首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Courtship can be costly and so selection should favour individual males that reduce courtship towards female types that have a low probability of resulting in copulation. One way males can do this is by associating previous courtship failure with the traits of particular rejecting females. We characterised changes in male Drosophila melanogaster courtship behaviour following a failed mating attempt with one of the four female phenotypes that varied in size, age or mating status. To do this, we assessed individual courtship behaviour for each male presented again with a female of the same phenotype that previously rejected him. Males reduced subsequent courtship most strongly for recently mated (sexually non‐receptive) females. More interestingly, males also significantly reduced courtship activity following a failed mating experience from old females but did not do so for control (large, young, virgin) or small females. As such, males significantly reduced courtship towards both female types possessing chemical cues associated with their phenotype (age and mating status), but not towards a female phenotype based on physical characteristics (body size). Our results suggest that males are able to modify their courtship behaviour following experience, but that they are better prepared to associate chemical traits that may be more reliable indicators of the likelihood of courtship failure.  相似文献   

2.
Sexual selection via female mate choice can result in the evolution of elaborate male traits that incur substantial costs for males. Despite increased interest in how female mating preferences contribute to the evolution of male traits, few studies have directly quantified the locomotor costs of such traits. A sexually selected trait that could affect movement costs is the sword exhibited by male swordtail fishes: while longer swords may increase male mating success, they could negatively affect the hydrodynamic aspects of swimming activities. Here, we examine the energetic costs of the sword in Xiphophorus montezumae by experimentally manipulating sword length and measuring male aerobic metabolism during two types of activity, routine swimming and courtship swimming. Direct measurements of oxygen consumption indicate that males with longer swords expend more energy than males with shortened swords during both types of swimming. In addition, the sword increases the cost of male courtship. Thus, while sexual selection via female choice favours long swords, males with longer swords experience higher metabolic costs during swimming, suggesting that sexual and natural selection have opposing effects on sword evolution. This study demonstrates a hydrodynamic cost of a sexually selected trait. In addition, this study discriminates between the cost of a sexually selected trait used in courtship and other courtship costs.  相似文献   

3.
Wing polymorphisms observed in many Insecta are important topics in developmental biology and ecology; these polymorphisms are a consequence of trade-offs between flight and other abilities. The pea aphid, Acyrthosiphon pisum, possesses 2 types of wing polymorphisms: One is a genetic wing polymorphism occurring in males, and the other is an environmental wing polyphenism seen in viviparous females. Although genetic and environmental cues for the 2 wing polymorphisms have been studied, differences in their developmental regulation have not been elucidated. In particular, there is little knowledge regarding the developmental processes in male wing polymorphism. Therefore, in this study, the development of flight apparatuses and external morphologies was compared among 3 male wing morphs (winged, wingless, and intermediate). These male developmental processes were subsequently compared with those of female wing morphs. Developmental differences between the male and female polymorphisms were identified in flight muscle development and degeneration but not in wing bud development. Furthermore, the nymphal periods of wingless and intermediate males were significantly shorter than that of winged males, indicating the adaptive significance of male winglessness. Overall, this study indicates that the male and female wing polymorphisms are based on different regulatory systems for flight apparatus development, which are probably the result of different adaptations under different selection pressures.  相似文献   

4.
When traits experience directional selection, such as that imposed by sexual selection, their genetic variance is expected to diminish. Nonetheless, theory and findings from sexual selection predict and demonstrate that male traits favored by female choice retain substantial amounts of additive genetic variance. We explored this dilemma through an ecological genetic approach and focused on the potential contributions of genotype x environment interaction (GEI) to maintenance of additive genetic variance for male signal characters in the lesser waxmoth, Achroia grisella (Lepidoptera: Pyralidae). We artificially selected genetic variants for two male signal characters, signal rate (SR) and peak amplitude (PA), that influence female attraction and then examined the phenotypic plasticity of these variants (high- and low-SR and high- and low-PA lines) under a range of environmental conditions expected in natural populations. Our split-family breeding experiments indicated that two signal characters, SR and PA, and several developmental characters in both high- and low-SR and high- and low-PA lines displayed considerable phenotypic plasticity among the environments tested. Moreover, strong GEIs leading to crossover between high- and low-SR lines were found for SR and developmental period. Therefore, neither high- nor low-SR genetic variants would achieve maximum attractiveness and fitness in every environment, and those variants producing unattractive signals with low SRs under normal conditions may remain in populations provided that gene flow across environments or generation overlap are sufficiently high. We speculate that the phenotypic plasticity for SR and developmental period is adaptive in A. grisella populations experiencing a range of temperature and density conditions. Females mating with attractive (high-SR) males may be assured of obtaining good genes because these males sire offspring that develop more rapidly and a crossover for developmental period may parallel that for SR. Such parallel crossovers may be expected wherever good-genes sexual selection mechanisms operate.  相似文献   

