首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Arabidopsis thaliana hit1-1 is a heat-intolerant mutant. The HIT1 gene encodes a protein that is homologous to yeast Vps53p, which is a subunit of the Golgi-associated retrograde protein (GARP) complex that is involved in retrograde membrane trafficking to the Golgi. To investigate the correlation between the cellular role of HIT1 and its protective function in heat tolerance in plants, it was verified that HIT1 was co-localized with AtVPS52 and AtVPS54, the other putative subunits of GARP, in the Golgi and post-Golgi compartments in Arabidopsis protoplasts. A bimolecular fluorescence complementation assay showed that HIT1 interacted with AtVPS52 and AtVPS54, which indicated their assembly into a protein complex in vivo. Under heat stress conditions, the plasma membrane of hit1-1 was less stable than that of the wild type, as determined by an electrolyte leakage assay, and enhanced leakage occurred before peroxidation injury to the membrane. In addition, the ability of hit1-1 to survive heat stress was not influenced by exposure to light, which suggested that the heat intolerance of hit-1 was a direct outcome of reduced membrane thermostability rather than heat-induced oxidative stress. Furthermore, hit1-1 was sensitive to the duration (sustained high temperature stress at 37?°C for 3?d) but not the intensity (heat shock at 44?°C for 30?min) of exposure to heat. Collectively, these results imply that HIT1 functions in the membrane trafficking that is involved in the thermal adaptation of the plasma membrane for tolerance to long-term heat stress in plants.  相似文献   

2.
The screening of the Versailles collection of Arabidopsis T-DNA transformants allowed us to identify several male gametophytic mutants, including poky pollen tube (pok). The pok mutant, which could only be isolated as a hemizygous line, exhibits very short pollen tubes, explaining the male-specific transmission defect observed in this line. We show that the POK gene is duplicated in the Arabidopsis genome and that the predicted POK protein sequence is highly conserved from lower to higher eukaryotes. The putative POK homolog in yeast (Saccharomyces cerevisiae), referred to as Vps52p/SAC2, has been shown to be located at the late Golgi and to function in a complex with other proteins, Vps53p, Vps54p, and Vps51p. This complex is involved in retrograde trafficking of vesicles between the early endosomal compartment and the trans-Golgi network. We present the expression patterns of the POK gene and its duplicate P2 in Arabidopsis, and of the putative Arabidopsis homologs of VPS53 and VPS54 of yeast. We show that a POK::GFP fusion protein localizes to Golgi in plant cells, supporting the possibility of a conserved function for Vps52p and POK proteins. These results, together with the expression pattern of the POK::GUS fusion and the lack of plants homozygous for the pok mutation, suggest a more general role for POK in polar growth beyond the pollen tube elongation process.  相似文献   

3.
Plant cells contain several types of vacuoles with specialized functions. Although the biogenesis of these organelles is well understood at the morphological level, the machinery involved in plant vacuole formation is largely unknown. We have recently identified an Arabidopsis mutant, vcl1, that is deficient in vacuolar formation. VCL1 is homologous to a protein that regulates membrane fusion at the tonoplast in yeast. On the basis of these observations, VCL1 is predicted to play a direct role in vacuolar biogenesis and vesicular trafficking to the vacuole in plants. In this work, we show that VCL1 forms a complex with AtVPS11 and AtVPS33 in vivo. These two proteins are homologues of proteins that have a well-characterized role in membrane fusion at the tonoplast in yeast. VCL1, AtVPS11, and AtVPS33 are membrane-associated and cofractionate with tonoplast and denser endomembrane markers in subcellular fractionation experiments. Consistent with this, VCL1, AtVPS11, and AtVPS33 are found on the tonoplast and the prevacuolar compartment (PVC) by immunoelectron microscopy. We also show that a VCL1-containing complex includes SYP2-type syntaxins and is most likely involved in membrane fusion on both the PVC and tonoplast in vivo. VCL1, AtVPS11, and AtVPS33 are the first components of the vacuolar biogenesis machinery to be identified in plants.  相似文献   

