首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review summarizes microdialysis studies that address the question of which compounds serve as energy sources in the brain. Microdialysis was used to introduce 14C-labeled glucose, lactate, pyruvate, glutamate, glutamine, and acetate into the interstitial fluid of the brain to observe their metabolism to 14CO2. Although glucose uptake from the systemic system supplies the carbon source for these compounds, compounds synthesized from glucose by the brain are subject to recycling including complete metabolism to CO2. Therefore, the brain utilizes multiple compounds in its domain to provide the energy needed to fulfill its function. The physiological conditions controlling metabolism and the contribution of compartmentation into different brain regions, cell types, and subcellular spaces are still unresolved. The aconitase inhibitor fluorocitrate, with a lower inhibition threshold in glial cells, was used to identify the proportion of lactate and glucose that was oxidized in glial cells versus neurons. The fluorocitrate data suggest that glial and neuronal cells are capable of utilizing both lactate and glucose for energy metabolism.  相似文献   

2.
The [14C]2-deoxyglucose method was applied to measure the effects of the injection of neurotensin (7 microg) in the ventral tegmental area on local cerebral glucose utilization in the rat. Injection of neurotensin produced significant increases of glucose utilization in the shell of the nucleus accumbens and in the olfactory tubercle. These results indicate that stimulation of neurotensin receptors in the ventral tegmental area produces functional changes that are confined to the regions receiving mesolimbic projections within the rostral extended amygdaloid complex. These findings extend our understanding on the effects of neurotensin in the limbic system, with particular regard to reward pathways.  相似文献   

3.
Some central cholinergic effects have been reported in animals after acute exposure to radiofrequency electromagnetic field at low intensity. We studied acetylcholine (ACh) release in the brain of freely moving rats exposed for 1 h during the day to a 2.45 GHz continuous wave radiofrequency field (RF) (2 or 4 mW/cm(2)) or exposed for 1 or 14 h during the night to a 800 MHz field modulated at 32 Hz (AM 200 mW/cm(2)). Measurements were performed by microdialysis using a membrane implanted through the upper CA1 region of the hippocampus. After irradiation with the 2.45 GHz RF, rats exposed at 2 mW/cm(2) did not show a significant modification of Ach release, whereas those exposed at 4 mW/cm(2) showed a significant 40% decrease in mean ACh release from hippocampus. This decrease was maximal at 5 h post exposure. Exposure to the 800 MHz RF for 1 h did not cause any significant effect, but exposure for 14 hrs induced a significant 43% decrease in ACh release during the period 11 p.m.-4 a.m. compared to control rats. In the control group we observed an increase of ACh release at the beginning of the night, which was linked to the waking period of rats. This normal increase was disturbed in rats exposed overnight to the 800 MHz RF. This work indicates that neurochemical modification of the hippocampal cholinergic system can be observed during and after an exposure to low intensity RF.  相似文献   

4.
Astrocytes and neurons cultured from mouse cerebellum and cerebral cortex were analyzed with respect to content and synthesis of amino acids as well as export of metabolites to the culture medium and the response to fluorocitrate, an, inhibitor of aconitase. The intracellular levels of amino acids were similar in the two astrocytic populations. The release of citrate, lactate and glutamine, however, was markedly higher from cerebellar than from cortical astrocytes. Neurons contained higher levels of glutamate, aspartate and GABA than astrocytic cultures. Cortical neurons were especially high in GABA and aspartate, and the level of aspartate increased specifically when the extracellular level of glutamine was elevated. Fluorocitrate inhibited the TCA cycle in the astrocytes, but was less effective in cerebellar neurons. Whereas neurons responded to fluorocitrate with an increase in the formation of lactate, reflecting, glycolysis, astrocytes decreased the formation of lactate in the presence of fluorocitrate, indicating that astrocytes to a high degree synthesize pyruvate and hence lactate from TCA cycle intermediates.  相似文献   

5.
Although prefrontal and hippocampal neurons are critical for spatial working memory, the function of glial cells in spatial working memory remains uncertain. In this study we investigated the function of glial cells in rats’ working memory. The glial cells of rat brain were inhibited by intracerebroventricular (icv) injection of fluorocitrate (FC). The effects of FC on the glial cells were examined by using elec-troencephalogram (EEG) recordings and delayed spatial alternation tasks. After icv injection of 10 μL of 0.5 nmol/L or 5 nmol/L FC, the EEG power spectrum recorded from the hippocampus increased, but the power spectrum for the prefrontal cortex did not change, and working memory was unaffected. Fol-lowing an icv injection of 10 μL of 20 nmol/L FC, the EEG power spectra in both the prefrontal cortex and the hippocampus increased, and working memory improved. The icv injection of 10 μL of 50 nmol/L FC, the EEG power spectra in both the prefrontal cortex and in the hippocampus decreased, and working memory was impaired. These results suggest that spatial working memory is affected by cen-trally administered FC, but only if there are changes in the EEG power spectrum in the prefrontal cortex. Presumably, the prefrontal glial cells relate to the working memory.  相似文献   

