首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several empirical studies suggest that sexually selected characters, including bird plumage, may evolve rapidly and show high levels of convergence and other forms of homoplasy. However, the processes that might generate such convergence have not been explored theoretically. Furthermore, no studies have rigorously addressed this issue using a robust phylogeny and a large number of signal characters. We scored the appearance of 44 adult male plumage characters that varied across New World orioles (Icterus). We mapped the plumage characters onto a molecular phylogeny based on two mitochondrial genes. Reconstructing the evolution of these characters revealed evidence of convergence or reversal in 42 of the 44 plumage characters. No plumage character states are restricted to any groups of species higher than superspecies in the oriole phylogeny. The high frequency of convergence and reversal is reflected in the low overall retention index (RI = 0.66) and the low overall consistency index (CI = 0.28). We found similar results when we mapped plumage changes onto a total evidence tree. Our findings reveal that plumage patterns and colors are highly labile between species of orioles, but highly conserved within the oriole genus. Furthermore, there are at least two overall plumage types that have convergently evolved repeatedly in the three oriole clades. This overall convergence leads to significant conflict between the molecular and plumage data. It is not clear what evolutionary processes lead to this homoplasy in individual characters or convergence in overall pattern. However, evolutionary constraints such as developmental limitations and genetic correlations between characters are likely to play a role. Our results are consistent with the belief that avian plumage and other sexually selected characters may evolve rapidly and may exhibit high homoplasy. The overall convergence in oriole plumage patterns is an interesting evolutionary phenomenon, but it cautions against heavy reliance on plumage characters for constructing phylogenies.  相似文献   

2.
Avian plumage colors are frequently used in studies of sexual selection, yet surprisingly little is known about how these traits evolve under different mating systems. We compared historical rates of divergence in male color patterns among the oropendolas and caciques (genera Cacicus , Gymnostinops, Ocyalus , and Psarocolius ), a group with both polygynous and monogamous representatives. Reconstructing the evolution of individual color patches on a molecular phylogeny showed that overall color patterns have changed much more rapidly in oropendolas, which comprise two groups that evolved polygyny independently, than in caciques, which are predominantly monogamous. None of these taxa are notably sexually dichromatic, however, suggesting that higher rates of plumage evolution occurred in both sexes rather than just males. Despite high rates of change, color patterns show few examples of convergence among taxa, similar to the lack of homoplasy in male song among oropendolas but in a stark contrast to the repeated convergence in both plumage and song patterns found in a closely related, monogamous clade, the New World orioles ( Icterus ). Our results support previous suggestions that display traits evolve more rapidly and with less homoplasy in polygynous mating systems, and we provide surprising evidence that these patterns may occur in both sexes.  相似文献   

3.
Reconstructing the evolution of complex bird song in the oropendolas   总被引:1,自引:0,他引:1  
The elaborate songs of songbirds are frequent models for investigating the evolution of animal signals. However, few previous studies have attempted to reconstruct historical changes in song evolution using a phylogenetic comparative approach. In particular, no comparative studies of bird song have used a large number of vocal characters and a well-supported, independently derived phylogeny. We identified 32 features in the complex vocal displays of male oropendolas (genera Psarocolius, Gymnostinops, and Ocyalus) that are relatively invariant within taxa and mapped these characters onto a robust molecular phylogeny of the group. Our analysis revealed that many aspects of oropendola song are surprisingly evolutionarily conservative and thus are potentially useful characters for reconstructing historical patterns. Of the characters that varied among taxa, nearly two thirds (19 of 29) showed no evidence of evolutionary convergence or reversal when mapped onto the tree, which was reflected in a high overall consistency index (CI = 0.78) and retention index (RI = 0.88). Some reconstructed patterns provided evidence of selection on these signals. For example, rapid divergence of the songs of the Montezuma oropendola, Gymnostinops montezuma, from those of closely related taxa suggests the recent influence of strong sexual selection. In general, our results provide insights into the mode of vocal evolution in songbirds and suggest that complex vocalizations can provide information about phylogeny. Based on this evidence, we use song characters to estimate the phylogenetic affinities of three oropendola taxa for which molecular data are not yet available.  相似文献   