4.
The Golgi associated retrograde protein complex (GARP) or Vps fifty-three (VFT) complex is part of cellular inter-compartmental transport systems. Here we report the identification of the VFT tethering factor complex and its interactions in mammalian cells. Subcellular fractionation shows that human Vps proteins are found in the smooth membrane/Golgi fraction but not in the cytosol. Immunostaining of human Vps proteins displays a vesicular distribution most concentrated at the perinuclear envelope. Co-staining experiments with endosomal markers imply an endosomal origin of these vesicles. Significant accumulation of VFT complex positive endosomes is found in the vicinity of the Trans Golgi Network area. This is in accordance with a putative role in Golgi associated transport processes. In Saccharomyces cerevisiae, GARP is the main effector of the small GTPase Ypt6p and interacts with the SNARE Tlg1p to facilitate membrane fusion. Accordingly, the human homologue of Ypt6p, Rab6, specifically binds hVps52. In human cells, the "orphan" SNARE Syntaxin 10 is the genuine binding partner of GARP mediated by hVps52. This reveals a previously unknown function of human Syntaxin 10 in membrane docking and fusion events at the Golgi. Taken together, GARP shows significant conservation between various species but diversification and specialization result in important differences in human cells.  相似文献   

5.
Cell-wall deposition of cellulose microfibrils is essential for plant growth and development. In plant cells,cellulose synthesis is accomplished by cellulose synthase complexes located in the plasma membrane. Trafficking of the complex between endomembrane compartments and the plasma membrane is vital for cellulose biosynthesis;however, the mechanism for this process is not well understood. We here report that, in Arabidopsis thaliana,Rab-H_1b, a Golgi-localized small GTPase, participates in the trafficking of CELLULOSE SYNTHASE 6(CESA6) to the plasma membrane. Loss of Rab-H_1b function resulted in altered distribution and motility of CESA6 in the plasma membrane and reduced cellulose content. Seedlings with this defect exhibited short, fragile etiolated hypocotyls.Exocytosis of CESA6 was impaired in rab-h1 b cells, and endocytosis in mutant cells was significantly reduced as well. We further observed accumulation of vesicles around an abnormal Golgi apparatus having an increased number of cisternae in rab-h1 b cells, suggesting a defect in cisternal homeostasis caused by Rab-H_1b loss function. Our findings link Rab GTPases to cellulose biosynthesis, during hypocotyl growth, and suggest Rab-H_1b is crucial for modulating the trafficking of cellulose synthase complexes between endomembrane compartments and the plasma membrane and for maintaining Golgi organization and morphology.e  相似文献   

6.
The Sec1p family of proteins is required for vesicle-mediated protein trafficking between various organelles of the endomembrane system. This family includes Vps45p, which is required for transport to the vacuole in yeast (Saccharomyces cerevisiae). We have isolated a cDNA encoding a VPS45 homolog from Arabidopsis thaliana (AtVPS45). The cDNA is able to complement both the temperature-sensitive growth defect and the vacuolar-targeting defect of a yeast vps45 mutant, indicating that the two proteins are functionally related. AtVPS45p is a peripheral membrane protein that associates with microsomal membranes. Sucrose-density gradient fractionation demonstrated that AtVPS45p co-fractionates with AtELP, a potential vacuolar protein sorting receptor, implying that they may reside on the same membrane populations. These results indicate that AtVPS45p is likely to function in the transport of proteins to the vacuole in plants.  相似文献   

7.
Huntingtin regulates post-Golgi trafficking of secreted proteins. Here, we studied the mechanism by which mutant huntingtin impairs this process. Colocalization studies and Western blot analysis of isolated Golgi membranes showed a reduction of huntingtin in the Golgi apparatus of cells expressing mutant huntingtin. These findings correlated with a decrease in the levels of optineurin and Rab8 in the Golgi apparatus that can be reverted by overexpression of full-length wild-type huntingtin. In addition, immunoprecipitation studies showed reduced interaction between mutant huntingtin and optineurin/Rab8. Cells expressing mutant huntingtin produced both an accumulation of clathrin adaptor complex 1 at the Golgi and an increase of clathrin-coated vesicles in the vicinity of Golgi cisternae as revealed by electron microscopy. Furthermore, inverse fluorescence recovery after photobleaching analysis for lysosomal-associated membrane protein-1 and mannose-6-phosphate receptor showed that the optineurin/Rab8-dependent post-Golgi trafficking to lysosomes was impaired in cells expressing mutant huntingtin or reducing huntingtin levels by small interfering RNA. Accordingly, these cells showed a lower content of cathepsin D in lysosomes, which led to an overall reduction of lysosomal activity. Together, our results indicate that mutant huntingtin perturbs post-Golgi trafficking to lysosomal compartments by delocalizing the optineurin/Rab8 complex, which, in turn, affects the lysosomal function.  相似文献   

