首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Larvae of most animals go through large changes in size. Because change in size can lead to changes in ability to gain food and in predation risk, changes in behaviour are predicted to reflect this. Models consider change in amounts of the same behaviour, but different selective pressures on different larval sizes may also lead to qualitative differences in behavioural repertoire. In the damselfly Ischnura verticalis we observed ontogenetic changes in behaviour under controlled laboratory conditions. We found that frequency and duration of feeding behaviour and behaviour related to activity were increased in larger instars. Larger larvae also had higher transition probabilities to the behaviour abdomen wave, straight abdomen raise, and rotate + head out. We also found that the behavioural repertoire of damselfly larvae changed with development: some behavioural patterns were performed almost exclusively by smaller larvae (F - 4 to F - 7) while others were performed almost exclusively by larger larvae (F - 3 to F - 0).  相似文献   

2.
First zoeae of Cook Inlet king crab, Paralithodes camtschatica (Tilesius), were held at 2, 4, and 6°C and starved for 12, 60, and 84 h, then a known number of prey organisms were made available. Zoeae first fed at age 12 and 60 h were able to successfully capture prey. Zoeae starved for 84 h and held at 6°C retained the ability to capture prey; however, there was a significant reduction in predation rates in comparison to zoeae starved for shorter periods and held at this temperature. The zoeae starved for 84 h and held at 2 and 4°C were generally unable to capture prey.The results of the study indicate that prey availability when the zoeae first begin to feed has more effect on later feeding success than water temperature. King crab zoeae that receive food within 60 h of hatching are capable of capturing prey thereafter if prey concentrations are adequate. If feeding is delayed an additional 24 h, the ability to capture prey is reduced, especially at water temperatures <4°C.  相似文献   

3.
Resistance in sugarcane [Saccharum spec. (Poaceae)] to the spotted stalk borer, Chilo sacchariphagus (Bojer) (Lepidoptera: Pyralidae), was studied by comparing feeding behaviour on resistant cv. R570 and susceptible cv. R579. In a field survey, the feeding behaviour of C. sacchariphagus larvae was described to identify their feeding sites on the plant. In a greenhouse artificial infestation study, we compared the establishment of larvae on potted plants. In laboratory choice and no‐choice experiments, we studied the establishment of larvae on plant organs (stalk, sheath, leaf spindle). Study of the feeding behaviour showed that: (1) first to fourth instars are able to feed on stalk, sheath, and leaf spindle, (2) boring into the stalk occurs mostly in the four uppermost internodes, and (3) most young larvae bore through the abaxial surface of leaf sheaths to reach the stalk. In greenhouse experiments, we observed an early two‐fold reduction of the number of larvae on R570 plants within the first 48 h after infestation. In laboratory experiments, larval antixenosis was demonstrated at the abaxial surface of R570 leaf sheath, but was observed neither in the leaf spindle nor in the stalk. First, second, and third instars were susceptible to this antixenosis. We hypothesize that the main resistance mechanism in R570 is an early reduction of larval establishment on plants, due to antixenosis located at the abaxial surface of leaf sheaths.  相似文献   

