首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the development of type I diabetes mellitus in nonobese diabetic (NOD) mice, T cell autoimmunity gradually spreads among beta cell Ags. Little is known about how autoantigen-based immunotherapies affect this spreading hierarchy. We treated newborn NOD mice with different autoantigenic beta cell peptides (in adjuvant) and characterized their T cell responses at 4 wk of age, when autoimmunity is usually just beginning to arise to a few beta cell Ag determinants. Surprisingly, we found that regardless of whether an early, or late target determinant was administered, autoimmunity had already arisen to all tested beta cell autoantigen determinants, far in advance of when autoimmunity would have naturally arisen to these determinants. Thus, rather than limiting the loss of self-tolerance, immunotherapy caused the natural spreading hierarchy to be bypassed and autoreactivities to develop precociously. Evidently, young NOD mice have a broad array of beta cell-reactive T cells whose activation/expansion can occur rapidly after treatment with a single beta cell autoantigen. Notably, the precocious autoreactivities were Th2 type, with the exception that a burst of precocious Th1 responses was also induced to the injected autoantigen and there were always some Th1 responses to glutamic acid decarboxylase. Similarly treated type 1 diabetes mellitus-resistant mouse strains developed Th2 responses only to the injected Ag. Thus, autoantigen administration can induce a cascade of autoimmune responses in healthy (preautoimmune) mice that are merely genetically susceptible to spontaneous autoimmune disease. Such phenomena have not been observed in experimental autoimmune disease models and may have important clinical implications.  相似文献   

2.
It has been shown that the alpha 4 beta 1 integrin is the lymphocyte receptor for the carboxy terminal cell-binding domain of fibronectin which comprises adhesion sites in Hep 2 and a high affinity site, CS-1, in the type III connecting segment or V (for variable) region. In the present studies, using a series of peptides derived from CS-1, we identify the tripeptide leu-asp-val (LDV), as the minimal peptide capable of supporting stable lymphocyte or melanoma cell adhesion. However, only cells which expressed an active form of the alpha 4 beta 1 complex were capable of attaching to and spreading on LDV peptide. On a molar basis, LDV minimal peptides were either not active or 10-20 times less active than intact CS-1 in promoting the adhesion of lymphocytes expressing the resting form of the receptor. In cells which express the high avidity form of the receptor, LDV and CS-1 were equally effective in promoting cell adhesion and spreading. The avidity of the alpha 4 beta 1 complex could be altered with mAbs to beta 1 which specifically activate beta 1 dependent function. The high avidity form of the alpha 4 beta 1 complex could be induced on U937 cells, T, and B lymphoblastoid cell lines, or PHA-stimulated T cell blasts. Resting PBL could not be induced to bind LDV peptide conjugates by activating antibodies to beta 1 implying that two signals are required for LDV recognition by T cells. In conclusion, these data show clearly that the minimal peptide for the alpha 4 beta 1 complex in CS-1 is the LDV sequence. Although numerous cell populations can interact with intact CS-1 only cells which express an active alpha 4 beta 1 complex can bind the LDV sequence. This implies that cell interaction with the carboxy terminal cell-binding domain of fibronectin can be regulated at several levels: (a) alpha 4 beta 1 expression; (b) activation of the alpha 4 beta 1 complex; and (c) alternate splicing of CS-1 into V+ isoforms of fibronectin.  相似文献   

3.
The determinant spreading of T cell autoimmunity plays an important role in the pathogenesis of type 1 diabetes and in the protective mechanism of Ag-based immunotherapy in NOD mice. However, little is known about the role of APCs, particularly B cells, in the spreading of T cell autoimmunity. We studied determinant spreading in NOD/scid or Igmu(-/-) NOD mice reconstituted with NOD T and/or B cells and found that mice with mature B cells (TB NOD/scid and BMB Igmu(-/-) NOD), but not mice that lacked mature B cells (T NOD/scid and BM Igmu(-/-) NOD), spontaneously developed Th1 autoimmunity, which spread sequentially among different beta cell Ags. Immunization of T NOD/scid and BM Igmu(-/-) NOD mice with a beta cell Ag could prime Ag-specific Th1 or Th2 responses, but those T cell responses did not spread to other beta cell Ags. In contrast, immunization of TB NOD/scid and BMB Igmu(-/-) NOD mice with a beta cell Ag in IFA induced Th2 responses, which spread to other beta cell Ags. Furthermore, we found that while macrophages and dendritic cells could evoke memory and effector T cell responses in vitro, B cells significantly enhanced the detection of spontaneously primed and induced Th1 responses to beta cell Ags. Our data suggest that B cells, but not other APCs, mediate the spreading of T cell responses during the type 1 diabetes process and following Ag-based immunotherapy. Conceivably, the modulation of the capacity of B cells to present Ag may provide new interventions for enhancing Ag-based immunotherapy and controlling autoimmune diseases.  相似文献   

