首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the characteristics of cytosolic Ca2+ signals induced by muscarinic receptor activation of pancreatic acinar cells that reside within intact pancreatic tissue. We show that these cells exhibit global Ca2+ waves and local apical Ca2+ spikes. This is the first evidence for local Ca2+ signaling in undissociated pancreatic tissue. The mechanism of formation of localized Ca2+ signals was examined using a novel approach involving photolysis of caged carbachol inside a patch pipette attached to the basal surface of an acinar unit. This local activation of basal muscarinic receptors elicited local cytosolic Ca2+ spikes in the apical pole more than 15 microm away from the site of stimulation. In some experiments, local basal receptor activation elicited a Ca2+ wave that started in the apical pole and then spread toward the base. Currently, there are two competing hypotheses for preferential apical Ca2+ signaling. One invokes the need for structural proximity of the cholinergic receptors and the Ca2+ release channels in the apical pole, whereas the other postulates long distance communication between basal receptors and the channels. Our intrapipette uncaging experiments provide definitive evidence for long distance communication between basal muscarinic receptors and apical Ca2+ release channels.  相似文献   

2.
Hormones that act to release Ca2+ from intracellular stores initiate a signaling cascade that culminates in the production of inositol 1,4,5-trisphosphate (InsP3). The Ca2+ response mediated by InsP3 is not a sustained increase in the cytosolic Ca2+ concentration, but rather a series of periodic spikes that manifest as waves in larger cells. In vitro studies have determined that the key positive feedback parameter driving spikes and waves is a highly localized direct Ca(2+)-activation of InsP3-gated Ca2+ channels. Advances in fluorescent Ca2+ imaging have facilitated the resolution of individual positive feedback units. These studies have revealed that there are several modes of channel coupling underlying global Ca2+ signals; single channel openings or Ca2+ "blips," synchronized clusters of channels or Ca2+ "puffs," and cell wide calcium waves. It appears that the channel clusters that produce Ca2+ puffs are synchronized by the highly localized positive feedback that was predicted by the in vitro studies of channel regulation. Localization of InsP3-induced Ca2+ signals has been shown to be important for activation of several cellular processes including uni-directional salt flow and mitochondrial activation.  相似文献   

3.
The changes in Ca2+ homeostasis and phosphoinositide hydrolysis induced by EGF were studied in human epidermoid carcinoma A431 cells both when attached to a substratum and after detachment and suspension. The cytosolic Ca2+ concentration was measured by the conventional fluorimetric technique, using the specific probe, quin2, as well as by a new microscopic technique in which single cells are investigated after loading with another probe, fura-2. EGF applied in the complete, Ca2+-containing medium caused a rapid rise in the cytosolic Ca2+ concentration, that remained elevated for several minutes. In Ca2+-free, EGTA-containing medium, part of this response persisted, as revealed by quin2 results in suspended cells and microscopic results with fura-2. The lack of Ca2+ rise seen in attached cells loaded with quin2 and treated with EGF in Ca2+-free medium was probably the result of a Ca2+ buffer artifact. Concomitantly to the Ca2+ signal, EGF induced phosphoinositide hydrolysis, with stimulated accumulation of inositol 1,3,4,trisphosphate and -1,3,4,5-tetrakisphosphate. These results, as well as additional microscopic fura-2 results in Swiss 3T3 fibroblasts, demonstrate that the Ca2+ signal elicited by EGF is due to two components: redistribution from an intracellular store (possibly mediated by generation of inositol trisphosphate) and stimulated influx across the plasmalemma. This latter process was not detected in 3T3 cells treated with either PDGF or bombesin (growth factors that cause much greater phosphoinositide hydrolysis and Ca2+ redistribution responses than EGF). It is therefore suggested that the Ca2+ influx effect of EGF is under the control of a separate, as yet unidentified mechanism.  相似文献   