4.
The effects of individual larval biomass, and salinity experienced during embryogenesis (i.e., prehatching salinity) on starvation tolerance and growth of zoea 1 of the estuarine crab (Chasmagnathus granulata) were evaluated in laboratory experiments. Freshly hatched zoeae 1 were obtained from broods maintained at three salinities (15‰, 20‰ and 32‰), and cultured at 20‰ under different initial feeding periods and subsequent food deprivation (“point of reserve saturation” experiment: PRS) or under initial periods of food deprivation and subsequent feeding (point of no return experiment: PNR). Another group of larvae were used for determination of biomass (dry weight, carbon, and nitrogen) of zoea 1.Larval survival and duration of development depended on the length of feeding period: no larvae reached the second instar under complete starvation; survival was higher and duration of development shorter as the feeding period lengthened. After different initial feeding periods (PRS experiment), zoeae 1 that hatched from eggs incubated at the prehatching salinities of 15‰ and 20‰ showed higher survival and shorter duration of development than those at 32‰. Prehatching salinity also affected the amount of reserves accumulated during the first 2 days after hatching, with larvae from 15‰ and 20‰ showing the highest percentage of total accumulation of carbon and nitrogen. Initial larval biomass did not affect survival, but it had a slight effect on duration of development, with larger larvae (in terms of biomass) developing faster. After different initial starvation periods (PNR experiment), prehatching salinity did not affect survival, but it affected duration of development: larvae from 15‰ and 20‰ reached the second instar earlier. Variability in survival and duration of development was explained in part by among-brood variability in initial larval biomass: larvae with higher biomass showed higher survival and shorter duration of development. Thus, C. granulata, survival and duration of development under food stress depend on the interaction between environmental conditions experienced before and after hatching (pre- and posthatching factors, respectively).  相似文献   

5.
Ingestion rates of zoeae of Aratus pisonii Milne Edwards (Brachyura: Grapsidae) were determined offering natural plankton-detritus mixtures in laboratory food selection experiments. The food mixtures were sampled in the Itamaracá estuary, north-eastern Brazil, and standardised to a size range of 50–200 μm. Zoeae ingested significant amounts of large centric diatoms (Coscinodiscus spp.), mangrove detritus, tintinnids (Favella ehrenbergi) and adult copepods during feeding experiments. Diatoms were positively selected by A. pisonii zoeae in all three experiments, with ingestion rates of 3.3–21.3 cells zoea−1 day−1. Detritus particles were always more abundant than phytoplankton and zooplankton in the particle size spectrum offered. Detritus was ingested in two of three experiments, with ingestion rates of up to 34.1 particles zoea−1 day−1, being the most important food item during one experiment. Adult copepods (up to 1.8 ind. zoea−1 day−1) and tintinnids (up to 0.4 ind. zoea−1 day−1) were ingested by A. pisonii zoeae during one experiment each. In spite of a wide range of zoeal density, food particle composition, and density, zoeae of A. pisonii displayed a consistent pattern of food selectivity. This hints at a consistent sensory and behavioural mechanism related to capture and handling of food particles, that most likely also affects larval feeding under natural conditions. Although detritus showed to be quantitatively ingested under estuarine conditions, zoeae of A. pisonii preferred large diatoms and ingested zooplankton only occasionally.  相似文献   

6.
Thomson JR  Clark BD  Fingerut JT  Hart DD 《Oecologia》2004,140(3):533-542
Larval black flies often exhibit spatially aggregated distributions, and individuals within patches can potentially reduce the supply of suspended food particles to downstream neighbors by modifying local flow characteristics. We used hot-film anemometry to quantify the magnitude and spatial extent of flow modifications downstream from feeding Simulium vittatum larvae in a laboratory flume, and to determine whether temporal patterns of flow variation are related to movements of the larval feeding appendages. Mean velocity 1 mm downstream from feeding larvae was reduced by 75%, and the percent reduction in velocity diminished asymptotically with downstream distance. Reduced velocities were evident as much as 60 mm downstream from, and 3 mm to either side of, larvae. Turbulence intensity (i.e., the SD of the velocity time series) was generally higher in this region relative to control flow conditions. Three results demonstrate the major contribution of the larval feeding appendages (i.e., labral fans) to such flow modification. First, there was a minimal reduction in mean velocity 5 mm downstream from non-feeding larvae (i.e., with closed labral fans), whereas mean velocity at the same location was reduced markedly when larvae were feeding. Second, the power spectrum of the velocity time series exhibited greatest power at frequencies that corresponded to the frequency of labral fan motions. Third, fan flick times accounted for most of the variance in the velocity power spectrum. The large local flow modifications that we documented have potentially important consequences for the feeding performance and growth of individuals located within larval aggregations, and are likely to influence behavioral interactions and spacing patterns.  相似文献   