4.
Peptide-based immunotherapy is one strategy by which to selectively suppress the T cell-mediated destruction of beta cells and treat insulin-dependent diabetes mellitus (IDDM). Here, we investigated whether a panel of T cell epitopes derived from the beta cell autoantigen glutamic acid decarboxylase 65 (GAD65) differ in their capacity to induce Th2 cell function in nonobese diabetic (NOD) mice and in turn prevent overt IDDM at different preclinical stages of disease development. The panel consists of GAD65-specific peptides spanning aa 217-236 (p217), 247-265 (p247), 290-309 (p290), and 524-543 (p524). Our studies revealed that all of the peptides effectively prevented insulitis and diabetes when administered to NOD mice before the onset of insulitis. In contrast, only a mixture of p217 and p290 prevented progression of insulitis and overt IDDM in NOD mice exhibiting extensive beta cell autoimmunity. Immunization with the GAD65-specific peptides did not block IDDM development in NOD mice deficient in IL-4 expression. These findings demonstrate that GAD65-specific peptide immunotherapy effectively suppresses progression to overt IDDM, requires the production of IL-4, and is dependent on the epitope targeted and the extent of preexisting beta cell autoimmunity in the recipient.  相似文献   

5.
Patients with systemic autoimmune diseases usually produce high levels of antibodies to self-antigens (autoantigens). The repertoire of common autoantigens is remarkably limited, yet no readily understandable shared thread links these apparently diverse proteins. Using computer prediction algorithms, we have found that most nuclear systemic autoantigens are predicted to contain long regions of extreme structural disorder. Such disordered regions would generally make poor B cell epitopes and are predicted to be under-represented as potential T cell epitopes. Consideration of the potential role of protein disorder may give novel insights into the possible role of molecular mimicry in the pathogenesis of autoimmunity. The recognition of extreme autoantigen protein disorder has led us to an explicit model of epitope spreading that explains many of the paradoxical aspects of autoimmunity – in particular, the difficulty in identifying autoantigen-specific helper T cells that might collaborate with the B cells activated in systemic autoimmunity. The model also explains the experimentally observed breakdown of major histocompatibility complex (MHC) class specificity in peptides associated with the MHC II proteins of activated autoimmune B cells, and sheds light on the selection of particular T cell epitopes in autoimmunity. Finally, the model helps to rationalize the relative rarity of clinically significant autoimmunity despite the prevalence of low specificity/low avidity autoantibodies in normal individuals.  相似文献   

6.
Altered self peptides may drive T cell development by providing avidity of interactions low enough to potentiate positive selection but not powerful enough to trigger programmed cell death. Since the peptide repertoire in both central and peripheral organs is nearly the same, interactions of these peptides with T cells in the thymus would have to be different from those taking place in the periphery; otherwise, T cell development and maturation would result in either autoimmunity or T cell deficiency. Herein, a self and an altered self peptide were delivered to fetuses, and their presentation as well as the consequence of such presentation on T cell development were assessed. The results indicate that the self peptide was presented in both central and peripheral fetal organs and that such presentation abolished T cell responses to both peptides during adult life. However, the altered peptide, although presented in vivo as well as in vitro by splenic cells, was unable to stimulate a specific T cell clone when the presenting cells were of thymic origin and allowed offspring to be responsive to both peptides. These findings indicate that central and peripheral organs accommodate selection and peripheral survival of T cells by promoting differential altered peptide presentation.  相似文献   

7.
Clinical autoimmunity requires both activation of self-reactive T cells as well as a failure of peripheral tolerance mechanisms. We previously identified one such mechanism that involves regulatory T cells recognizing TCR V beta 8.2 chain-derived peptides in the context of MHC. How this regulation affects the fate of target V beta 8.2(+) T lymphocytes in vivo that mediate experimental autoimmune encephalomyelitis has remained unknown. The present study using immunoscope and CFSE-labeling analysis demonstrates that the expansion of regulatory CD4 and CD8 T cells in vivo results in apoptotic depletion of the dominant, myelin basic protein-reactive V beta 8.2(+) T cells, but not subdominant V beta 13(+) T cells. The elimination of only activated T cells by this negative feedback mechanism preserves the remainder of the naive V beta 8.2(+) T cell repertoire and at the same time results in protection from disease. These studies are the first in clearly elucidating the fate of myelin basic protein-specific encephalitogenic T cells in vivo following regulation.  相似文献   