4.
Lipochito-oligosaccharides (Nod factors) produced by Rhizobium or Bradyrhizobium are the key signal molecules for eliciting nodulation in their corresponding host legumes. To elucidate the signal transduction events mediated by Nod factors, we investigated the effects of Nod factors on the cytosolic [Ca2+] of protoplasts prepared from roots and suspension-cultured cells of soybean (Glycine max and G. soja) using a fluorescent Ca2+ indicator, Fura-PE3. NodBj-V (C18:1, MeFuc), which is a major component of Nod factors produced by Bradyrhizobium japonicum, induces transient elevation of cytosolic [Ca2+] in the cells of soybean within a few minutes. This effect is specific to soybean cells and was not observed in the tobacco BY-2 cells. Furthermore, NodBj-V without MeFuc did not induce any cytosolic [Ca2+] elevation in soybean cells. Exclusion of Ca2+ from the medium, as well as pre-treatment of the cells with an external Ca2+ chelator or with a plasma membrane voltage-dependent Ca2+ channel inhibitor, suppressed the Nod factor-dependent cytosolic [Ca2+] elevation. These results indicate that transient Ca2+ influx from extracellular fluid is one of the earliest responses of soybean cells to NodBj-V (C18:1, MeFuc) in a host-specific manner.  相似文献   

5.
The Ca(2+)-sensitive dehydrogenases of the mitochondrial matrix are, so far, the only known effectors to allow Ca2+ signals to couple the activation of plasma membrane receptors to the stimulation of aerobic metabolism. In this study, we demonstrate a novel mechanism, based on Ca(2+)-sensitive metabolite carriers of the inner membrane. We expressed in Chinese hamster ovary cells aralar1 and citrin, aspartate/glutamate exchangers that have Ca(2+)-binding sites in their sequence, and measured mitochondrial Ca2+ and ATP levels as well as cytosolic Ca2+ concentration with targeted recombinant probes. The increase in mitochondrial ATP levels caused by cell stimulation with Ca(2+)-mobilizing agonists was markedly larger in cells expressing aralar and citrin (but not truncated mutants lacking the Ca(2+)-binding site) than in control cells. Conversely, the cytosolic and the mitochondrial Ca2+ signals were the same in control cells and cells expressing the different aralar1 and citrin variants, thus ruling out an indirect effect through the Ca(2+)-sensitive dehydrogenases. Together, these data show that the decoding of Ca2+ signals in mitochondria depends on the coordinate activity of mitochondrial enzymes and carriers, which may thus represent useful pharmacological targets in this process of major pathophysiological interest.  相似文献   

6.
Quintana A  Hoth M 《Cell calcium》2004,36(2):99-109
Fura-2 is the most common dye to measure cytosolic Ca2+ concentrations ([Ca2+]i). To facilitate simultaneous imaging of many cells while preserving their cytosolic environment, fura-2 is often loaded into the cytosol in its membrane-permeant ester form. It has been reported that small amounts of fura-2 accumulate in intracellular compartments, an effect that is usually neglected. We show that either focal or non-focal stimulation methods induce large [Ca2+]i gradients in T-lymphocytes during both, Ca2+ release and Ca2+ influx across the plasma membrane. Interfering with mitochondrial Ca2+ homeostasis and by labeling mitochondria with MitoTracker, we demonstrate that [Ca2+]i gradients co-localize with mitochondria and are attributable to mitochondrial fura-2 sequestration. Gradients could not be avoided by different loading protocols, compromising measurements of "real" [Ca2+]i gradients following T-cell stimulation. They were observed in human blood and lamina propria lymphocytes, Jurkat T-cells, mast cells, but not to the same extent in HEK-293 cells. Finally, we show that T-lymphocytes can be efficiently loaded with the membrane-impermeant fura-2 salt by electroporation and by osmotic lysis of pinocytic vesicles, which result in the loss of [Ca2+]i gradients. These methods are therefore suitable to study localized Ca2+ signals in large populations of T-cells while preserving their cytosolic integrity.  相似文献   