7.
Prey selection and growth efficiency of juvenile sockeye salmon Oncorhynchus nerka switched between live prey and pelleted diets were investigated. First feeding sockeye salmon fry were placed into one of three dietary treatments for 7 months prior to assessing potential differences with a growth and a behavioural assay. Dietary treatments were (1) adult Artemia franciscana for 1 month, followed by pelleted feed for an additional 6 months ( Art − BD), (2) pelleted feed from first feeding for 7 months (BD) and (3) adult A. franciscana for 1 month, and a combination of pelleted feed and live adult A. franciscana for 6 months ( Art + BD). Equal numbers from each treatment group were then tagged, pooled into replicate 'common garden' tanks and fed novel live prey items ( Daphnia sp. and mosquito Culex pipiens larvae) for an additional 3 weeks. No significant differences in the growth efficiency of sockeye salmon were found during the 3 week feeding trial on the novel prey items. Additional sockeye salmon from each dietary treatment were used in a behavioural assay to determine if the treatments had an impact on foraging efficiency (prey selection or time to capture prey). No significant differences in prey selection were found among treatment groups in time to capture pellets, A. franciscana or mosquito larvae. Also, no significant differences were found within treatment groups in time to capture different food sources. No substantive benefits in foraging efficiency of sockeye salmon associated with prior exposure to live prey were demonstrated. This suggests that altering existing hatchery practices for juvenile sockeye salmon by offering live food prior to release is unlikely to influence post-hatchery feeding behaviour or increase post-release survival.  相似文献   

8.
Summary Pryeria sinica (Zygaenidae) larvae feed on young and growing leaves of Euonymus japonicus in groups. The larvae often defoliate their host plant. Hence, the larvae are occasionally subject to serious shortage in food resources. We hypothesize that larval aggregation is an adaptation for the economical utilization of limited food resources. To test this hypothesis, the patterns of resource utilization were studied on larvae settled on shoots of host plant in various group sizes. The amount of food resources in a shoot was affected by the following three factors; (1) shoot growth, (2) food consumption of larvae, and (3) inhibition of growth or degeneration of shoot by larval activity on it. These factors were measured and the efficiency in resource utilization was compared among groups of varied sizes. The loss in resources caused by the third factor was found to be decreased with group size, i.e., the larger the group size, the larvae utilized the food resources more economically. The advantages of group feeding in survival and reproduction of this species were discussed using a simple graphical model.  相似文献   

9.
Evolutionary loss of the requirement for feeding in larvae of marine invertebrates is often followed by loss of structures involved in capturing and digesting food. Studies of echinoderms suggest that larval form evolves rapidly in response to loss of the requirement for feeding, but a lack of data from other taxa makes it difficult to assess the generality of this result. I show that many members of a large clade of annelids, the Sabellidae, retain ancestral systems for particle capture despite loss of the need and ability to feed. In at least one species, Schizobranchia insignis, an opposed-band system of prototrochal, food-groove, and metatrochal ciliary bands can concentrate suspended particles and transport them to the mouth, but captured particles are invariably rejected because larvae lack a functional gut. The persistence of particle capture systems in larvae of sabellids suggests that they have lost larval feeding very recently, that opposed bands are inexpensive to construct and operate, or that opposed bands have some alternative function. These observations also suggest a hypothesis on how the ability to feed is lost in larvae of annelids and other spiralians following increases in egg size.  相似文献   

10.
1. Larvae of Chlosyne janais (Lepidoptera: Nymphalidae) feed gregariously as early instars on the shrub Odontonema callistachyum (Acanthaceae). During the fourth instar, aggregations break up and larvae feed as solitary individuals.
2. The hypothesis that aggregation increases growth rate was tested by raising larvae on intact plants in the field in different group sizes and measuring their daily growth.
3. There was a striking effect of group size on larval growth whereby larvae more than doubled their weight gain by feeding in large rather than small aggregations on intact plants in the field.
4. This group-feeding advantage was lost altogether if larvae were raised on excised leaves in the laboratory, suggesting that large aggregations may facilitate growth either by inducing a nutrient sink or by overwhelming an induced allelochemical response in the plant.
5. Although larval survival was higher in cages that excluded enemies than in exposed aggregations, there was no influence of group size (experimentally manipulated) on short-term survival in the field. However, there was a weak positive relationship between short-term survival and the size of naturally occurring larval aggregations in the field. These data provide mixed support for the notion that gregarious feeding promotes defence against natural enemies.
6. Although the group defence hypothesis warrants further investigation, feeding facilitation is clearly an important factor contributing to the aggregation behaviour of C. janais larvae.  相似文献   