8.
In all eukaryotic cells, a membrane trafficking system connects the post-Golgi organelles, including the trans-Golgi network (TGN), endosomes, and vacuoles. This complex network plays critical roles in several higher-order functions in multicellular organisms. The TGN, one of the important organelles for protein transport in the post-Golgi network, functions as a sorting station, where cargo proteins are directed to the appropriate post-Golgi compartments. The TGN has been considered to be a compartment belonging to the Golgi apparatus, located on the trans side of the Golgi apparatus. However, in plant cells, recent studies have suggested that the TGN is an independent, dynamic organelle that possesses features different than those of TGNs in animal and yeast cells. In this review, we summarize recent progress regarding the dynamics and physiological functions of the plant TGN.  相似文献   

9.
Peripheral tethering factors bind to small GTPases in order to obtain their correct location within the Golgi apparatus. Using fluorescence resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) we visualized interactions between Arabidopsis homologues of tethering factors and small GTPases at the Golgi stacks in planta . Co-expression of the coiled-coil proteins AtGRIP and golgin candidate 5 (GC5) [TATA element modulatory factor (TMF)] and the putative post-Golgi tethering factor AtVPS52 fused to green fluorescent protein (GFP) with mRFP (monomeric red fluorescent protein) fusions to the small GTPases AtRab-H1b, AtRab-H1c and AtARL1 resulted in reduced GFP lifetimes compared to the control proteins. Interestingly, we observed differences in GFP quenching between the different protein combinations as well as selective quenching of GFP-AtVPS52-labelled structures. The data presented here indicate that the FRET-FLIM technique should prove invaluable in assessing protein interactions in living plant cells at the organelle level.  相似文献   

10.
We report a functional characterization of AtVPS45 (for vacuolar protein sorting 45), a protein from the Sec1/Munc18 family in Arabidopsis (Arabidopsis thaliana) that interacts at the trans-Golgi network (TGN) with the SYP41/SYP61/VTI12 SNARE complex. A null allele of AtVPS45 was male gametophytic lethal, whereas stable RNA interference lines with reduced AtVPS45 protein levels had stunted growth but were viable and fertile. In the silenced lines, we observed defects in vacuole formation that correlated with a reduction in cell expansion and with autophagy-related defects in nutrient turnover. Moreover, transport of vacuolar cargo with carboxy-terminal vacuolar sorting determinants was blocked in the silenced lines, suggesting that AtVPS45 functions in vesicle trafficking to the vacuole. These trafficking defects are similar to those observed in vti12 mutants, supporting a functional relationship between AtVPS45 and VTI12. Consistent with this, we found a decrease in SYP41 protein levels coupled to the silencing of AtVPS45, pointing to instability and malfunction of the SYP41/SYP61/VTI12 SNARE complex in the absence of its cognate Sec1/Munc18 regulator. Based on its localization on the TGN, we hypothesized that AtVPS45 could be involved in membrane fusion of retrograde vesicles recycling vacuolar trafficking machinery. Indeed, in the AtVPS45-silenced plants, we found a striking alteration in the subcellular fractionation pattern of vacuolar sorting receptors, which are required for sorting of carboxy-terminal vacuolar sorting determinant-containing cargo. We propose that AtVPS45 is essential for recycling of the vacuolar sorting receptors back to the TGN and that blocking this step underlies the defects in vacuolar cargo trafficking observed in the silenced lines.  相似文献   

11.
Dense vesicles (DVs) are Golgi-derived plant-specific carriers that mediate post-Golgi transport of seed storage proteins in angiosperms. How this process is regulated remains elusive. Here, we report a rice (Oryza sativa) mutant, named glutelin precursor accumulation8 (gpa8) that abnormally accumulates 57-kDa proglutelins in the mature endosperm. Cytological analyses of the gpa8 mutant revealed that proglutelin-containing DVs were mistargeted to the apoplast forming electron-dense aggregates and paramural bodies in developing endosperm cells. Differing from previously reported gpa mutants with post-Golgi trafficking defects, the gpa8 mutant showed bent Golgi bodies, defective trans-Golgi network (TGN), and enlarged DVs, suggesting a specific role of GPA8 in DV biogenesis. We demonstrated that GPA8 encodes a subunit E isoform 1 of vacuolar H+-ATPase (OsVHA-E1) that mainly localizes to TGN and the tonoplast. Further analysis revealed that the luminal pH of the TGN and vacuole is dramatically increased in the gpa8 mutant. Moreover, the colocalization of GPA1 and GPA3 with TGN marker protein in gpa8 protoplasts was obviously decreased. Our data indicated that OsVHA-E1 is involved in endomembrane luminal pH homeostasis, as well as maintenance of Golgi morphology and TGN required for DV biogenesis and subsequent protein trafficking in rice endosperm cells.