7.
We have used digital fluorescence imaging techniques to explore the interplay between mitochondrial Ca2+ uptake and physiological Ca2+ signaling in rat cortical astrocytes. A rise in cytosolic Ca2+ ([Ca2+]cyt), resulting from mobilization of ER Ca2+ stores was followed by a rise in mitochondrial Ca2+ ([Ca2+]m, monitored using rhod-2). Whereas [Ca2+]cyt recovered within approximately 1 min, the time to recovery for [Ca2+]m was approximately 30 min. Dissipating the mitochondrial membrane potential (Deltapsim, using the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxy-phenyl-hydrazone [FCCP] with oligomycin) prevented mitochondrial Ca2+ uptake and slowed the rate of decay of [Ca2+]cyt transients, suggesting that mitochondrial Ca2+ uptake plays a significant role in the clearance of physiological [Ca2+]cyt loads in astrocytes. Ca2+ signals in these cells initiated either by receptor-mediated ER Ca2+ release or mechanical stimulation often consisted of propagating waves (measured using fluo-3). In response to either stimulus, the wave traveled at a mean speed of 22.9 +/- 11.2 micrometer/s (n = 262). This was followed by a wave of mitochondrial depolarization (measured using tetramethylrhodamine ethyl ester [TMRE]), consistent with Ca2+ uptake into mitochondria as the Ca2+ wave traveled across the cell. Collapse of Deltapsim to prevent mitochondrial Ca2+ uptake significantly increased the rate of propagation of the Ca2+ waves by 50%. Taken together, these data suggest that cytosolic Ca2+ buffering by mitochondria provides a potent mechanism to regulate the localized spread of astrocytic Ca2+ signals.  相似文献   

8.
Polyunsaturated free fatty acids (PUFAs) of both w-3 and w-6 series, induce a rapid increase of cytosolic free Ca2+ concentration ([Ca2+]i) in a leukemic T-cell line (JURKAT), measured by the fluorescent indicator fura-2. The early increase in [Ca2+]i was transient, falling to a sustained level which returned to base line after 10-15 min. In Ca2+-free medium, PUFAs still caused an early increase in [Ca2+]i but rapidly returned to basal. Depletion of endoplasmic reticular Ca2+ pool by addition of OKT3 (antibodies to CD3 of the T3-antigen receptor complex) to JURKAT cells (in Ca2+-free medium) abolished the PUFAs-mediated [Ca2+]i increase and vice versa. By using saponin-permeabilized JURKAT cells, the intracellular free Ca2+ released by PUFAs was found to be the non-mitochondrial, ATP-dependent sequestered Ca2+ pool which is sensitive to inositol 1,4,5-trisphosphate. However, PUFAs do not induce any apparent increase in inositol phosphates in JURKAT cells. No Ca2+ influx was detected in JURKAT cells when stimulated with PUFAs. A correlation was observed between both the carbon chain length and the number of double bonds with the ability to mobilize cytosolic free [Ca2+]i in the w-3 PUFAs. These results demonstrate that PUFAs stimulate the release of Ca2+ from the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool in the endoplasmic reticulum of JURKAT cells via a mechanism independent of inositol lipid hydrolysis.  相似文献   

9.
Mitochondrial calcium plays a crucial role in mitochondrial metabolism, cell calcium handling, and cell death. However, some mechanisms concerning mitochondrial calcium regulation are still unknown, especially how mitochondrial calcium couples with cytosolic calcium. In this work, we constructed a novel mitochondrial calcium fluorescent indicator (mito-GCaMP2) by genetic manipulation. Mito-GCaMP2 was imported into mitochondria with high efficiency and the fluorescent signals co-localized with that of tetramethyl rhodamine methyl ester, a mitochondrial membrane potential indicator. The mitochondrial inhibitors specifically decreased the signals of mito-GCaMP2. The apparent K(d) of mito-GCaMP2 was 195.0 nmol/L at pH 8.0 in adult rat cardiomyocytes. Furthermore, we observed that mito-GCaMP2 preferred the alkaline pH surrounding of mitochondria. In HeLa cells, we found that mitochondrial calcium ([Ca(2+)](mito)) responded to the changes of cytosolic calcium ([Ca(2+)](cyto)) induced by histamine or thapasigargin. Moreover, external Ca(2+) (100 μmol/L) directly induced an increase of [Ca(2+)](mito) in permeabilized HeLa cells. However, in rat cardiomyocytes [Ca(2+)](mito) did not respond to cytosolic calcium transients stimulated by electric pacing or caffeine. In permeabilized cardiomyocytes, 600 nmol/L free Ca(2+) repeatedly increased the fluorescent signals of mito-GCaMP2, which excluded the possibility that mito-GCaMP2 lost its function in cardiomyocytes mitochondria. These results showed that the response of mitochondrial calcium is diverse in different cell lineages and suggested that mitochondria in cardiomyocytes may have a special defense mechanism to control calcium flux.  相似文献   