5.
Females of many species are frequently courted by promiscuous males of their own and other closely related species. Such mating interactions may impose strong selection on female mating preferences to favor trait values in conspecific males that allow females to discriminate them from their heterospecific rivals. We explore the consequences of such selection in models of the evolution of female mating preferences when females must interact with heterospecific males from which they are completely postreproductively isolated. Specifically, we allow the values of both the most preferred male trait and the tolerance of females for males that deviate from this most preferred trait to evolve. Also, we consider situations in which females base their mating decisions on multiple male traits and must interact with males of multiple species. Females will rapidly differentiate in preference when they sometimes mistake heterospecific males for suitable mates, and the differentiation of female preference will select for conspecific male traits to differentiate as well. In most circumstances, this differentiation continues indefinitely, but slows substantially once females are differentiated enough to make mistakes rare. Populations of females with broader preference functions (i.e., broader tolerance for males with trait values that deviate from females' most preferred values) will evolve further to differentiate if the shape of the function cannot evolve. Also, the magnitude of separation that evolves is larger and achieved faster when conspecific males have lower relative abundance. The direction of differentiation is also very sensitive to initial conditions if females base their mate choices on multiple male traits. We discuss how these selection pressures on female mate choice may lead to speciation by generating differentiation among populations of a progenitor species that experiences different assemblages of heterospecifics. Opportunities for differentiation increase as the number of traits involved in mate choice increase and as the number of species involved increases. We suggest that this mode of speciation may have been particularly prevalent in response to the cycles of climatic change throughout the Quaternary that forced the assembly and disassembly of entire communities on a continentwide basis.  相似文献   

6.
Sexual communication between sex partners can involve just one sensory modality or a combination, depending upon such factors as species, habitat, and context. Ethological aspects of sexual communication has been widely documented in rodents. In rats, sexual communication between male and female varies according to the production of signals by a female that signal receptivity, proceptivity, and attractivity. However, in the laboratory experiment, such approach is often neglected. In the present study, two types of stimulus female--Lordotic and Darting--were used with the aim to examine developmental changes in precopulatory behaviour of males. Besides the dependence of the male's precopulatory repertoire on the strength of proceptive stimuli emitted by the female was studied. Male rats ranging from 30 to 175 days of age were observed under the dyadic interaction. It was found: (a) Precopulatory behaviour of the 30-day-old males was not clear-cut, the males devoted more time to social investigation of adult (Darting) female. (b) All the 40-day-old males exhibited precopulatory behaviour in the range of the repertoire displayed by adult animals. (c) Precopulatory activity of juvenile (45-day-old) as well as of adult (90-day-old) males exposed to Lordotic female was significantly lower as compared with that exhibited by males toward Darting female. (d) Copulatory readiness of males increased with the age, in fact, all animals aged from 75-135 day were able to pass from the precopulatory into the copulatory phase of sexual interaction. (e) Although the 175-day-old males exhibited pronounced precopulatory activity, they did not initiate copulations. The implications of each of these findings are discussed from the point of view of both the developmental aspects and the stimulus-response relationships. To sum up, the development of normal flow of sexual behaviour of male rats proceeds simultaneously with the development of physiological and morphological parameters. The appearance of precopulatory behaviour is less dependent on the internal (hormonal) readiness than copulatory behaviour. The connection of both phases, i.e. precopulatory and copulatory, is terminated at about Day 75, and is the key moment of sexual interaction from the point of view of reproductive success. In fact, a successful course of sexual interaction is codetermined by the intensity of behavioural stimuli and/or by the completeness of proceptive patterns provided by the female partner. It is clear that the reproductive process cannot be completed without some degree of communication. The deterioration of sexual interaction found in males aged 175 day seems to be the consequence of their absolute heterosexual abstinence.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Observations of atypical developmental and anatomical characteristics have been recorded for many taxa of soil nematodes. They include the unusual occurrence of extra feeding structures, aberrant configuration of features of both male and female reproductive systems, and the occurrence of intersexes assumed to be functionally female, functionally male, or non-functional. In many cases, hypotheses have been advanced regarding the genetic or developmental mechanisms and environmental stimuli that control, regulate, or facilitate abnormalities, but many are quite speculative and lack experimental verification. Further, the fitness costs or advantages, and the heritability of aberrant characters are largely unknown, except where they clearly preclude reproduction, either apomictic or amphimictic. Underlying mechanisms and ecological consequences may be difficult to study in organisms that are not readily cultured under axenic or sterile laboratory conditions, however information on developmental processes in Caenorhabditis elegans represents an important resource in which to seek homologies.  相似文献   