4.
The evolution of sexual dimorphism has long been attributed to sexual selection, specifically as it would drive repeated gains of elaborate male traits. In contrast to this pattern, New World oriole species all exhibit elaborate male plumage, and the repeated gains of sexual dichromatism observed in the genus are due to losses of female elaboration. Interestingly, most sexually dichromatic orioles belong to migratory or temperate‐breeding clades. Using character scoring and ancestral state reconstructions from two recent studies in Icterus, we tested a hypothesis of correlated evolution between migration and sexual dichromatism. We employed two discrete phylogenetic comparative approaches: the concentrated changes test and Pagel's discrete likelihood test. Our results show that the evolution of these traits is significantly correlated (CCT: uncorrected P < 0.05; ML: LRT = 12.470, P < 0.005). Indeed, our best model of character evolution suggests that gains of sexual dichromatism are 23 times more likely to occur in migratory taxa. This study demonstrates that a life‐history trait with no direct relationship with sexual selection has a strong influence on the evolution of sexual dichromatism. We recommend that researchers further investigate the role of selection on elaborate female traits in the evolution of sexual dimorphism.  相似文献   

5.
What is the tempo and mode of evolution – how fast and in what pattern do traits evolve – is a major question of evolutionary biology. Here we studied patterns of evolutionary change in visual and acoustic signals in Old World orioles. Since producing multiple signals may be costly, we also tested whether there was an evolutionary trade‐off between the elaboration of those two types of signals. We studied 30 Oriolus taxa using comparative methods and a recent molecular phylogeny. Morphology and plumage hue evolved comparatively slowly, whereas song evolved rapidly. Among individual feather patches, the evolutionary rate of color was slowest in primaries, which are critical for flapping flight, and fastest in patches exposed to observers (mantle and breast). Thus, primaries seem to be under functional constraint while the evolution of visually exposed patches is perhaps shaped by sexual selection. Song evolution was comparatively fast, but also attracted to a single optimum. This may be due to selection for signal efficacy, because all orioles inhabit similar forested habitats. Only color diversity was best fit by a speciational model: the biggest changes in coloration were concentrated at speciation events, thus perhaps linked to the evolution of species recognition. Our analysis did not reveal any evolutionary trade‐off between acoustic and visual signals, suggesting that the elaboration of visual and acoustic signals in the Old World orioles evolved independently. Our study shows that patterns of evolutionary change may be surprisingly complex even within a single clade of birds and thus further studies are needed to identify general patterns of signal macroevolution.  相似文献   

6.
ABSTRACT Orchard Orioles (Icterus spurius) and Fuertes’ Orioles (I. fuertesi) recently diverged from each other, making them an ideal system for investigating trait evolution and mechanisms of reproductive isolation during the early stages of speciation. These taxa differ in adult male plumage coloration and in their breeding and wintering ranges, but quantitative comparisons of their song characteristics have revealed no discernible differences. We assessed evolutionary song divergence in this group by investigating patterns of syllable‐type sharing within and between populations. Of 529 distinct syllable types, 142 (26.8%) were shared among individuals, and sharing appeared to decrease with geographic distance. The total number of syllables shared between Orchard and Fuertes’ orioles (26; 4.9% of the total) was similar to levels of sharing between populations of Orchard Orioles. Furthermore, hierarchical cluster analyses showed individuals of the two taxa intermixed. Syllables also used as calls were shared more frequently within and between taxa, suggesting that they have evolved more slowly than those used exclusively in songs. Our results show that at least some aspects of song have not yet diverged between these incipient species, either due to cultural exchange or because songs have evolved relatively slowly compared to plumage colors.  相似文献   

7.
Carotenoids produce the brilliant red, orange, and yellow colors of many animals. However, melanin pigments can also confer some of these same hues. Because carotenoid and melanin colors are produced in different ways and may serve different signaling functions, either within or between species, it is important to establish whether one or both types of pigment are responsible for coloration. We have discovered what appears to be an evolutionary switch from carotenoid- to melanin-based color in two sexually dichromatic New World orioles. Using a combination of reflectance spectrometry and chromatographic analyses of plumage pigments, we found that the chestnut plumage of adult male orchard orioles Icterus spurius is produced predominantly by phaeomelanins. Orchard oriole feathers also contain carotenoids, which appear to be masked by the high concentration of phaeomelanins. In contrast, both carotenoids and phaeomelanins appear to contribute to color in adult male Fuertes's orioles I. fuertesi . Moreover, yellow yearling male and female plumage in both species is produced by carotenoids alone. The masking of carotenoids with phaeomelanins in orchard orioles is interesting in light of the signaling roles that carotenoids are thought to play. In addition, these plumage differences produce a unique case of age and sexual pigment dimorphism in orchard and Fuertes's orioles.  相似文献   

