首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The removal of N-terminal translation initiator Met by methionine aminopeptidase (MetAP) is often crucial for the function and stability of proteins. On the basis of crystal structure and sequence alignment of MetAPs, we have engineered Escherichia coli MetAP by the mutation of three residues, Y168G, M206T, Q233G, in the substrate-binding pocket. Our engineered MetAPs are able to remove the Met from bulky or acidic penultimate residues, such as Met, His, Asp, Asn, Glu, Gln, Leu, Ile, Tyr, and Trp, as well as from small residues. The penultimate residue, the second residue after Met, was further removed if the antepenultimate residue, the third residue after Met, was small. By the coexpression of engineered MetAP in E. coli through the same or a separate vector, we have successfully produced recombinant proteins possessing an innate N terminus, such as onconase, an antitumor ribonuclease from the frog Rana pipiens. The N-terminal pyroglutamate of recombinant onconase is critical for its structural integrity, catalytic activity, and cyto-toxicity. On the basis of N-terminal sequence information in the protein database, 85%-90% of recombinant proteins should be produced in authentic form by our engineered MetAPs.  相似文献   

2.
In order to gain insight into the mechanistic role of a flexible exterior loop near the active site, made up of Y62, H63, G64, and Y65, that has been proposed to play an important role in substrate binding and recognition in the methionyl aminopeptidase from Escherichia coli (EcMetAP-I), the H63A enzyme was prepared. Mutation of H63 to alanine does not affect the ability of the enzyme to bind divalent metal ions. The specific activity of H63A EcMetAP-I was determined using four different substrates of varying lengths, namely, l-Met-p-NA, MAS, MGMM and MSSHRWDW. For the smallest/shortest substrate (l-Met-p-NA) the specific activity decreased nearly seven fold but as the peptide length increased, the specific activity also increased and became comparable to WT EcMetAP-I. This decrease in specific activity is primarily due to a decrease in the observed k(cat) values, which decreases nearly sixty-fold for l-Met-p-NA while only a four-fold decrease is observed for the tri- and tetra-peptide substrates. Interestingly, no change in k(cat) was observed when the octa-peptide MSSHRWDW was used as a substrate. These data suggest that H63 affects the hydrolysis of small peptide substrates whereas large peptides can overcome the observed loss in binding energy, as predicted from K(m) values, by additional hydrophilic and hydrophobic interactions.  相似文献   

3.
4.
Aminopeptidase N from Escherichia coli is a broad specificity zinc exopeptidase belonging to aminopeptidase clan MA, family M1. The structures of the ligand-free form and the enzyme-bestatin complex were determined at 1.5- and 1.6-A resolution, respectively. The enzyme is composed of four domains: an N-terminal beta-domain (Met(1)-Asp(193)), a catalytic domain (Phe(194)-Gly(444)), a middle beta-domain (Thr(445)-Trp(546)), and a C-terminal alpha-domain (Ser(547)-Ala(870)). The structure of the catalytic domain exhibits similarity to thermolysin, and a metal-binding motif (HEXXHX(18)E) is found in the domain. The zinc ion is coordinated by His(297), His(301), Glu(320), and a water molecule. The groove on the catalytic domain that contains the active site is covered by the C-terminal alpha-domain, and a large cavity is formed inside the protein. However, there exists a small hole at the center of the C-terminal alpha-domain. The N terminus of bestatin is recognized by Glu(121) and Glu(264), which are located in the N-terminal and catalytic domains, respectively. Glu(298) and Tyr(381), located near the zinc ion, are considered to be involved in peptide cleavage. A difference revealed between the ligand-free form and the enzyme-bestatin complex indicated that Met(260) functions as a cushion to accept substrates with different N-terminal residue sizes, resulting in the broad substrate specificity of this enzyme.  相似文献   