8.
Sperm competition games: sperm selection by females   总被引:1,自引:0,他引:1  
We analyse a co-evolutionary sexual conflict game, in which males compete for fertilizations (sperm competition) and females operate sperm selection against unfavourable ejaculates (cryptic female choice). For simplicity, each female mates with two males per reproductive event, and the competing ejaculates are of two types, favourable (having high viability or success) or unfavourable (where progeny are less successful). Over evolutionary time, females can increase their level of sperm selection (measured as the proportion of unfavourable sperm eliminated) by paying a fecundity cost. Males can regulate sperm allocations depending on whether they will be favoured or disfavoured, but increasing sperm allocation reduces their mating rate. The resolution of this game depends on whether males are equal, or unequal. Males could be equal: each is favoured with probability, p, reflecting the proportion of females in the population that favour his ejaculate (the 'random-roles' model); different males are favoured by different sets of females. Alternatively, males could be unequal: given males are perceived consistently by all females as two distinct types, favoured and disfavoured, where p is now the frequency of the favoured male type in the population (the 'constant-types' model). In both cases, the evolutionarily stable strategy (ESS) is for females initially to increase sperm selection from zero as the viability of offspring from unfavourable ejaculates falls below that of favourable ejaculates. But in the random-roles model, sperm selection decreases again towards zero as the unfavourable ejaculates become disastrous (i.e. as their progeny viability decreases towards zero). This occurs because males avoid expenditure in unfavourable matings, to conserve sperm for matings in the favoured role where their offspring have high viability, thus allowing females to relax sperm selection. If sperm selection is costly to females, ESS sperm selection is high across a region of intermediate viabilities. If it is uncostly, there is no ESS in this region unless sperm limitation (i.e. some eggs fail to be fertilized because sperm numbers are too low) is included into the model. In the constant-types model, no relaxation of sperm selection occurs at very low viabilities of disfavoured male progeny. If sperm selection is sufficiently costly, ESS sperm selection increases as progeny viability decreases down towards zero; but if it is uncostly, there is no ESS at the lowest viabilities, and unlike the random-roles model, this cannot be stabilized by including sperm limitation. Sperm allocations in the ESS regions differ between the two models. With random roles, males always allocate more sperm in the favoured role. With constant types, the male type that is favoured allocates less sperm than the disfavoured type. These results suggests that empiricists studying cryptic female choice and sperm allocation patterns need to determine whether sperm selection is applied differently, or consistently, on given males by different females in the same population.  相似文献   

9.
Although the strength and form of sexual selection on song in male crickets have been studied extensively, few studies have examined selection on the morphological structures that underlie variation in males’ song, particularly in wild populations. Geometric morphometric techniques were used to measure sexual selection on the shape, size and symmetry of both top and bottom tegmina in wild populations of sagebrush crickets, a species in which nuptial feeding by females imposes an unambiguous phenotypic marker on males. The size of the tegmina negatively covaried with song dominant frequency and positively covaried with song pulse duration. Sexual selection was more intense on the bottom tegmen, conceivably because it interacts more freely with the subtegminal airspace, which may play a role in song amplification. An expanded coastal/subcostal region was one of the phenotypes strongly favoured by disruptive selection on the bottom tegmen, an adaptation that may form a more effective seal with the thorax to prevent noise cancellation. Directional selection also favoured increased symmetry in tegminal shape. Assuming more symmetrical males are better able to buffer against developmental noise, the song produced by these males may make them more attractive to females. Despite the strong stabilizing selection documented previously on the dominant frequency of the song, stabilizing selection on the resonator that regulates dominant frequency was surprisingly absent. Nonetheless, wing morphology had an important influence on song structure and appears to be subject to significant linear and nonlinear sexual selection through female mate choice.  相似文献   