10.
Luminal Ca2+ controls the sensitivity of the intracellular Ca2+ stores to inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Ins(1,4,5)P3-induced Ca2+ release is also controlled by cytosolic Ca2+; low concentrations of Ca2+ stimulate the release. The aim of this work was to investigate whether luminal Ca2+ would affect the stimulation of the Ins(1,4,5)P3 receptor by cytosolic Ca2+ in permeabilized A7r5 smooth muscle cells. We also report that the Ins(1,4,5)P3 receptor in A7r5 cells is activated by low concentrations of cytosolic Ca2+. Cytoplasmic Ca2+ increases the Ins(1,4,5)P3 sensitivity without affecting the cooperativity. The increase in Ins(1,4,5)P3 sensitivity becomes relatively more pronounced when the Ca2+ content of the stores decreases. This modulatory effect of luminal Ca2+ on the responsiveness to cytosolic Ca2+ is an intrinsic property of the Ins(1,4,5)P3 receptor.  相似文献   

11.
12.
In pancreatic acinar cells, low, threshold concentrations of acetylcholine (ACh) or cholecystokinin (CCK) induce repetitive local cytosolic Ca2+ spikes in the apical pole, while higher concentrations elicit global signals. We have investigated the process that transforms local Ca2+ spikes to global Ca2+ transients, focusing on the interactions of multiple intracellular messengers. ACh-elicited local Ca2+ spikes were transformed into a global sustained Ca2+ response by cyclic ADP-ribose (cADPR) or nicotinic acid adenine dinucleotide phosphate (NAADP), whereas inositol 1,4,5-trisphosphate (IP3) had a much weaker effect. In contrast, the response elicited by a low CCK concentration was strongly potentiated by IP3, whereas cADPR and NAADP had little effect. Experiments with messenger mixtures revealed a local interaction between IP3 and NAADP and a stronger global potentiating interaction between cADPR and NAADP. NAADP strongly amplified the local Ca2+ release evoked by a cADPR/IP3 mixture eliciting a vigorous global Ca2+ response. Different combinations of Ca2+ releasing messengers can shape the spatio-temporal patterns of cytosolic Ca2+ signals. NAADP and cADPR are emerging as key messengers in the globalization of Ca2+ signals.  相似文献   

13.
Cultured Friend cells can be induced by dimethyl sulfoxide (Me2SO) and several other agents to mature along the erythroid pathway. Evidence has been presented that an increase in Ca2+ influx is an early and necessary prelude to the commitment to maturation by these cells (Levenson, R., Housman, D., and Cantley, L. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5948-5952). The simplest hypothesis supporting all the available data is that Me2SO and other inducers elevate the cytosolic Ca2+ concentration. We have now measured cytosolic Ca2+ using the fluorescent indicator quin-2, and find, contrary to expectation, a small decrease upon treatment of cells with Me2SO. Cytosolic Ca2+ was increased by raising the Ca2+ in the medium, but was not dramatically altered by addition of ouabain or monensin or by incubation in Na+-free medium. Measurement of total cell Ca2+ by a triple-labeling technique using 3H2O and 125I-albumin to determine cell water and extracellular space, respectively, revealed no significant change upon treatment with Me2SO for up to 40 h. A decrease in the initial rate of 45Ca2+ influx was observed in Me2SO-treated cells, when measured at 4 degrees C. These data do not support the hypothesis that an increase in cell Ca2+ is necessary for the induction of Friend cell differentiation or that Na+/Ca2+ exchange is a significant regulator of cytosolic Ca2+ in Friend cells.  相似文献   