5.
D'souza VM  Bennett B  Copik AJ  Holz RC 《Biochemistry》2000,39(13):3817-3826
The metal-binding properties of the methionyl aminopeptidase from Escherichia coli (MetAP) were investigated. Measurements of catalytic activity as a function of added Co(II) and Fe(II) revealed that maximal enzymatic activity is observed after the addition of only 1 equiv of divalent metal ion. Based on these studies, metal binding constants for the first metal binding event were found to be 0.3 +/- 0.2 microM and 0.2 +/- 0.2 microM for Co(II)- and Fe(II)-substituted MetAP, respectively. Binding of excess metal ions (>50 equiv) resulted in the loss of approximately 50% of the catalytic activity. Electronic absorption spectral titration of a 1 mM sample of MetAP with Co(II) provided a binding constant of 2.5 +/- 0.5 mM for the second metal binding site. Furthermore, the electronic absorption spectra of Co(II)-loaded MetAP indicated that both metal ions reside in a pentacoordinate geometry. Consistent with the absorption data, electron paramagnetic resonance (EPR) spectra of [CoCo(MetAP)] also indicated that the Co(II) geometries are not highly constrained, suggesting that each Co(II) ion in MetAP resides in a pentacoordinate geometry. EPR studies on [CoCo(MetAP)] also revealed that at pH 7.5 there is no significant spin-coupling between the two Co(II) ions, though a small proportion ( approximately 5%) of the sample exhibited detectable spin-spin interactions at pH values > 9.6. EPR studies on [Fe(III)_(MetAP)] and [Fe(III)Fe(III)(MetAP)] also suggested no spin-coupling between the two metal ions. (1)H nuclear magnetic resonance (NMR) spectra of [Co(II)_(MetAP)] in both H(2)O and D(2)O buffer indicated that the first metal binding site contains the only active-site histidine residue, His171. Mechanistic implications of the observed binding properties of divalent metal ions to the MetAP from E. coli are discussed.  相似文献   

6.
C L Hermsdorf 《Biochemistry》1978,17(16):3370-3376
A tripeptidase, TP, from the ribosome-free fraction of Escherichia coli AJ005, a peptidase-deficient mutant of strain K-12, has been obtained using gel electrophoresis and chromatography on DEAE-Sephadex A-50, hydroxylapatite, and Sephadex G-200. Characterization studies on tripeptidase TP, freed of other detectable peptidases, indicate that this enzyme is capable of cleaving an amino-terminal leucine, lysine, methionine, or phenylalanine residue from certain tripeptides. Only one band of activity toward several tripeptides (and no activity toward dipeptides) was detected following gel electrophoresis of this preparation. Tripeptidase TP, the only strain AJ005 peptidase known to attack trilysine, was inactive toward all dipeptides, peptide amides, substituted peptides, esters, and tetrapeptides tested as substrates. Trilysine cleavage is optimal at about pH 8.5, as determined in Tris, borate, or phosphate buffers. Tripeptidase TP activity tested under a number of conditions was not inhibited by soybean trypsin inhibitor (3 mg/mL), phenylmethanesulfonyl fluoride (25 micrometer), or iodoacetate (9 mM). p-Mercuribenzoate (10 micrometer), divalent copper, cobalt, calcium (2.5 mM), zinc (25 micrometer), and mercury (10 micrometer) are inhibitory. Based on Sephadex G-200 chromatography tripeptidase TP has a particle weight of approximately 80 000 daltons. An apparent Km of 5.3 mM was determined for methionylglycylglycine cleavage.  相似文献   

7.
Precursors of two secreted periplasmic proteins in Escherichia coli, arabinose-binding protein and maltose-binding protein, were synthesized in vitro on membrane-bound polysomes. Addition of Triton X-100 to the system resulted in processing of the precursors to mature forms.  相似文献   