11.
ABSTRACT.
  • 1 This paper investigates the behaviour, in the laboratory, of a forager simultaneously confronted with the conflicting needs to feed and to avoid predators. The foragers were larvae of the damselfly Ischnura elegans Van der Linden, feeding on Daphnia magna Strauss. The predators were adult females of Notonecta glauca L.
  • 2 Patch choice by Ischnura larvae was significantly modified by the presence of predators. Larvae moved to feed in patches of high prey density when predators were absent but preferred dense cover, even though virtually no prey were available, when predators were present. This behaviour was not altered by hunger, up to 12 days without food. In other words, Ischnura larvae were risk averse in their foraging behaviour.
  • 3 In experiments with abundant prey available, the feeding rates of Ischnura larvae confined to a single patch were also significantly reduced by the presence of hydrodynamically and chemically detectable predators. Predators detectable only by vision had little effect.
  • 4 Calculations made from published data show that reduced larval feeding rates can lead to slower growth and development and prolonged instar durations in Ischnura elegans larvae. This may have important consequences for larval survival and adult reproductive fitness.
  相似文献   

12.
In nature, larvae of the dung beetle Onthophagus taurus (Schreber 1759) are confronted with significant variation in the availability of food without the option of locating new resources. Here we explore how variation in feeding conditions during the final larval instar affects larval growth and the timing of pupation. We found that larvae respond to food deprivation with a reduction in the length of the instar and premature pupation, leading to the early eclosion of a small adult. To achieve pupation, larvae required access to food for at least the first 5 days of the final instar (= 30% of mean third‐instar duration in control individuals), and had to exceed a weight of 0.08 g (= 58% of mean peak weight in control individuals). Larvae that were allowed to feed longer exhibited higher pupation success, but increased larval weight at the time of food deprivation did not result in increased pupation success except for larvae weighing > 0.14 g. Larvae responded to food deprivation by initiating and undergoing the same sequence of developmental events, requiring the same amount of time, as ad libitum‐fed larvae once those had reached their natural peak weight. Our results reveal a striking degree of flexibility in the dynamics and timing of larval development in O. taurus. They also suggest that premature exhaustion of a larva's food supply can serve as a cue for the initiation of metamorphosis. Premature metamorphosis in response to food deprivation has been documented in amphibians, but this is, to the best of our knowledge, the first time such a behaviour has been documented for a holometabolous insect. We discuss our findings in the context of the natural history and behavioural ecology of onthophagine beetles.  相似文献   

13.
Synopsis The capability of unfed walleye pollock, Theragra chalcogramma, larvae to swim horizontally towards light was used as a sensitive, sublethal measure of larval condition. At 9°C, positive phototaxis and swimming ability of larvae was fully developed by 4–6 d after hatching, then decreased steadily until death by 12 d after hatching. This measure of larval condition corresponded closely with previously established benchmarks of larval condition, including first feeding, yolksac absorption, point of no return and death by starvation. The presence and timing of behavioral deficits associated with starvation, such as decreased ability to swim, feed and avoid predators, may have significant effects on the ability of larvae to vertically migrate, avoid predators and find and capture food.  相似文献   

