首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
McGuffin LJ  Jones DT 《Proteins》2002,48(1):44-52
The ultimate goal of structural genomics is to obtain the structure of each protein coded by each gene within a genome to determine gene function. Because of cost and time limitations, it remains impractical to solve the structure for every gene product experimentally. Up to a point, reasonably accurate three‐dimensional structures can be deduced for proteins with homologous sequences by using comparative modeling. Beyond this, fold recognition or threading methods can be used for proteins showing little homology to any known fold, although this is relatively time‐consuming and limited by the library of template folds currently available. Therefore, it is appropriate to develop methods that can increase our knowledge base, expanding our fold libraries by earmarking potentially “novel” folds for experimental structure determination. How can we sift through proteomic data rapidly and yet reliably identify novel folds as targets for structural genomics? We have analyzed a number of simple methods that discriminate between “novel” and “known” folds. We propose that simple alignments of secondary structure elements using predicted secondary structure could potentially be a more selective method than both a simple fold recognition method (GenTHREADER) and standard sequence alignment at finding novel folds when sequences show no detectable homology to proteins with known structures. Proteins 2002;48:44–52. © 2002 Wiley‐Liss, Inc.  相似文献   

2.
Finding and identifying circular permuted protein pairs (CPP) is one of the harder tasks for structure alignment programs, because of the different location of the break in the polypeptide chain connectivity. The protein structure alignment tool GANGSTA+ was used to search for CPPs in a database of nearly 10,000 protein structures. It also allows determination of the statistical significance of the occurrence of circular permutations in the protein universe. The number of detected CPPs was found to be higher than expected, raising questions about the evolutionary processes leading to CPPs. The GANGSTA+ protein structure alignment tool is available online via the web server at http://gangsta.chemie.fu‐berlin.de . On the same webpage the complete data base of similar protein structure pairs based on the ASTRAL40 set of protein domains is provided and one can select CPPs specifically. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Improving fold recognition without folds   总被引:4,自引:0,他引:4  
The most reliable way to align two proteins of unknown structure is through sequence-profile and profile-profile alignment methods. If the structure for one of the two is known, fold recognition methods outperform purely sequence-based alignments. Here, we introduced a novel method that aligns generalised sequence and predicted structure profiles. Using predicted 1D structure (secondary structure and solvent accessibility) significantly improved over sequence-only methods, both in terms of correctly recognising pairs of proteins with different sequences and similar structures and in terms of correctly aligning the pairs. The scores obtained by our generalised scoring matrix followed an extreme value distribution; this yielded accurate estimates of the statistical significance of our alignments. We found that mistakes in 1D structure predictions correlated between proteins from different sequence-structure families. The impact of this surprising result was that our method succeeded in significantly out-performing sequence-only methods even without explicitly using structural information from any of the two. Since AGAPE also outperformed established methods that rely on 3D information, we made it available through. If we solved the problem of CPU-time required to apply AGAPE on millions of proteins, our results could also impact everyday database searches.  相似文献   

4.
Alignment of proteins in dilute liquid crystalline medium gives rise to residual dipolar couplings which provide orientational information of vectors connecting the interacting nuclei. Considering that proteins are mainly composed of regular secondary structures in a finite number of different mutual orientations, main chain dipolar couplings appear sufficient to reveal structural resemblance. Similarity between dipolar couplings measured from a protein and corresponding values computed from a known structure imply homologous structures. For dissimilar structures the agreement between experimental and calculated dipolar couplings remains poor. In this way protein folds can be readily recognized prior to a comprehensive structure determination. This approach has been demonstrated by showing the similarity in fold between the hitherto unknown structure of calerythrin and sarcoplasmic calcium-binding proteins from Nereis diversicolor and Branchiostoma lanceolatum with known crystal structures.  相似文献   