14.
The Xenopus oocyte has been a favored model system in which to study spatio-temporal mechanisms of intracellular Ca2+ dynamics, in large part because this giant cell facilitates intracellular injections of Ca2+ indicator dyes, buffers and caged compounds. However, the recent commercial availability of membrane-permeant ester forms of caged IP3 (ci-IP3) and EGTA, now allows for facile loading of these compounds into smaller mammalian cells, permitting control of [IP3]i and cytosolic Ca2+ buffering. Here, we establish the human neuroblastoma SH-SY5Y cell line as an advantageous experimental system for imaging Ca2+ signaling, and characterize IP3-mediated Ca2+ signaling mechanisms in these cells. Flash photo-release of increasing amounts of i-IP3 evokes Ca2+ puffs that transition to waves, but intracellular loading of EGTA decouples release sites, allowing discrete puffs to be studied over a wide range of [IP3]. Puff activity persists for minutes following a single photo-release, pointing to a slow rate of i-IP3 turnover in these cells and suggesting that repetitive Ca2+ spikes with periods of 20-30s are not driven by oscillations in [IP3]. Puff amplitudes are independent of [IP3], whereas their frequencies increase with increasing photo-release. Puff sites in SH-SY5Y cells are not preferentially localized near the nucleus, but instead are concentrated close to the plasma membrane where they can be visualized by total internal reflection microscopy, offering the potential for unprecedented spatio-temporal resolution of Ca2+ puff kinetics.  相似文献   

15.
Using single-cell ratio imaging of Fura-2-loaded neutrophils, we demonstrate that the heterogeneity and asynchrony of the oxidase response originates from variability in the timing and magnitude of the cytosolic free Ca2+ signal. The Ca2+ signals from individual cells could be classified into four types: (a) type 1, a transient rise in Ca2+ occurring within 6 s; (b) type 2, an oscillating cytosolic free Ca2+; (c) type 3, a latent Ca2+ transient significantly delayed (21-56 s); and (d) type 4, no significant Ca2+ rise. These response types accounted for approximately 41%, 15%, 26% and 18% of the population respectively for stimulation with 1 microM f-met-leu-phe peptide (n = 27) and 52.5%, 15%, 11.5% and 21% respectively for 0.1 microM f-met-leu-phe peptide (n = 52). The oxidase in neutrophils in which the cytosolic free Ca2+ concentration rose to greater than 250 nM always became activated. In the presence of extracellular Ca2+, cytosolic Ca2+ rose uniformly throughout the cell, whereas in the absence of extracellular Ca2+, a localised Ca2+ 'cloud' was observed in approximately 30% of cells. A localised activation of the oxidase accompanied the presence of the Ca2+ 'cloud' when the 250 nM Ca2+ threshold was exceeded. The data presented here therefore demonstrate a tight coupling in individual neutrophils between an elevation in cytosolic free Ca2+ above a threshold of 250 nM and activation of the oxidase.  相似文献   

16.
The cytosolic Ca2+ activity of mouse pancreatic beta-cells was studied with the intracellular fluorescent indicator quin2 . When the extracellular Ca2+ concentration was 1.20 mM, the basal cytosolic Ca2+ activity was 162 +/- 9 nM. Stimulation with 20 mM glucose increased this Ca2+ activity by 40%. In the presence of only 0.20 mM Ca2+ or after the addition of the voltage-dependent Ca2+ -channel blocker D-600, glucose had an opposite and more prompt effect in reducing cytosolic Ca2+ by about 15%. It is concluded that an early result of glucose exposure is a lowering of the cytosolic Ca2+ activity and that this effect tends to be masked by a subsequent increase of the Ca2+ activity due to influx of Ca2+ through the voltage-dependent Ca2+ channels.  相似文献   