10.
We contrast some recent uses of the concept of male-female conflict, with the type of conflict that is inherent in traditional Darwinian female choice. Females in apparent conflict situations with males may suffer reduced lifetime reproduction, but nevertheless benefit because they obtain sons with superior manipulative abilities. Female defences against male manipulations may not be 'imperfect' because of inability to keep pace with male evolution, but in order to screen males and favour those that are especially good manipulators. We examine the consequences of these ideas, and of the difficulties of obtaining biologically realistic measures of female costs, for some recent theoretical and empirical presentations of male-female conflict ideas, and find that male-female conflict in the new sense is less certain than has been commonly supposed. Disentangling previous sexual selection ideas and the new conflict of interest models will probably often be difficult, because the two types of payoffs are not mutually exclusive.  相似文献   

11.
Sexual selection can lead to rapid divergence in reproductive characters. Recent studies have indicated that postmating events, such as sperm precedence, may play a key role in speciation. Here, we stress that other components of postmating sexual selection may be involved in the evolution of reproductive isolation. One of these is the reproductive investment made by females after mating (i.e., differential allocation). We performed an experiment designed to assess genetic divergence in the effects of mating on female reproductive performance in flour beetles, Tribolium castaneum. Females were mated to males of three different wild-type genotypes at two different frequencies, in all possible reciprocal combinations. Male genotype affected all aspects of female reproduction, through its effects on female longevity, total offspring production, reproductive rate, mating rate, and fertility. Moreover, male and female genotype interacted in their effects on offspring production and reproductive rate. We use the pattern of these interactions to discuss the evolutionary process of divergence and suggest that the pattern is most consistent with that expected if divergence was driven by sexually antagonistic coevolution. In particular, the fact that females exhibited a relatively weak response to males with which they were coevolved suggests that females have evolved resistance to male gonadotropic signals/stimuli.  相似文献   

12.
Armaments and ornaments: an evolutionary explanation of traits of dual Utility   总被引:26,自引:0,他引:26  
Secondary sexual characters in many species function both in male-male competition and as cues for female choice. Based on a literature compilation of existing knowledge of traits with this dual function, we propose that they commonly arise through intersexual selection processes and serve as honest signals to other males regarding fighting ability or dominance. Faking these traits, here called armaments, (i.e. weapons and status badges) is difficult, as they are constantly put to trial in male-male contests. Females that subsequently utilize them as indicators of male phenotypic quality when selecting a partner will benefit by acquiring males of higher quality to father their offspring. Thus, evolution of armaments through male-male competition is seen as a usually initiating process, whereas female choice later may assume a role as an additional selective factor. The reverse, that males use information from traits evolved through female choice, is, however, also possible. The traditional view of independently evolved and temporarily unordered intra- and intersexual selection processes fails to explain dual trait functions. Moreover, our model may more satisfyingly than traditional ones explain how trait honesty and trait genetic variance are maintained: theoretical and empirical evidence suggests that such honesty and variation are more easily maintained under male-male competition than under female choice.  相似文献   

13.
Parasite-mediated sexual selection is expected to favour the avoidance of matings with infected individuals. However, the extent to which the costs and benefits of discriminating against parasitized mates trade off may depend upon numerous factors. I investigated the effects of sex and infection status on choosiness in sex-role reversed deep-snouted pipefish (Syngnathus typhle L.) that were either artificially infected with the trematode parasite Cryptocotyle sp. or sham-infected. Sham-infected males were significantly more likely to associate with a sham-infected female rather than with a Cryptocotyle-infected female. Infected males failed to discriminate against infected potential partners. Males were choosier the larger they were relative to the females available for choice. Females were not discriminatory, regardless of their infection status. Given an inverse relation between female fecundity and parasite load, choosy unparasitized males may gain enhanced reproductive success from their choice decisions. In contrast, more heavily infected wild-caught males gave birth to slightly fewer, but not smaller offspring than did uninfected or lightly infected males, suggesting only a low direct premium on choosy females. The detrimental effects of parasitism on male choosiness, and the lack of female discrimination against infected males likely have profound repercussions on the strength of sexual selection acting on the two sexes and on the dynamics of host-parasite interactions in this system.  相似文献   