6.
These experiments for the first time examine simultaneous changes in glucose and lactate in unanaesthetised animals during moderate hypoxia. Unanaesthetised rats were exposed to moderate hypoxia for a period of 15 min by reducing inspired oxygen to 8%. Changes in glucose and lactate were monitored in rat cortex using microdialysis and a novel dual enzyme-based assay. Samples of dialysate collected at 3-min intervals were assayed for both glucose and lactate. There was an early rapid rise of lactate that reached a peak at the end of the period of hypoxia followed by a steep decline. Glucose showed a very much smaller delayed increase that started during the period of hypoxia and continued beyond it. The origin of the rise in glucose is discussed, using the temporal relationship between the lactate and glucose changes.  相似文献   

7.
8.
9.
Gonadal hormones appear to modulate brain energy metabolism, and morphological and functional sexual differences are found in the amygdaloid complex (AC) of rats. Our aim was to study the CO2 production and lipid synthesis, measured by the rate of L-[U-14C]lactate or D-[U-14C]glucose utilization (in pmol.hr–1.mg–1), by AC slices in vitro of male and female rats. Lactate was more used than glucose as energy substrate (p < 0.01) but no sex-related difference was observed in glucose or lactate oxidation to CO2 (p > 0.05) or on lipid synthesis obtained from both substrates (p > 0.05). In addition, there was no effect of the estrous cycle on lactate oxidation to CO2 by the AC of females (p > 0.05). Based on the present data, it appears that the endogenous normal levels of gonadal hormones are not able to promote sex-related differences in the in vitro glucose or lactate utilization by the AC of rats.  相似文献   

10.
There is growing evidence of the brain's ability to increase its reliance on alternative metabolic substrates under conditions of energy stress such as starvation, hypoxia and ischemia. We hypothesized that following traumatic brain injury (TBI), which results in immediate changes in energy metabolism, the adult brain increases uptake and oxidation of the alternative substrate beta-hydroxybutyrate (betaHB). Arterio-venous differences were used to determine global cerebral uptake of betaHB and production of 14CO2 from [14C]3-betaHB 3 h after controlled cortical impact (CCI) injury. Quantitative bioluminescence was used to assess regional changes in ATP concentration. As expected, adult sham and CCI animals with only endogenously available betaHB showed no significant increase in cerebral uptake of betaHB or 14CO2 production. Increasing arterial betaHB concentrations 2.9-fold with 3 h of betaHB infusion failed to increase cerebral uptake of betaHB or 14CO2 production in adult sham animals. Only CCI animals that received a 3-h betaHB infusion showed an 8.5-fold increase in cerebral uptake of betaHB and greater than 10.7-fold increase in 14CO2 production relative to sham betaHB-infused animals. The TBI-induced 20% decrease in ipsilateral cortical ATP concentration was alleviated by 3 h of betaHB infusion beginning immediately after CCI injury.  相似文献   

11.
Fabry disease is an X-linked lysosomal disorder characterized by deficient alpha-galactosidase A activity and intracellular accumulations of glycosphingolipids, mainly globotriaosylceramide (Gb3). Clinically, patients occasionally present CNS dysfunction. To examine the pathophysiology underlying brain dysfunction, we examined glucose utilization (CMR(glc)) and cerebral blood flow (CBF) globally and locally in 18 brain structures in the alpha-galactosidase A gene knockout mouse. Global CMR(glc) was statistically significantly reduced by 22% in Fabry mice (p < 0.01). All 18 structures showed decreases in local CMR(glc) ranging from 14% to 33%. The decreases in all structures of the diencephalon, caudate-putamen, brain stem, and cerebellar cortex were statistically significant (p < 0.05). Global cerebral blood flow (CBF) and local CBF measured in the same 18 structures were lower in Fabry mice than in control mice, but none statistically significantly. Histological examination of brain revealed no cerebral infarcts but abundant Gb3 deposits in the walls of the cerebral vessels with neuronal deposits localized to the medulla oblongata. These results indicate an impairment in cerebral energy metabolism in the Fabry mice, but one not necessarily due to circulatory insufficiency.  相似文献   