8.
9.
Divalent metal ions play a critical role in the removal of N-terminal methionine from nascent proteins by methionine aminopeptidase (MetAP). Being an essential enzyme for bacteria, MetAP is an appealing target for the development of novel antibacterial drugs. Although purified enzyme can be activated by several divalent metal ions, the exact metal ion used by MetAP in cells is unknown. Many MetAP inhibitors are highly potent on purified enzyme, but they fail to show significant inhibition of bacterial growth. One possibility for the failure is a disparity of the metal used in activation of purified MetAP and the metal actually used by MetAP inside bacterial cells. Therefore, the challenge is to elucidate the physiologically relevant metal for MetAP and discover MetAP inhibitors that can effectively inhibit cellular MetAP. We have recently discovered MetAP inhibitors with selectivity toward different metalloforms of Escherichia coli MetAP, and with these unique inhibitors, we characterized their inhibition of MetAP enzyme activity in a cellular environment. We observed that only inhibitors that are selective for the Fe(II)-form of MetAP were potent in this assay. Further, we found that only these Fe(II)-form selective inhibitors showed significant inhibition of growth of five E. coli strains and two Bacillus strains. We confirmed their cellular target as MetAP by analysis of N-terminal processed and unprocessed recombinant glutathione S-transferase proteins. Therefore, we conclude that Fe(II) is the likely metal used by MetAP in E. coli and other bacterial cells.  相似文献   

10.
To gain insight into the role of the strictly conserved histidine residue, H79, in the reaction mechanism of the methionyl aminopeptidase from Escherichia coli ( EcMetAP-I), the H79A mutated enzyme was prepared. Co(II)-loaded H79A exhibits an overall >7000-fold decrease in specific activity. The almost complete loss of activity is primarily due to a >6000-fold decrease in k cat. Interestingly, the K m value obtained for Co(II)-loaded H79A was approximately half the value observed for wild-type (WT) EcMetAP-I. Consequently, k cat/ K m values decreased only 3000-fold. On the other hand, the observed specific activity of Mn(II)-loaded H79A EcMetAP-I decreased by approximately 2.6-fold while k cat decreased by approximately 3.5-fold. The observed K m value for Mn(II)-loaded H79A EcMetAP-I was approximately 1.4-fold larger than that observed for WT EcMetAP-I, resulting in a k cat/ K m value that is lower by approximately 3.4-fold. Metal binding, UV-vis, and EPR data indicate that the active site is unperturbed by mutation of H79, as suggested by X-ray crystallographic data. Kinetic isotope data indicate that H79 does not transfer a proton to the newly forming amine since a single proton is transferred in the transition state for both the WT and H79A EcMetAP-I enzymes. Therefore, H79 functions to position the substrate by hydrogen bonding to either the amine group of the peptide linkage or a backbone carbonyl group. Together, these data provide new insight into the catalytic mechanism of EcMetAP-I.  相似文献   

11.
In an effort to differentiate between alternative mechanistic schemes that have been postulated for Escherichia coli methionine aminopeptidase (eMetAP), the modes of binding of a series of products and phosphorus-based transition-state analogues were determined by X-ray crystallography. Methionine phosphonate, norleucine phosphonate, and methionine phosphinate bind with the N-terminal group interacting with Co2 and with the respective phosphorus oxygens binding between the metals, interacting in a bifurcated manner with Co1 and His178 and hydrogen bonded to His79. In contrast, the reaction product methionine and its analogue trifluoromethionine lose interactions with Co1 and His79. The interactions with the transition-state analogues are, in general, very similar to those seen previously for the complex of the enzyme with a bestatin-based inhibitor. The mode of interaction of His79 is, however, different. In the case of the bestatin-based inhibitor, His79 interacts with atoms in the peptide bond between the P(1)' and P(2)' residues. In the present transition-state analogues, however, the histidine moves 1.2 A toward the metal center and hydrogen bonds with the atom that corresponds to the nitrogen of the scissile peptide bond (i.e., between the P(1) and P(1)' residues). These observations tend to support one of the mechanistic schemes for eMetAP considered before, although with a revision in the role played by His79. The results also suggest parallels between the mechanism of action of methionine aminopeptidase and other "pita-bread" enzymes including aminopeptidase P and creatinase.  相似文献   