14.
Sperm selection may be said to occur if females influence the relative success of ejaculates competing to fertilize their ova. Most evidence that female animals or their ova are capable of sperm selection relates to male genetic incompatibility, although relatively few studies focus on competition between conspecific males. Here I look for evidence of sperm selection with respect to relatedness of mates. Reduced fitness or inbreeding effects in offspring resulting from copulations between close relatives are well documented. If females are capable of sperm selection, they might therefore be expected to discriminate against the sperm of sibling males during sperm competition. I describe an experimental protocol designed to test for evidence of sperm selection while controlling for inbreeding effects. Using decorated field crickets (Gryllodes supplicans), I found that sibling males achieved lower fertilization success in competition with a male unrelated to the female than in competition with another sibling more frequently than expected by chance, although the mean paternity values did not differ significantly between treatments. The tendancy for sibling males to achieve relatively lower fertilization success in competition with males unrelated to the female could not be explained by the effects of increased ejaculate allocation, female control of sperm transfer or inbreeding. This study therefore provides some evidence in support of the idea that female insects (or their ova) may be capable of selection against sperm on the basis of genetic similarity of conspecific males.  相似文献   

15.
Field and laboratory studies were used to assess: (1) whether size assortative mating occurred in the New Zealand amphipod Paracalliope fluviatilis and (2) hypotheses developed to explain size assortative mating. We found that assortative mating occurred and that larger females carried more eggs, suggesting they may be more valuable as mates. Laboratory experiments were then used to determine whether: (1) male size influenced the size of the female selected (mechanical constraints hypothesis); (2) male size influenced pairing success in the presence of competition (intrasexual selection hypothesis); (3) take‐overs of females occurred and whether large males were more successful (intrasexual selection hypothesis); (4) guard duration varied relative to male and female size (guard duration hypothesis); and (5) females had control over pairing success and guard duration (intersexual selection hypothesis). Although there was evidence to suggest the existence of intrasexual competition for mates (i.e. both small and large males preferred large females), there was no evidence of overt competition (i.e. takeovers of paired females). There was also no difference with respect to how long small and large males guarded females, but large females were guarded longer by both male size classes. Females handicapped by having their mobility reduced were guarded for the same duration as control females but males were more likely to pair with handicapped females, suggesting that they were easier to amplex. Given the lack of evidence for direct male–male competition or female choice, we suggest that assortative mating may be the result of: (1) indirect competition (e.g. in situ large males may be better able to access and amplex the largest females) or (2) female resistance to small males in combination with higher costs that small males may incur in securing large females. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92 , 173–181.  相似文献   

16.
In many non-monogamous systems, males invest less in progeny than do females. This leaves males with higher potential rates of reproduction, and a likelihood of sexual conflict, including, in some systems, coercive matings. If coercive matings are costly, the best female strategy may be to avoid male interaction. We present a model that demonstrates female movement in response to male harassment as a mechanism to lower the costs associated with male coercion, and the effect that female movement has on selection in males for male harassment. We found that, when females can move from a habitat patch to a refuge to which males do not have access, there may be a selection for either high, or low harassment male phenotype, or both, depending on the relationship between the harassment level of male types in the population and a threshold level of male harassment. This threshold harassment level depends on the relative number of males and females in the population, and the relative resource values of the habitat; the threshold increases as the sex ratio favours females, and decreases with the value of the refuge patch or total population. Our model predicts that selection will favour the harassment level that lies closest to this threshold level of harassment, and differing harassment levels will coexist within the population only if they lie on the opposite sides of the threshold harassment. Our model is consistent with empirical results suggesting that an intermediate harassment level provides maximum reproductive fitness to males when females are mobile.  相似文献   