12.
13.
The actions of glutamate (L-Glu), and glutamate receptor agonists on serum thyroid hormones (T4 and T3) and TSH levels have been studied in conscious and freely moving adult male rats. The excitatory amino acids (EAA), L-Glu, N-methyl-D-aspartate (NMDA), kainic acid (KA) and domoic acid (Dom) were administered intraperitoneally. Blood samples were collected through a cannula implanted in the rats jugular 0--60 min after injection. Thyroid hormone concentrations were measured by enzyme immunoassay, and thyrotrophin (TSH) concentrations were determined by radioimmunoassay. The results showed that L-Glu (20 and 25 mg/kg) and NMDA (25 mg/kg) increased serum thyroxine (T4), triiodothyronine (T3) and TSH concentrations. Serum thyroid hormone levels increased 30 min after treatment, while serum TSH levels increased 5 min after i.p. administration, in both cases serum levels remained elevated during one hour. Injection of the non-NMDA glutamatergic agonists KA (30 mg/kg) and Dom (1 mg/kg) produced an increase in serum thyroid hormones and TSH levels. These results suggest the importance of EAAs in the regulation of hormone secretion from the pituitary-thyroid axis, as well as the importance of the NMDA and non-NMDA receptors in this stimulatory effect.  相似文献   

14.
15.
Functional magnetic resonance spectroscopy (fMRS) allows the non-invasive measurement of metabolite concentrations in the human brain, including changes induced by variations in neurotransmission activity. However, the limited spatial and temporal resolution of fMRS does not allow specific measurements of metabolites in different cell types. Thus, the analysis of fMRS data in the context of compartmentalized metabolism requires the formulation and application of mathematical models. In the present study we utilized the mathematical model introduced by Simpson et al . (2007) to gain insights into compartmentalized metabolism in vivo from the fMRS data obtained in humans at ultra high magnetic field by Mangia et al . (2007a) . This model simulates brain glucose and lactate levels in a theoretical cortical slice. Using experimentally determined concentrations and catalytic activities for the respective transporter proteins, we calculate inflow and export of glucose and lactate in endothelium, astrocytes, and neurons. We then vary neuronal and astrocytic glucose and lactate utilization capacities until close correspondence is observed between in vivo and simulated glucose and lactate levels. The results of the simulations indicate that, when literature values of glucose transport capacity are utilized, the fMRS data are consistent with export of lactate by neurons and import of lactate by astrocytes, a mechanism that can be referred to as a neuron-to-astrocyte lactate shuttle. A shuttle of lactate from astrocytes to neurons could be simulated, but this required the astrocytic glucose transport capacity to be increased by 12-fold, and required that neurons not respond to activation with increased glycolysis, two conditions that are not supported by current literature.  相似文献   

16.
Lactate (20 mM) was studied for its effect on the intensity of [1-6-14C] glucose and [1,4-14C] succinate oxidation by the rat myocardial homogenates. It is established that lactate induces specific suppression of aerobic glucose oxidation. A moderate reduction of the succinate and lactate oxidation in their combined incubation is of a non-specific character.  相似文献   

17.
Lou M  Ding MP  Wen SQ  Xia Q 《中国应用生理学杂志》2006,22(2):190-194,i0004
目的:研究1型血管紧张素Ⅱ受体阻滞剂厄贝沙坦对局灶性脑缺血的神经保护作用及其可能的细胞机制。方法:在激光多谱勒脑血流监测仪对局部脑血流的监测下,应用线栓法建立大鼠大脑中动脉阻塞模型。药物经侧脑室内微泵持续灌注雄性正常血压大鼠,术后行神经功能评分,测定梗死体积,并运用免疫组化染色观察活性Caspase-3及其下游多聚ADP-核糖聚合酶(PARP)p85裂解片断的改变,结合TUNEL,比较各组细胞凋亡情况。结果:厄贝沙坦明显改善大鼠的神经功能评分,第7d的梗死体积较对照组减少了42%,用药后缺血区的TUNEL阳性细胞数.荧光标记的活性Caspase-3以及PARP p85裂解片断表达均明显减少。结论:厄贝沙坦可改善局灶脑缺血的神经功能,抑制细胞凋亡可能是其神经保护机制之一。  相似文献   

18.
19.
20.
The effects on rat striatal dopamine (DA) metabolism of systemic and local administration of CGP 28014, an inhibitor of catechol-O-methyl-transferase (COMT), were studied by in vivo microdialysis. CGP 28014 (30 mg/kg i.p.) significantly reduced the levels of homovanillic acid (HVA), but did not modify DA and 3,4-dihydroxyphenylacetic acid (DOPAC). The intrastriatal administration (via the microdialysis probe) of 5, 7.5, 10, and 20 mM of CGP 28014 elicited a concentration-dependent, several-fold increase in extracellular DA but did not alter the levels of HVA and DOPAC. Thus, the effects of CGP 28014 observed after i.p. injection (decrease in HVA levels) are different from those measured after intrastriatal administration (increase in DA release). Therefore, the inhibition of COMT is likely to be due to the action of a metabolite of CGP 28014 formed in the periphery and not in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号