5.
Bastolla U  Porto M  Ortíz AR 《Proteins》2008,71(1):278-299
We adopt a model of inverse folding in which folding stability results from the combination of the hydrophobic effect with local interactions responsible for secondary structure preferences. Site-specific amino acid distributions can be calculated analytically for this model. We determine optimal parameters for the local interactions by fitting the complete inverse folding model to the site-specific amino acid distributions found in the Protein Data Bank. This procedure reduces drastically the influence on the derived parameters of the preference of different secondary structures for buriedness, which affects local interaction parameters determined through the standard approach based on amino acid propensities. The quality of the fit is evaluated through the likelihood of the observed amino acid distributions given the model and the Bayesian Information Criterion, which indicate that the model with optimal local interaction parameters is strongly preferable to the model where local interaction parameters are determined through propensities. The optimal model yields a mean correlation coefficient r = 0.96 between observed and predicted amino acid distributions. The local interaction parameters are then tested in threading experiments, in combination with contact interactions, for their capacity to recognize the native structure and structures similar to the native against unrelated ones. In a challenging test, proteins structurally aligned with the Mammoth algorithm are scored with the effective free energy function. The native structure gets the highest stability score in 100% of the cases, a high recognition rate comparable to that achieved against easier decoys generated by gapless threading. We then examine proteins for which at least one highly similar template exists. In 61% of the cases, the structure with the highest stability score excluding the native belongs to the native fold, compared to 60% if we use local interaction parameters derived from the usual amino acid propensities and 52% if we use only contact interactions. A highly similar structure is present within the five best stability scores in 82%, 81%, and 76% of the cases, for local interactions determined through inverse folding, through propensity, and set to zero, respectively. These results indicate that local interactions improve substantially the performances of contact free energy functions in fold recognition, and that similar structures tend to get high stability scores, although they are often not high enough to discriminate them from unrelated structures. This work highlights the importance to apply more challenging tests, as the recognition of homologous structures, for testing stability scores for protein folding.  相似文献   

6.
Reddy BV  Li WW  Bourne PE 《Biopolymers》2002,64(3):139-145
By using three-dimensional (3D) structure alignments and a previously published method to determine Conserved Key Amino Acid Positions (CKAAPs) we propose a theoretical method to design mutations that can be used to morph the protein folds. The original Paracelsus challenge, met by several groups, called for the engineering of a stable but different structure by modifying less than 50% of the amino acid residues. We have used the sequences from the Protein Data Bank (PDB) identifiers 1ROP, and 2CRO, which were previously used in the Paracelsus challenge by those groups, and suggest mutation to CKAAPs to morph the protein fold. The total number of mutations suggested is less than 40% of the starting sequence theoretically improving the challenge results. From secondary structure prediction experiments of the proposed mutant sequence structures, we observe that each of the suggested mutant protein sequences likely folds to a different, non-native potentially stable target structure. These results are an early indicator that analyses using structure alignments leading to CKAAPs of a given structure are of value in protein engineering experiments.  相似文献   

7.
The study of protein structure has been driven largely by the careful inspection of experimental data by human experts. However, the rapid determination of protein structures from structural-genomics projects will make it increasingly difficult to analyse (and determine the principles responsible for) the distribution of proteins in fold space by inspection alone. Here, we demonstrate a machine-learning strategy that automatically determines the structural principles describing 45 folds. The rules learnt were shown to be both statistically significant and meaningful to protein experts. With the increasing emphasis on high-throughput experimental initiatives, machine-learning and other automated methods of analysis will become increasingly important for many biological problems.  相似文献   

8.
Many protein classification systems capture homologous relationships by grouping domains into families and superfamilies on the basis of sequence similarity. Superfamilies with similar 3D structures are further grouped into folds. In the absence of discernable sequence similarity, these structural similarities were long thought to have originated independently, by convergent evolution. However, the growth of databases and advances in sequence comparison methods have led to the discovery of many distant evolutionary relationships that transcend the boundaries of superfamilies and folds. To investigate the contributions of convergent versus divergent evolution in the origin of protein folds, we clustered representative domains of known structure by their sequence similarity, treating them as point masses in a virtual 2D space which attract or repel each other depending on their pairwise sequence similarities. As expected, families in the same superfamily form tight clusters. But often, superfamilies of the same fold are linked with each other, suggesting that the entire fold evolved from an ancient prototype. Strikingly, some links connect superfamilies with different folds. They arise from modular peptide fragments of between 20 and 40 residues that co‐occur in the connected folds in disparate structural contexts. These may be descendants of an ancestral pool of peptide modules that evolved as cofactors in the RNA world and from which the first folded proteins arose by amplification and recombination. Our galaxy of folds summarizes, in a single image, most known and many yet undescribed homologous relationships between protein superfamilies, providing new insights into the evolution of protein domains.  相似文献   