8.
We analyse patterns of genetic diversity and song complexity in the Palaearctic yellow wagtail (Motacilla flava), a highly polytypic species complex. Mitochondrial and nuclear DNA show that the complex is polyphyletic, despite parallel plumage variation in western and eastern clades. In the western clade there is genetic structure among southern subspecies, haplotype diversity decreases with latitude, and northern subspecies show evidence of bottlenecking and rapid expansions, as expected from isolation in glacial refugia followed by postglacial colonization. However, northern subspecies, which have more divergent male plumages, lack genetic structure and sing simpler songs. Loss of song complexity and evolution of plumage in founder populations are consistent with the Kaneshiro model, which posits that variation among species is a consequence of founder-induced shifts in female preference leading to loss of ancestral male sexual traits. Our results suggest possible postglacial founder-effect mechanisms for the morhological diversification of the yellow wagtail complex.  相似文献   

9.
Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages.  相似文献   

10.
Female bird song and combined vocal duets of mated pairs are both frequently associated with tropical, monogamous, sedentary natural histories. Little is known, however, about what selects for duetting behavior versus female song. Female song likely preceded duet evolution and could drive apparent relationships between duets and these natural histories. We compared the evolution of female song and male–female duets in the New World blackbirds (Icteridae) by investigating patterns of gains and losses of both traits and their relationships with breeding latitude, mating system, nesting pattern, and migratory behavior. We found that duets evolved only in lineages in which female song was likely ancestral. Both female song and duets were correlated with tropical breeding, social monogamy, territorial nesting, and sedentary behavior when all taxa were included; however, correlations between duets and these natural history traits disappeared when comparisons were limited to taxa with female song. Also, likelihood values supported stronger relationships between the natural history traits and female song than between these traits and duets. Our results suggest that the natural histories thought to favor the evolution of duetting may in fact be associated with female song and that additional selection pressures are responsible for the evolution of duets.  相似文献   

11.
Closely related species often exhibit similarities in appearance and behaviour, yet when related species exist in sympatry, signals may diverge to enhance species recognition. Prior comparative studies provided mixed support for this hypothesis, but the relationship between sympatry and signal divergence is likely nonlinear. Constraints on signal diversity may limit signal divergence, especially when large numbers of species are sympatric. We tested the effect of sympatric overlap on plumage colour and song divergence in wood-warblers (Parulidae), a speciose group with diverse visual and vocal signals. We also tested how number of sympatric species influences signal divergence. Allopatric species pairs had overall greater plumage and song divergence compared to sympatric species pairs. However, among sympatric species pairs, plumage divergence positively related to the degree of sympatric overlap in males and females, while male song bandwidth and syllable rate divergence negatively related to sympatric overlap. In addition, as the number of species in sympatry increased, average signal divergence among sympatric species decreased, which is likely due to constraints on warbler perceptual space and signal diversity. Our findings reveal that sympatry influences signal evolution in warblers, though not always as predicted, and that number of sympatric species can limit sympatry''s influence on signal evolution.  相似文献   

12.
Sexual selection on multiple signals may lead to differential rates of signal introgression across hybrid zones if some signals contribute to reproductive isolation but others facilitate gene flow. Competition among males is one powerful form of sexual selection, but male behavioral responses to multiple traits have not been considered in a system where traits have introgressed differentially. Using playbacks, mounts, and a reciprocal experimental design, we tested the hypothesis that male responses to song and plumage in two subspecies of red‐backed fairy‐wren (Malurus melanocephalus) explain patterns of differential signal introgression (song has not introgressed, whereas plumage color has introgressed asymmetrically). We found that males of both subspecies discriminated symmetrically between subspecies’ songs at a long range, but at a close range, we found that aggression was equal for both subspecies’ plumage and songs. Taken together, our results suggest that male behavioral responses hinder the introgression of song, but allow for the observed asymmetrical introgression of plumage. Our results highlight how behavioral responses are a key component of signal evolution when recently divergent taxa come together, and how differential responses to multiple signals may lead to differential signal introgression and novel trait combinations.  相似文献   

13.
Changes in mating signals among populations contribute to species formation. Often these signals involve a suite of display traits of different sensory modalities ("multimodal signals"); however, few studies have tested the consequences of multimodal signal divergence with most focusing on only a single divergent signal or suite of signals of the same sensory modality. Populations of the chestnut-bellied flycatcher Monarcha castaneiventris vary in song and plumage color across the Solomon Islands. Using taxidermic mount presentation and song playback experiments, we tested for the relative roles of divergent song and color in homotypic ("same type") recognition between one pair of recently diverged sister taxa (the nominate chestnut-bellied M. c. castaneiventris and the white-capped M. c. richardsii forms). We found that both plumage and song type influenced the intensity of aggressive response by territory-owners, with plumage color playing a stronger role. These results indicate that differences in plumage and song are used in homotypic recognition, suggesting the importance of multimodal signal divergence in the evolution of premating reproductive isolation.  相似文献   