17.
Extracellular agonists mobilize Ca2+ from SERCA-comprising intracellular Ca2+ stores located in both the Golgi apparatus and the endoplasmic reticulum. Ca2+ release from both these compartments was studied in HeLa cells stably expressing the luminescent Ca2+ indicator aequorin specifically targeted to these compartments. Changes in lumenal [Ca2+] as detected by the aequorin measurements were correlated with parallel changes in total Ca2+ content of the stores. The latencies and initial rates of Ca2+ release from the Golgi apparatus and the endoplasmic reticulum were quite similar. However, maximal Ca2+ release measured with Golgi-targeted aequorin terminated faster than that from the endoplasmic reticulum. The rate and extent of Ca2+ depletion from both compartments correlated well with the peak amplitude of the cytosolic [Ca2+] rise. Time-course experiments further revealed that the peak of the cytosolic Ca2+ response occurred before the lumenal [Ca2+] reached its lowest level. We conclude that both the Golgi apparatus and the endoplasmic reticulum contribute to the rise in cytosolic [Ca2+] upon agonist stimulation, but the kinetics of the Ca2+ release are different.  相似文献   

18.
A rise in the cytosolic free Ca2+ concentration due to both mobilization of Ca2+ from internal stores and influx of extracellular Ca2+ across the plasma membrane through 'second messenger-operated Ca2+ channels' is one of the first transmembrane signals detected following activation of CD2 or CD3 receptors on T-cells. In this study, we have further elucidated the regulation of these channels in the human T-leukemic cell line, JURKAT. Stimulation with either OKT3 or PHA induced a prompt influx of Ca2+ as assessed by MN2+ quenching of intracellular fura-2 fluorescence. When cytosolic free Ca2+ transient was partially buffered by loading the cells with BAPTA, neither agonist could induce Ca2+ entry into the cells as depicted by the lack of quenching of the fluorescence signal by Mn2+. This is in good agreement with our previous data on agonist-induced 45Ca2+ influx demonstrating that a rise in cytosolic free Ca2+ due to agonist-induced mobilization of Ca2+ from intracellular stores, could, directly or indirectly via the inositol cycle, initiate Ca2+ influx in these cells. Further support of this idea comes from the data demonstrating that agonist-induced mobilization of Ca2+ precedes the influx of Ca2+ across the plasma membrane. The present findings show that agonist-stimulation significantly increased the levels of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 after only 5 s, indicating that one or both of these substances could play a role in the regulation of Ca2+ influx. However, when agonist-induced Mn2+ influx was totally abolished, by partially buffering the cytosolic free Ca2+ rise, the formation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 was not affected. Consequently, the dependence of an initial rise in cytosolic free Ca2+ for the subsequent regulation of Ca2+ influx across the plasma membrane, can be dissociated from the formation of both Ins(1,4,5)P3 and Ins(1,3,4,5)P4.  相似文献   

19.
We previously showed that zooxanthellatoxin-B, isolated from dinoflagellate, caused a sustained contraction of the aorta in an external Ca2+-dependent manner. To clarify the role of Ca2+ in this action, we examined the effects of zooxanthellatoxin-B as well as a depolarizing stimulus (60 mM KCl), using the simultaneous recording for cytosolic Ca2+ level (fura-2) and developed tension in the rabbit aorta. KCl (60 mM) elicited a rapid cytosolic Ca2+ elevation followed by a pronounced contraction, and time required for half-maximum contraction was 2 min. Zooxanthellatoxin-B caused an increase in cytosolic Ca2+ followed by a gradual contraction, with a time for half-maximum contraction of 5-10 min in a concentration-dependent manner. We found a strong correlation between Ca2+ elevation and the contraction in zooxanthellatoxin-B action. In a Ca2+-free solution, zooxanthellatoxin-B caused neither the contraction nor the increase in cytosolic Ca2+. Furthermore, both pre- and post-treatment with verapamil, a voltage-operated Ca2+-channel blocker, partially suppressed both an increase in cytosolic Ca2+ and the contraction by zooxanthellatoxin-B. Zooxanthellatoxin-B-induced contraction was also inhibited by other voltage-operated Ca2+-channel blockers: nifedipine or diltiazem. These results suggest that zooxanthellatoxin-B-elicited contraction is caused by a Ca2+ influx into the smooth muscle cells, partially via voltage-operated Ca2+ channels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号