9.
Ochagavía ME  Wodak S 《Proteins》2004,55(2):436-454
MALECON is a progressive combinatorial procedure for multiple alignments of protein structures. It searches a library of pairwise alignments for all three-protein alignments in which a specified number of residues is consistently aligned. These alignments are progressively expanded to include additional proteins and more spatially equivalent residues, subject to certain criteria. This action involves superimposing the aligned proteins by their hitherto equivalent residues and searching for additional Calpha atoms that lie close in space. The performance of MALECON is illustrated and compared with several extant multiple structure alignment methods by using as test the globin homologous superfamily, the OB and the Jellyrolls folds. MALECON gives better definitions of the common structural features in the structurally more diverse proteins of the OB and Jellyrolls folds, but it yields comparable results for the more similar globins. When no consistent multiple alignments can be derived for all members of a protein group, our procedure is still capable of automatically generating consistent alignments and common core definitions for subgroups of the members. This finding is illustrated for proteins of the OB fold and SH3 domains, believed to share common structural features, and should be very instrumental in homology modeling and investigations of protein evolution.  相似文献   

10.
This review compares the folding behavior of proteins and RNAs. Topics covered include the role of topology in the determination of folding rates, major folding events including collapse, properties of denatured states, pathway heterogeneity, and the influence of the mode of initiation on the folding pathway.  相似文献   

11.
It is commonly believed that similarities between the sequences of two proteins infer similarities between their structures. Sequence alignments reliably recognize pairs of protein of similar structures provided that the percentage sequence identity between their two sequences is sufficiently high. This distinction, however, is statistically less reliable when the percentage sequence identity is lower than 30% and little is known then about the detailed relationship between the two measures of similarity. Here, we investigate the inverse correlation between structural similarity and sequence similarity on 12 protein structure families. We define the structure similarity between two proteins as the cRMS distance between their structures. The sequence similarity for a pair of proteins is measured as the mean distance between the sequences in the subsets of sequence space compatible with their structures. We obtain an approximation of the sequence space compatible with a protein by designing a collection of protein sequences both stable and specific to the structure of that protein. Using these measures of sequence and structure similarities, we find that structural changes within a protein family are linearly related to changes in sequence similarity.  相似文献   

12.
Normal mode analyses of homologous proteins at the family and superfamily level show that slow dynamics are similar and are preserved through evolution. This study investigates how the slow dynamics of proteins is affected by variation in the protein architecture and fold. For this purpose, we have used computer-generated protein models based on idealized protein structures with varying folds. These are shown to be protein-like in their behavior, and they are used to investigate the influence of architecture and fold on the slow dynamics. We compared the dynamics of models having different folds but similar architecture and found the architecture to be the dominant factor for the slow dynamics.  相似文献   

13.
R B Russell  G J Barton 《Proteins》1992,14(2):309-323
An algorithm is presented for the accurate and rapid generation of multiple protein sequence alignments from tertiary structure comparisons. A preliminary multiple sequence alignment is performed using sequence information, which then determines an initial superposition of the structures. A structure comparison algorithm is applied to all pairs of proteins in the superimposed set and a similarity tree calculated. Multiple sequence alignments are then generated by following the tree from the branches to the root. At each branchpoint of the tree, a structure-based sequence alignment and coordinate transformations are output, with the multiple alignment of all structures output at the root. The algorithm encoded in STAMP (STructural Alignment of Multiple Proteins) is shown to give alignments in good agreement with published structural accounts within the dehydrogenase fold domains, globins, and serine proteinases. In order to reduce the need for visual verification, two similarity indices are introduced to determine the quality of each generated structural alignment. Sc quantifies the global structural similarity between pairs or groups of proteins, whereas Pij' provides a normalized measure of the confidence in the alignment of each residue. STAMP alignments have the quality of each alignment characterized by Sc and Pij' values and thus provide a reproducible resource for studies of residue conservation within structural motifs.  相似文献   

14.
A three-dimensional Voronoi tessellation of folded proteins is used to analyze geometrical and topological properties of a set of proteins. To each amino acid is associated a central point surrounded by a Voronoi cell. Voronoi cells describe the packing of the amino acids. Special attention is given to reproduction of the protein surface. Once the Voronoi cells are built, a lot of tools from geometrical analysis can be applied to investigate the protein structure; volume of cells, number of faces per cell, and number of sides per face are the usual signatures of the protein structure. A distinct difference between faces related to primary, secondary, and tertiary structures has been observed. Faces threaded by the main-chain have on average more than six edges, whereas those related to helical packing of the amino acid chain have less than five edges. The faces on the protein surface have on average five edges within 1% error. The average number of faces on the protein surface for a given type of amino acid brings a new point of view in the characterization of the exposition to the solvent and the classification of amino acid as hydrophilic or hydrophobic. It may be a convenient tool for model validation.  相似文献   