17.
Sexual selection is often assumed to be strong and consistent, yet increasing research shows it can fluctuate over space and time. Few experimental studies have examined changes in sexual selection in response to natural environmental variation. Here, we use a difference in resource quality to test for the influence of past environmental conditions and current environmental conditions on male and female mate choice and resulting selection gradients for leaf‐footed cactus bugs, Narnia femorata. We raised juveniles on natural high‐ and low‐quality diets, cactus pads with and without ripe cactus fruits. New adults were again assigned a cactus pad with or without fruit, paired with a potential mate, and observed for mating behaviors. We found developmental and adult encounter environments affected mating decisions and the resulting patterns of sexual selection for both males and females. Males were not choosy in the low‐quality encounter environment, cactus without fruit, but they avoided mating with small females in the high‐quality encounter environment. Females were choosy in both encounter environments, avoiding mating with small males. However, they were the choosiest when they were in the low‐quality encounter environment. Female mate choice was also context dependent by male developmental environment. Females were more likely to mate with males that had developed on cactus with fruit when they were currently in the cactus with fruit environment. This pattern disappeared when females were in the cactus without fruit environment. Altogether, these results experimentally demonstrate context‐dependent mate choice by both males and females. Furthermore, we demonstrate that simple, seasonal changes in resources can lead to fluctuations in sexual selection.  相似文献   

18.
Selective pressure arising from sperm competition has been predicted to influence evolutionary and behavioural adjustment of ejaculate investment, but also may influence developmental adjustment of ejaculate investment. Immature males able to target resources strategically based on the competitive environment they will experience when they become sexually mature should be at a selective advantage. In our study we investigated how the presence of potential competitors or mates affects ejaculate and testes investment during development in the cockroach Nauphoeta cinerea, a species where males control female remating via their ejaculate size (large spermatophores prevent females from remating and therefore function to avoid sperm competition for males) and females store sperm. Our aim was to determine whether the social environment influences developmental adjustment of ejaculate investment and the relative importance of ejaculate components with different functions; avoidance of or engagement in sperm competition. We conclude that the social environment can influence developmental and behavioural flexibility in specific ejaculate components that may function to avoid or engage in sperm competition.  相似文献   

19.
Dispersal is advantageous, but, at the same time, it implies high costs and risks. Due to these counteracting selection pressures, many species evolved dispersal polymorphisms, which, in ants, are typically restricted to the female sex (queens). Male polymorphism is presently only known from a few genera, such as Cardiocondyla, in which winged dispersing males coexist with wingless fighter males that mate exclusively inside their maternal nests. We studied the developmental mechanisms underlying these alternative male morphs and found that, first, male dimorphism is not genetically determined, but is induced by environmental conditions (decreasing temperature and density). Second, male morph is not yet fixed at the egg stage, but it differentiates during larval development. This flexible developmental pattern of male morphs allows Cardiocondyla ant colonies to react quickly to changes in their environment. Under good conditions, they invest exclusively in philopatric wingless males. But, when environmental conditions turn bad, colonies start to produce winged dispersal males, even though these males require a many times higher investment by the colony than their much smaller wingless counterparts. Cardiocondyla ants share this potential of optimal resource allocation with other colonial animals and some seed dimorphic plants.  相似文献   

20.
In several species of fish, females select males that are already guarding eggs in their nests. It is a matter of debate as to whether a female selects a good nest site for her offspring (natural selection) or a male for his attractiveness (sexual selection). The golden egg bug, Phyllomorpha laciniata Vill, resembles fish in the sense that mating males carry more eggs than single males, but in the bugs, female mate choice is decoupled from egg site choice. The sexual selection hypothesis predicts that if females select males using male egg load as a cue for male quality, they should not mate with a male when eggs are removed, regardless of his mating attempts. When individual females were enclosed with an egg-loaded male and an unloaded male, they mated equally often with both males, although the loaded males courted more. In addition, when only successful males were used, females mated equally often with the loaded male and the unloaded male irrespective of sex ratio. Male choice rather than female choice affected mating frequency when sex ratio was equal. Therefore, females do not select the male by the eggs he carries, but successful males may receive many eggs due to egg dumping by alien females while they mate or as a consequence of mate guarding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号