14.
Although many animals use carotenoids to produce bright yellow, orange, and red colors, an increasing number of studies have found that other pigments, such as melanins, may also be used to produce bright colors. Yet, almost nothing is known about the evolutionary history of this colorful melanin use. We used reflectance spectrometry to determine whether colors in New World orioles were predominantly due to carotenoids, colorful melanins, or a mixture of both. We then used ancestral state reconstruction to infer the directionality of any pigment changes and to test for phylogenetic signal. We found that three oriole taxa likely switched from carotenoid- to melanin-based colors. Several other oriole taxa apparently gained localized melanin coloration, or had coloration that seemed to be produced by a mixture of carotenoids and melanins. We also found little phylogenetic signal on the use of carotenoids or melanins to produce color. However, all pigment changes occurred within one of three major clades of the oriole genus, suggesting there may be signal at deeper phylogenetic levels. These repeated independent switches between carotenoid and melanin colors are surprising in light of the important signaling role that color pigments (especially carotenoids) are thought to play across a wide range of taxa.  相似文献   

15.
Although oscine bird song is widely thought to have evolvedunder the influence of sexual selection, few studies have usedphylogenetic comparative methods to investigate how these vocalizationshave changed historically. In the present study, we use a molecularphylogeny based on mitochondrial sequence data to reconstructvocal evolution in the oropendolas and caciques, an oscine groupwith diverse taxon-specific song patterns and a wide range inlevels of sexual size dimorphism. Our reconstructions show thatlarge changes in song organization and structure have occurredon branches of the phylogeny with relatively high levels ofsize dimorphism. The particular vocal components that changed,however, often differed in different phylogenetic lineages.These patterns indicate that sexual selection has had importantinfluences on song evolution in these birds, but has targeteddifferent components of song in different taxa. Our resultsprovide insight into how sexual selection influences bird songand suggest directions for future research to uncover the behavioralmechanisms driving vocal evolution.  相似文献   

16.
Recent analyses of the orange, red, and purple plumages of cotingas (Cotingidae) and broadbills (Eurylaimidae) revealed the presence of novel carotenoid molecules, suggesting that the diversity of pigments and the metabolic transformations they undergo are not yet fully understood. Two Old World orioles, the Black-and-Crimson Oriole Oriolus cruentus, and the Maroon Oriole Oriolus traillii, exhibit plumage colors that are similar to those of some cotingas and broadbills. To determine if these oriole plumage colors are produced by the same carotenoids or with other molecules, we used high-performance liquid chromatography (HPLC), mass spectrometry, and chemical analyses. The data show that the bright red feathers of O. cruentus contain a suite of keto-carotenoids commonly found in avian plumages, including canthaxanthin, adonirubin, astaxanthin, papilioerythrinone, and α-doradexanthin. The maroon feathers of O. traillii were found to contain canthaxanthin, α-doradexanthin, and one novel carotenoid, 3′,4-dihydroxy-ε,ε-carotene-3-one, which we have termed “4-hydroxy-canary xanthophyll A.” In this paper we propose the metabolic pathways by which these pigments are formed. This work advances our understanding of the evolution of carotenoid metabolism in birds and the mechanisms by which birds achieve their vivid plumage colorations.  相似文献   

17.
Natural selection typically constrains the evolution of sexually‐selected characters. The evolution of naturally‐ and sexually‐selected traits can be intertwined if they share part of their genetic machinery or if sex traits impair foraging success or increase the risk of depredation. The present study investigated phenotypic correlations between naturally‐ and sexually‐selected plumage traits in the Tytonidae (barn owls, grass owls, and masked owls). Phenotypic correlations indicate the extent to which selection on one trait will indirectly influence the evolution of another trait. In this group of birds, the ventral body side varies from white to dark reddish, a naturally‐selected pheomelanin‐based colour trait with important roles in predator–prey interactions. Owls also exhibit eumelanin‐based black spots, for which number and size signal different aspects of individual quality and are used in mate choice. These three plumage traits are strongly heritable and sexually dimorphic, with females being on average darker reddish and more spotted than males. Phenotypic correlations were measured between these three plumage traits in 3958 free‐living barn owls in Switzerland and 10 670 skin specimens from 34 Tyto taxa preserved in museums. Across Tyto taxa, the sexually‐selected plumage spottiness was positively correlated with the naturally‐selected reddish coloration, with redder birds being more heavily spotted. This suggests that they are genetically constrained or that natural and sexual selection are not antagonistically exerted on plumage traits. In a large sample of Swiss nestlings and within 34 Tyto taxa, the three plumage traits were positively correlated. The production of melanin pigments for one plumage trait is therefore not traded off against the production of melanin pigments for another plumage trait. Only in the most heavily‐spotted Tyto taxa do larger‐spotted individuals display fewer spots. This indicates that, at some threshold value, the evolution of many spots constrains the evolution of large spots. These analyses raise the possibility that different combinations of melanin‐based plumage traits may not be selectively equivalent.  相似文献   