14.
Abstract.  1. An organism's growth parameters are expected to depend on environmental constraints, such as predation risk and food supply. However, antipredator responses, food intake, and thus growth of an animal may be mediated by behavioural traits, which are likely to differ among developmental stages. In this study, it was investigated how the relationship between growth and behavioural antipredator responses changes during ontogeny in the time-constrained dragonfly species Libellula depressa , and which factors influenced specific behavioural decisions at different points in ontogeny.
2. The results revealed that behavioural strategies differed between larval developmental sages, depending on associations between larval growth, food supply, and predation risk. Early in ontogeny, faster development was correlated with high larval activity and high food supply. This resulted in high activity levels under high food conditions irrespectively of predator presence, and under low food supply in predator absence only. In the intermediate stage of development, all larvae displayed a high activity level, which was correlated in general with fast development. However, growth later in ontogeny was not only influenced by the activity level, but also by predator presence and food supply, with larvae reared under high food supply and/or in presence of predators attaining a higher final mass. Thus, not only the way in which larval growth parameters and behaviour are related changed during development, but also whether the factors influenced larval growth and behaviour. Once the larvae reached the ultimate stage of development, in which they overwinter, behavioural patterns observed were consistent with model predictions.
3. It is advocated that behavioural plasticity of prey organisms in different developmental stages should be analysed in the context of associated growth variables.  相似文献   

15.
In the first year of an outbreak, Bupalus piniarius larvae, encounter intense crowding. In the later stages of larval development, they are forced to feed on the non-preferred current-year needles of Scots pine or even on alternative hosts. It was hypothesized that larval feeding on a non-preferred resource (current-year needles) will negatively affect B. piniarius performance. It was also hypothesized that larval mutual interference (crowding without competition for food) will have negative additive effects. These hypotheses were tested in laboratory and field experiments. Fourth instar larvae were reared singly and under crowded conditions in cohorts of ten. Larvae in both situations were reared on control branches (containing both mature and current-year shoots) and branches containing only current-year shoots. Crowded larvae were reared also on Norway spruce, an alternative host. Crowding and feeding on a non-preferred resource had opposite effects on B. piniarius larval performance. Crowding in the late larval instars enhanced larval performance while absence of the preferred resource had negative effects. Larval growth rate was higher and development time was shorter for larvae exposed to crowded conditions than for solitary larvae. There was, however, no difference between the groups in final pupal weights or survival. Survival was 25% lower for larvae feeding on non-preferred current-year needles and pupal weights 9% lower, compared with results for larvae feeding on mature needles. Larvae feeding on Norway spruce suffered greatly extended development time, 82% lower survival, and resulted in 60% lighter pupae compared with conspecifics on Scots pine. It was concluded that not only quantity but also quality of the available food resource is critical for B. piniarius development.  相似文献   

16.
Abstract

Biological features of adults and immature stages of Helosciomyza subalpina Tonnoir & Malloch are discussed. Information on habitat, geographical distribution, larval behaviour and feeding habits, natural enemies, and phenology are presented. The species is found in marshy areas in the South Island and on the Chatham Islands. In the laboratory, newly hatched larvae feed on a variety of freshly killed insects, and apparently lap up liquids from the integument of live ant larvae. Older fly larvae feed on decaying as well as freshly killed insects, and are overt predators of ant larvae. In the field, fly larvae and puparia have been found in association with ant nests; many puparia have also been found well away from ant nests. The egg, three larval instars, and the puparium are described. The taxonomic position of the Helosciomyzidae is discussed in the light of these new data on biology and morphology.  相似文献   