A subunit of the vacuolar H+-ATPase regulating endomembrane luminal pH homeostasis plays a fundamental role in post-Golgi trafficking of rice seed storage proteins.  相似文献   

12.
Coupling of post-Golgi and endocytic membrane transport ensures that the flow of materials to/from the plasma membrane (PM) is properly balanced. The mechanisms underlying the coordinated trafficking of PM proteins in plants, however, are not well understood. In plant cells, clathrin and its adaptor protein complexes, AP-2 and the TPLATE complex (TPC) at the PM, and AP-1 at the trans-Golgi network/early endosome (TGN/EE), function in clathrin-mediated endocytosis (CME) and post-Golgi trafficking. Here, we utilized mutants with defects in clathrin-dependent post-Golgi trafficking and CME, in combination with other cytological and pharmacological approaches, to further investigate the machinery behind the coordination of protein delivery and recycling to/from the TGN/EE and PM in Arabidopsis (Arabidopsis thaliana) root cells. In mutants with defective AP-2-/TPC-dependent CME, we determined that clathrin and AP-1 recruitment to the TGN/EE as well as exocytosis are significantly impaired. Likewise, defects in AP-1-dependent post-Golgi trafficking and pharmacological inhibition of exocytosis resulted in the reduced association of clathrin and AP-2/TPC subunits with the PM and a reduction in the internalization of cargoes via CME. Together, these results suggest that post-Golgi trafficking and CME are coupled via modulation of clathrin and adaptor protein complex recruitment to the TGN/EE and PM.  相似文献   

13.
Coated vesicles provide a major mechanism for the transport of proteins through the endomembrane system of plants. Transport between the endoplasmic reticulum and the Golgi involves vesicles with COPI and COPII coats, whereas clathrin is the predominant coat in endocytosis and post-Golgi trafficking. Sorting of cargo, coat assembly, budding, and fission are all complex and tightly regulated processes that involve many proteins. The mechanisms and responsible factors are largely conserved in eukaryotes, and increasing organismal complexity tends to be associated with a greater numbers of individual family members. Among the key factors is the class of ENTH/ANTH/VHS domain-containing proteins, which link membrane subdomains, clathrin, and other adapter proteins involved in early steps of clathrin coated vesicle formation. More than 30 Arabidopsis thaliana proteins contain this domain, but their generally low sequence conservation has made functional classification difficult. Reports from the last two years have greatly expanded our knowledge of these proteins and suggest that ENTH/ANTH/VHS domain proteins are involved in various instances of clathrin-related endomembrane trafficking in plants. This review aims to summarize these new findings and discuss the broader context of clathrin-dependent plant vesicular transport.  相似文献   

14.
The Golgi complex is a central hub for intracellular protein trafficking and glycosylation. Steady-state localization of glycosylation enzymes is achieved by a combination of mechanisms involving retention and recycling, but the machinery governing these mechanisms is poorly understood. Herein we show that the Golgi-associated retrograde protein (GARP) complex is a critical component of this machinery. Using multiple human cell lines, we show that depletion of GARP subunits impairs Golgi modification of N- and O-glycans and reduces the stability of glycoproteins and Golgi enzymes. Moreover, GARP-knockout (KO) cells exhibit reduced retention of glycosylation enzymes in the Golgi. A RUSH assay shows that, in GARP-KO cells, the enzyme beta-1,4-galactosyltransferase 1 is not retained at the Golgi complex but instead is missorted to the endolysosomal system. We propose that the endosomal system is part of the trafficking itinerary of Golgi enzymes or their recycling adaptors and that the GARP complex is essential for recycling and stabilization of the Golgi glycosylation machinery.  相似文献   