18.
Species limits and the evolutionary mechanisms that have shaped diversification of woodpeckers and allies (Picidae) remain obscure, as inter and intraspecific phylogenetic relationships have yet to be comprehensively resolved for most genera. Herein, we analyzed 5020 base pairs of nucleotide sequence data from the mitochondrial and nuclear genomes to reconstruct the evolutionary history of Celeus woodpeckers. Broad geographic sampling was employed to assess species limits in phenotypically variable lineages and provide a first look at the evolution of song and plumage traits in this poorly known Neotropical genus. Our results strongly support the monophyly of Celeus and reveal several novel relationships across a shallow phylogenetic topology. We confirm the close sister relationship between Celeus spectabilis and the enigmatic Celeus obrieni, both of which form a clade with Celeus flavus. The Mesoamerican Celeus castaneus was placed as sister to a Celeus undatus-grammicus lineage, with the species status of the latter drawn into question given the lack of substantial genetic, morphological, and vocal variation in these taxa. We recovered paraphyly in Celeus elegans; however, this result appears to be the consequence of mitochondrial introgression from Celeus lugubris considering the monophyly of elegans at the ?-FIBI7 locus. A second instance of paraphyly was observed in Celeus flavescens with deep genetic splits and substantial phenotypic variation indicating the presence of two distinct species in this broadly distributed lineage. As such, we advocate elevation of Celeus flavescens ochraceus to species status. Our analysis of Celeus vocalizations and plumage characters demonstrates a pattern of lability consistent with a relatively recent origin of the genus and potentially rapid speciation history.  相似文献   

19.
We sequenced 2005 bp of the mitochondrial ND2 and cytochrome b genes from the 25 recognized species of New World orioles (Icterus). Our data confirmed the monophyly of Icterus and produced a well-resolved phylogeny showing three main clades of orioles. We also sequenced multiple subspecies for most polytypic taxa. Our findings demonstrated the importance of dense taxon sampling below the species level in two ways. First, we found evidence that two species are polyphyletic, I. galbula (Northern oriole) and I. dominicensis (Black-cowled oriole). Choosing different subspecies from either of these taxa would lead to different species-level phylogenies. Second, adding subspecies even to monophyletic groups produced a bootstrap tree with significantly more support. Of the two genes that we used, ND2 provided more resolution than did cytochrome b. ND2 evolved up to 40% faster than cytochrome b, yet shows a higher saturation threshold. Our findings suggest that ND2 may be superior to cytochrome b for resolving species-level phylogenies in passerine birds.  相似文献   

20.
A taxonomic classification that accurately captures evolutionary history is essential for conservation. Genomics provides powerful tools for delimiting species and understanding their evolutionary relationships. This allows for a more accurate and detailed view on conservation status compared with other, traditionally used, methods. However, from a practical and ethical perspective, gathering sufficient samples for endangered taxa may be difficult. Here, we use museum specimens to trace the evolutionary history and species boundaries in an Asian oriole clade. The endangered silver oriole has long been recognized as a distinct species based on its unique coloration, but a recent study suggested that it might be nested within the maroon oriole-species complex. To evaluate species designation, population connectivity, and the corresponding conservation implications, we assembled a de novo genome and used whole-genome resequencing of historical specimens. Our results show that the silver orioles form a monophyletic lineage within the maroon oriole complex and that maroon and silver forms continued to interbreed after initial divergence, but do not show signs of recent gene flow. Using a genome scan, we identified genes that may form the basis for color divergence and act as reproductive barriers. Taken together, our results confirm the species status of the silver oriole and highlight that taxonomic revision of the maroon forms is urgently needed. Our study demonstrates how genomics and Natural History Collections (NHC) can be utilized to shed light on the taxonomy and evolutionary history of natural populations and how such insights can directly benefit conservation practitioners when assessing wild populations.Subject terms: Taxonomy, Phylogenomics, Population genetics, Speciation, Genetic hybridization  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号