12.
13.
14.
A plasmid pAPP1 with a 4 kbp insert at the PstI site of pBR322, encoding aminopeptidase P gene of Escherichia coli HB101 (Yoshimoto et al. (1988) J. Biochem. 104, 730-734), was subcloned into pUC18 and pUC19. The transformant of E. coli JM83 harboring pAPP4 with a 1.9 kbp fragment showed more than 50-fold higher enzyme activity than that of the host, after cultivation at 37 degrees C for 40 h in LB-medium containing ampicillin. When the gene DNA was inserted reversely in pAPP4, the enzyme productivity decreased markedly. The whole nucleotide sequence of the inserted fragment of plasmid pAPP4 was clarified by the dideoxy chain-terminating method. Within this sequence, the mature enzyme protein-encoding sequence was found to start just after an ATG codon, as judged by comparison with amino-terminal protein sequencing. Eleven bases upstream from the proposed initiation codon was an AGGAGA sequence which seemed to be a ribosome binding site. Thirty-four bases upstream from the proposed start codon was the 6-base sequence TACAAA, the so-called -10 region or Pribnow box. Further, the 6-base sequence TTTACT around 77 bases upstream from the start codon was deduced to be a putative -35 region consensus sequence. The inverted repeat at 1334 was tentatively assumed to be a terminator. The molecular weight of the enzyme was estimated to be 49,650 from the nucleotide sequence. The purified enzyme contained 0.2 gram atom of zinc per subunit. The enzyme activity was inhibited by EDTA and activated 5-fold by Mn2+.  相似文献   

15.
A methionine aminopeptidase (MAP) found in rat liver microsomes behaves as membrane-bound enzyme. Triton-solubilized MAP when chromatographed on DEAE-cellulose columns was separated from other microsomal arylamidases. The enzyme hydrolyzes N-terminal methionine from methionyl-lysyl-bradykinin (Met-Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) being then characterized as a typical aminopeptidase. It also shows preferential arylamidase activity upon Met-2-naphthylamide. MAP was activated by 2-mercaptoethanol and inhibited by p-hydroxymercuribenzoate. Contrarily to other well characterized aminopeptidases, MAP was not affected by EDTA, puromycin or bestatin. Altogether these data suggest that MAP is a unique microsomal enzyme distinct from other previously described aminopeptidases. It could be involved in the removal of methionine from nascent peptides during protein synthesis.  相似文献   

16.
We localized the methionine aminopeptidase (map) gene on the Escherichia coli chromosome next to the rpsB gene at min 4. Genetically modified strains with the chromosomal map gene under lac promoter control grew only in the presence of the lac operon inducer isopropyl-beta-thiogalactoside. Thus, methionine aminopeptidase is essential for cell growth.  相似文献   

17.
Allen GS  Zavialov A  Gursky R  Ehrenberg M  Frank J 《Cell》2005,121(5):703-712
The 70S ribosome and its complement of factors required for initiation of translation in E. coli were purified separately and reassembled in vitro with GDPNP, producing a stable initiation complex (IC) stalled after 70S assembly. We have obtained a cryo-EM reconstruction of the IC showing IF2*GDPNP at the intersubunit cleft of the 70S ribosome. IF2*GDPNP contacts the 30S and 50S subunits as well as fMet-tRNA(fMet). IF2 here adopts a conformation radically different from that seen in the recent crystal structure of IF2. The C-terminal domain of IF2 binds to the single-stranded portion of fMet-tRNA(fMet), thereby forcing the tRNA into a novel orientation at the P site. The GTP binding domain of IF2 binds to the GTPase-associated center of the 50S subunit in a manner similar to EF-G and EF-Tu. Additionally, we present evidence for the localization of IF1, IF3, one C-terminal domain of L7/L12, and the N-terminal domain of IF2 in the initiation complex.  相似文献   

18.
19.
L-Methionine-dl-sulfoxide can support the growth of an Escherichia coli methionine auxotroph, suggesting the presence of an enzyme(s) capable of reducing the sulfoxide to methionine. This was verified by showing that a cell-free extract of E. coli catalyzes the conversion of methionine sulfoxide to methionine. This reaction required reduced nicotinamide adenine dinucleotide phosphate and a generating system for this compound. The specific activity of the enzyme increased during logarithmic growth and was maximal when the culture attained a density of about 10(9) cells per ml.  相似文献   

20.
M Foglino  S Gharbi  A Lazdunski 《Gene》1986,49(3):303-309
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号