17.
BACKGROUND: Competition with filamentous fungi has been demonstrated to be an important cause of mortality for the vast group of insects that depend on ephemeral resources (e.g. fruit, dung, carrion). Recent data suggest that the well-known aggregation of Drosophila larvae across decaying fruit yields a competitive advantage over mould, by which the larvae achieve a higher survival probability in larger groups compared with smaller ones. Feeding and locomotor behaviour of larger larval groups is assumed to cause disruption of fungal hyphae, leading to suppression of fungal growth, which in turn improves the chances of larval survival to the adult stage. Given the relationship between larval density, mould suppression and larval survival, the present study has tested whether fungal-infected food patches elicit communal foraging behaviour on mould-infected sites by which larvae might hamper mould growth more efficiently. RESULTS: Based on laboratory experiments in which Drosophila larvae were offered the choice between fungal-infected and uninfected food patches, larvae significantly aggregated on patches containing young fungal colonies. Grouping behaviour was also visible when larvae were offered only fungal-infected or only uninfected patches; however, larval aggregation was less strong under these conditions than in a heterogeneous environment (infected and uninfected patches). CONCLUSION: Because filamentous fungi can be deadly competitors for insect larvae on ephemeral resources, social attraction of Drosophila larvae to fungal-infected sites leading to suppression of mould growth may reflect an adaptive behavioural response that increases insect larval fitness and can thus be discussed as an anti-competitor behaviour. These observations support the hypothesis that adverse environmental conditions operate in favour of social behaviour. In a search for the underlying mechanisms of communal behaviour in Drosophila, this study highlights the necessity of investigating the role of inter-kingdom competition as a potential driving force in the evolution of spatial behaviour in insects.  相似文献   

18.
A central issue in predator–prey interactions is how predator associated chemical cues affect the behaviour and life history of prey. In this study, we investigated how growth and behaviour during ontogeny of a damselfly larva (Coenagrion hastulatum) in high and low food environments was affected by the diet of a predator (Aeshna juncea). We reared larvae in three different predator treatments; no predator, predator feeding on conspecifics and predator feeding on heterospecifics. We found that, independent of food availability, larvae displayed the strongest anti-predator behaviours where predators consumed prey conspecifics. Interestingly, the effect of predator diet on prey activity was only present early in ontogeny, whereas late in ontogeny no difference in prey activity between treatments could be found. In contrast, the significant effect of predator diet on prey spatial distribution was unaffected by time. Larval size was affected by both food availability and predator diet. Larvae reared in the high food treatment grew larger than larvae in the low food treatment. Mean larval size was smallest in the treatment where predators consumed prey conspecifics, intermediate where predators consumed heterospecifics and largest in the treatment without predators. The difference in mean larval size between treatments is probably an effect of reduced larval feeding, due to behavioural responses to chemical cues associated with predator diet. Our study suggests that anti-predator responses can be specific for certain stages in ontogeny. This finding shows the importance of considering where in its ontogeny a study organism is before results are interpreted and generalisations are made. Furthermore, this finding accentuates the importance of long-term studies and may have implications for how results generated by short-term studies can be used.  相似文献   

19.
S. M. Dixon  R. L. Baker 《Oecologia》1988,76(2):200-205
Summary We used laboratory studies to examine the role of predation risk and cost of anti-predator behaviour in determining the behavioural response of several larval instars of Ischnura verticalis to a fish predator (Lepomis gibbosus). Smaller larvae were less susceptible to fish predation than larger larvae. Smaller larvae depressed movement to a greater degree in the presence of fish than did larger larvae; large larvae were generally less active than small larvae regardless of fish presence. Reduced feeding resulted in smaller larvae suffering more in terms of reduced growth than did large larvae. In general, our results tend to support the hypothesis that individuals that suffer high costs of anti-predator behaviour but little risk of predation may only exhibit anti-predator behaviours in the presence of predators, whereas individuals with a higher risk of predation and a lower cost of anti-predator behaviour may evolve anti-predator mechanisms that are in effect even in the absence of predators.  相似文献   

20.
This study concerned the development of feeding in larval lumpfish, Cyclopterus lumpus , and tested the hypothesis that these large, well-developed larvae would not use typical 'larval-like' modal action patterns (MAPs) in high frequency during early feeding. The early behavioural repertoire of larvae is unique, owing to a well-developed, ventral adhesive disk used to adhere ( Cling ) to available surfaces. Most early feeding MAPs were performed from the Cling position; larvae did not swim in the water column to chase and capture prey during the first three weeks post-hatch. Changes in feeding were not as predicted. The original hypothesis was refined to include a 'state of development' criterion as well as larval size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号