15.
Seed storage proteins are synthesized on rough endoplasmic reticulum (ER) as larger precursors and are sorted to protein storage vacuoles, where they are converted into the mature forms. We report here an Arabidopsis mutant, maigo 1 (mag1), which abnormally accumulates the precursors of two major storage proteins, 12S globulin and 2S albumin, in dry seeds. Electron microscopy revealed that mag1 seeds mis-sort storage proteins by secreting them from cells. mag1 seeds have smaller protein storage vacuoles in the seeds than do wild-type seeds. The MAG1 gene encodes a homolog of the yeast (Saccharomyces cerevisiae) protein VPS29. VPS29 is a component of a retromer complex for recycling a vacuolar sorting receptor VPS10 from the pre-vacuolar compartment to the Golgi complex. Our findings suggest that MAG1/AtVPS29 protein is involved in recycling a plant receptor for the efficient sorting of seed storage proteins. The mag1 mutant exhibits a dwarf phenotype. A plant retromer complex plays a significant role in plant growth and development.  相似文献   

16.
Several large cytosolic protein complexes with multiple components have been proposed to play key roles in mediating or controlling membrane trafficking. Among these complexes, TRAPP, COG and GARP/VFT have been implicated in multiple steps of Golgi membrane trafficking. The importance of these complexes for Golgi function has been established using in vitro biochemical assays and yeast and mammalian somatic cell genetics. Furthermore, mutations in the genes encoding subunits of either TRAPP or the COG complex have been shown to be responsible for human genetic disorders. We here review recent studies exploring the structures and functions of these three oligomeric complexes.  相似文献   

17.
Gao C  Yu CK  Qu S  San MW  Li KY  Lo SW  Jiang L 《The Plant cell》2012,24(5):2086-2104
Endomembrane proteins (EMPs), belonging to the evolutionarily conserved transmembrane nine superfamily in yeast and mammalian cells, are characterized by the presence of a large lumenal N terminus, nine transmembrane domains, and a short cytoplasmic tail. The Arabidopsis thaliana genome contains 12 EMP members (EMP1 to EMP12), but little is known about their protein subcellular localization and function. Here, we studied the subcellular localization and targeting mechanism of EMP12 in Arabidopsis and demonstrated that (1) both endogenous EMP12 (detected by EMP12 antibodies) and green fluorescent protein (GFP)-EMP12 fusion localized to the Golgi apparatus in transgenic Arabidopsis plants; (2) GFP fusion at the C terminus of EMP12 caused mislocalization of EMP12-GFP to reach post-Golgi compartments and vacuoles for degradation in Arabidopsis cells; (3) the EMP12 cytoplasmic tail contained dual sorting signals (i.e., an endoplasmic reticulum export motif and a Golgi retention signal that interacted with COPII and COPI subunits, respectively); and (4) the Golgi retention motif of EMP12 retained several post-Golgi membrane proteins within the Golgi apparatus in gain-of-function analysis. These sorting signals are highly conserved in all plant EMP isoforms and, thus, likely represent a general mechanism for EMP targeting in plant cells.  相似文献   

18.
Tethering complexes contribute to the specificity of membrane fusion by recognizing organelle features on both donor and acceptor membranes. The Golgi-associated retrograde protein (GARP) complex is required for retrograde traffic from both early and late endosomes to the trans-Golgi network (TGN), presenting a paradox as to how a single complex can interact specifically with vesicles from multiple upstream compartments. We have found that a subunit of the GARP complex, Vps54, can be separated into N- and C-terminal regions that have different functions. Whereas the N-terminus of Vps54 is important for GARP complex assembly and stability, a conserved C-terminal domain mediates localization to an early endocytic compartment. Mutation of this C-terminal domain has no effect on retrograde transport from late endosomes. However, a specific defect in retrieval of Snc1 from early endosomes is observed when recycling from late endosomes to the Golgi is blocked. These data suggest that separate domains recruit tethering complexes to different upstream compartments to regulate individual trafficking pathways.  相似文献   

19.
Differences in protein solubility appear to play an important role in lumenal protein trafficking through Golgi/post-Golgi compartments. Recent advances indicate that multimeric protein assembly is one of the factors regulating the efficiency of protein storage within secretory granules, by mechanisms that, with slight modification, might be considered to represent the culmination of a process of Golgi cisternal maturation.  相似文献   

20.
Tracking down the elusive early endosome   总被引:7,自引:0,他引:7  
Despite significant progress in understanding protein trafficking and compartmentation in plants, the identification and protein compartmentalization for organelles that belong to both the secretory and endocytic pathways have been difficult because protein trafficking has generally been studied separately in these two pathways. However, recent data indicate that the trans-Golgi network serves as an early endosome merging the secretory and endocytic pathways in plant cells. Here, we discuss the proteins identified as markers for post-Golgi compartments in these two pathways and propose that the trans-Golgi network is a pivotal organelle with multiple sorting domains for post-Golgi protein trafficking in plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号