of analysing the influence of risk factors of fracture healing (e.g. advanced age, suboptimal fixator stability) in combination rather than alone.  相似文献   

17.
An unconstrained loading system was developed to measure the passive envelope of joint motion in an animal model commonly used to study ligament healing and joint arthritis. The design of the five-degree-of-freedom system allowed for unconstrained knee joint loading throughout flexion with repeated removal and reapplication of the device to a specimen. Seven New Zealand White rabbit knees were subjected to varus, valgus, internal and external loads, and the resulting envelopes of motion were recorded using an electromagnetic tracking device. Intra-specimen reproducibility was excellent when measured in one specimen, with maximal rotational differences of 0.6 and 0.3 deg between the fourth and fifth testing cycles for the varus (VR) and valgus (VL) envelopes, respectively. Similarly, the maximal internal (INT) and external (EXT) envelope differences were 0.5 and 0.4 deg, respectively, between the fourth and fifth cycles. Good inter-animal envelope reproducibility was also observed with consistent motion pathways for each loading condition. A maximal VR-VL laxity of 17.9 +/- 2.3 deg was recorded at 95 deg flexion for the seven knees tested. The maximal INT-EXT laxity of 75.2 +/- 4.8 deg occurred at 50 deg flexion. Studies on measurement reproducibility of re-applying individual testing components demonstrated a maximal error of 1.2 +/- 0.7 deg. Serial removal and re-application (test-retest) of the complete measuring system to one cadaveric knee demonstrated maximal envelope differences of less than 0.7 deg for VR-VL rotation and 2.1 deg for INT-EXT rotation. Our results demonstrate that the measuring system is reproducible and capable of accurate evaluation of knee joint motion. Baseline in vitro data were generated on normal joint kinematics for future in-vivo studies with this system, evaluating ligament healing and disease progression in arthritis models.  相似文献   

18.
BACKGROUND: Treatment of leg length inequality via lengthening of the shorter extremity is an infrequent orthopedic procedure due to the requirement of special distraction devices and possible serious complications. Essential qualitative changes in operative technique development are associated with the name of G. A. Ilizarov, who paved the way for the autoregenerate gradual distraction method in the 1950s. MATERIAL AND METHODS: In the years 1990 through 2006 a total of 57 patients underwent femur lengthening via gradual distraction using various types of external fixators at the Department of Pediatric Surgery, Orthopedics, and Traumatology, Faculty Hospital in Brno. The quality of bone healing was monitored and a number of parameters followed and statistically evaluated using regularly scheduled X-ray examinations. RESULTS: In 11 cases we had to remove the external fixator following the distraction phase, perform an osteosynthesis via a splint and fill the distraction gap via spongioplasty. The bone healing was satisfactory in the remaining 46 patients and the lengthened bone required no other fixation method. The analysis showed statistically significant deceleration in bone healing following distraction in female patients over 12 years of age, and in boys over 14 years of age. Lack of periosteal callus five weeks after surgery always signified serious problems in further healing. Severe complications were recorded in 11 cases during the distraction phase, and in 9 cases after the removal of the distraction apparatus. CONCLUSIONS: The aim of this report was to present the results of our study of distraction gap bone healing using the gradual lengthening approach.  相似文献   

19.
目的:探讨外固定支架及开放手术治疗治疗肘关节严重异位骨化的方法及疗效。方法:自2007年9月至2012年9月,对18例(其中男13例女5例,平均年龄33.5岁)创伤后严重异位骨化性肘关节僵硬患者进行开放手术及外固定支架治疗。所有患者均采用相同的手术方式,即取出原有内固定,前置尺神经,松解关节囊粘连,清除异位骨化。对患者肘关节屈伸范围术前及术后均评估,采用Mayo肘关节评分肘关节功能(MEPI)评估疗效。术后予以指导康复锻炼。结果:术后患者的屈伸分别平均增加到125°和10°,MEPI评分由术前的平均50分提高到术后的90分。结论:外固定支架及开放手术治疗治疗严重异位骨化性肘关节僵硬具有确切的疗效。  相似文献   

20.
As the first part of the study on relaxational behavior of rigid macromolecules in solution, a general method for evaluating diffusion constants of a rigid macromolecule with an arbitrary configuration in a viscous solvent is presented. The evaluation is made by modeling the molecule with a rigid assembly of Stokes spheres. The diffusion constants are expressed by a 6 × 6 matrix which consists of translational, rotational, and cross constants, each being a 3 × 3 submatrix. Procedures of numerical calculation are presented for a given configuration of the molecule, together with some exemplifying results for the rigid rod, rigid sphere, and myosin molecule. The results for the rod and the sphere are compared with analytical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号