15.
16.
We report an interesting case of structural similarity between 2 small, nonhomologous proteins, the third domain of ovomucoid (ovomucoid) and the C-terminal fragment of ribosomal L7/L12 protein (CTF). The region of similarity consists of a 3-stranded beta-sheet and an alpha-helix. This region is highly similar; the corresponding elements of secondary structure share a common topology, and the RMS difference for "equivalent" C alpha atoms is 1.6 A. Surprisingly, this common structure arises from completely different sequences. For the common core, the sequence identity is less than 3%, and there is neither significant sequence similarity nor similarity in the position or orientation of conserved hydrophobic residues. This superposition raises the question of how 2 entirely different sequences can produce an identical structure. Analyzing this common region in ovomucoid revealed that it is stabilized by disulfide bonds. In contrast, the corresponding structure in CTF is stabilized in the alpha-helix by a composition of residues with high helix-forming propensities. This result suggests that different sequences and different stabilizing interactions can produce an identical structure.  相似文献   

17.
The testis/brain-RNA-binding protein (TB-RBP) spatially and temporally controls the expression of specific mRNAs in developing male germ cells and brain cells, and is implicated in DNA recombination and repair events. We report the 2.65 A crystal structure of mouse TB-RBP. The structure is predominantly alpha-helical and exhibits a novel protein fold and mode of assembly. Crystal symmetry and molecular symmetry combine to form an octet of TB-RBP monomers in the shape of an elongated spherical particle with a large cavity at its center. Amino acid residues that affect RNA and DNA binding are located on the interior surface of the assembled particle, and a putative nucleotide-binding domain that controls RNA binding is located at a dimer interface. Other modes of assembly are suggested for TB-RBP based on our structure and recently reported electron microscopic reconstructions of human TB-RBP.  相似文献   

18.
The threading approach to protein structure prediction suffers from the limited number of substantially different folds available as templates. A method is presented for the generation of artificial protein structures, amenable to threading, by modification of native ones. The artificial structures so generated are compared to the native ones and it is shown that, within the accuracy of the pseudoenergy function or force field used, these two types of structures appear equally useful for threading. Since a multitude of pseudonative artificial structures can be generated per native structure, the pool of pseudonative template structures for threading can be enormously enlarged by the inclusion of the pseudonative artificial structures. Proteins 28:522–529, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
The availability of fast and robust algorithms for protein structure comparison provides an opportunity to produce a database of three-dimensional comparisons, called families of structurally similar proteins (FSSP). The database currently contains an extended structural family for each of 154 representative (below 30% sequence identity) protein chains. Each data set contains: the search structure; all its relatives with 70-30% sequence identity, aligned structurally; and all other proteins from the representative set that contain substructures significantly similar to the search structure. Very close relatives (above 70% sequence identity) rarely have significant structural differences and are excluded. The alignments of remote relatives are the result of pairwise all-against-all structural comparisons in the set of 154 representative protein chains. The comparisons were carried out with each of three novel automatic algorithms that cover different aspects of protein structure similarity. The user of the database has the choice between strict rigid-body comparisons and comparisons that take into account interdomain motion or geometrical distortions; and, between comparisons that require strictly sequential ordering of segments and comparisons, which allow altered topology of loop connections or chain reversals. The data sets report the structurally equivalent residues in the form of a multiple alignment and as a list of matching fragments to facilitate inspection by three-dimensional graphics. If substructures are ignored, the result is a database of structure alignments of full-length proteins, including those in the twilight zone of sequence similarity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We present MASS (Multiple Alignment by Secondary Structures), a novel highly efficient method for structural alignment of multiple protein molecules and detection of common structural motifs. MASS is based on a two-level alignment, using both secondary structure and atomic representation. Utilizing secondary structure information aids in filtering out noisy solutions and achieves efficiency and robustness. Currently, only a few methods are available for addressing the multiple structural alignment task. In addition to using secondary structure information, the advantage of MASS as compared to these methods is that it is a combination of several important characteristics: (1) While most existing methods are based on series of pairwise comparisons, and thus might miss optimal global solutions, MASS is truly multiple, considering all the molecules simultaneously; (2) MASS is sequence order-independent and thus capable of detecting nontopological structural motifs; (3) MASS is able to detect not only structural motifs, shared by all input molecules, but also motifs shared only by subsets of the molecules. Here, we show the application of MASS to various protein ensembles. We demonstrate its ability to handle a large number (order of tens) of molecules, to detect nontopological motifs and to find biologically meaningful alignments within nonpredefined subsets of the input. In particular, we show how by using conserved structural motifs, one can guide protein-protein docking, which is a notoriously difficult problem. MASS is freely available at http://bioinfo3d.cs.tau.ac.il/MASS/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号