8.
The epitopes recognized by pathogenic T cells in systemic autoimmune disease remain poorly defined. Certain MHC class II-bound self peptides from autoimmune MRL/lpr mice are not found in eluates from class II molecules of MHC-identical C3H mice. Eleven of 16 such peptides elicited lymph node cell and spleen cell T cell proliferation in both MRL/lpr (stimulation index = 2.03-5.01) and C3H mice (stimulation index = 2.03-3.75). IL-2 and IFN-gamma production were detected, but not IL-4. In contrast to what was seen after immunization, four self peptides induced spleen cell proliferation of T cells from naive MRL/lpr, but not from C3H and C57BL/6.H2(k), mice. These peptides were derived from RNA splicing factor SRp20, histone H2A, beta(2)-microglobulin, and MHC class II I-A(k)beta. The first three peptides were isolated from I-E(k) molecules and the last peptide was bound to I-A(k). T cell responses, evident as early as 1 mo of age, depended on MHC class II binding motifs and were inhibited by anti-MHC class II Abs. Thus, although immunization can evoke peripheral self-reactive T cells in normal mice, the presence in MRL/lpr mice of spontaneous T cells reactive to certain MHC-bound self peptides suggests that these T cells actively participate in systemic autoimmunity. Peptides eluted from self MHC class II molecules may yield important clues to T cell epitopes in systemic autoimmunity.  相似文献   

9.
Gamma-aminobutyric acid (GABA) is both a major inhibitory neurotransmitter in the CNS and a product of beta cells of the peripheral islets. Our previous studies, and those of others, have shown that T cells express functional GABAA receptors. However, their subunit composition and physiological relevance are unknown. In this study, we show that a subset of GABAA receptor subunits are expressed by CD4+ T cells, including the delta subunit that confers high affinity for GABA and sensitivity to alcohol. GABA at relatively low concentrations down-regulated effector T cell responses to beta cell Ags ex vivo, and administration of GABA retarded the adoptive transfer of type 1 diabetes (T1D) in NOD/scid mice. Furthermore, treatment with low dose of GABA (600 microg daily) dramatically inhibited the development of proinflammatory T cell responses and disease progression in T1D-prone NOD mice that already had established autoimmunity. Finally, GABA inhibited TCR-mediated T cell cycle progression in vitro, which may underlie GABA's therapeutic effects. The immunoinhibitory effects of GABA on T cells may contribute to the long prodomal period preceding the development of T1D, the immunological privilege of the CNS, and the regulatory effects of alcohol on immune responses. Potentially, pharmacological modulation of GABAA receptors on T cells may provide a new class of therapies for human T1D as well as other inflammatory diseases.  相似文献   

10.
The T cell repertoire is shaped by the processes of positive and negative selection. We have previously shown that mice are tolerant to a native self-Ag, mouse lysozyme (ML), but they respond vigorously when challenged with different ML peptides ("cryptic" self-determinants). In this study, we have addressed the issue of the physiological significance of both the hierarchy (dominance/crypticity) of self-determinants within ML and the anti-cryptic, self (ML)-directed T cell repertoire. Our results demonstrate that there are several ML peptides that bind well to MHC but are totally nonimmunogenic when tested for proliferative T cell response and cytokine secretion: a subset of these peptides presumably represent the originally dominant self-determinants of ML, which have rendered the T cells tolerant during thymic selection. Other ML peptides, which bind well to MHC and are immunogenic, correspond to the cryptic determinants of ML: T cells against cryptic ML determinants escape tolerance induction. Thus, the mature T cell repertoire against ML bears the direct imprint of the hierarchy of self (ML)-determinants. Interestingly, hen egg white lysozyme could prime T cells in vivo that were cross-reactive with certain cryptic ML determinants, and vice versa, without requiring any coimmunization with the foreign lysozyme and ML peptide(s). Moreover, repeated, deliberate priming and expansion of T cells by hen egg white lysozyme immunization concomitantly enhanced T cell response to such cross-reactive ML determinants. This reciprocal self-foreign determinant cross-reactivity may play a previously unrecognized, but crucial, role in the expansion and diversification of self-reactive clones in the autoimmune response.  相似文献   

11.
T cell receptor engagement promotes proliferation, differentiation, survival, or death of T lymphocytes. The affinity/avidity of the TCR ligand and the maturational stage of the T cell are thought to be principal determinants of the outcome of TCR engagement. We demonstrate in this study that the same mouse TCR preferentially uses distinct residues of homologous peptides presented by the MHC molecules to promote specific cellular responses. The preference for distinct TCR contacts depends on neither the affinity/avidity of TCR engagement (except in the most extreme ranges), nor the maturity of engaged T cells. Thus, different portions of the TCR ligand appear capable of biasing T cells toward specific biological responses. These findings explain differences in functional versatility of TCR ligands, as well as anomalies in the relationship between affinity/avidity of the TCR for the peptide/MHC and cellular responses of T cells.  相似文献   

12.
Although the T cell dependence of autoimmune responses in connective tissue diseases has been well established, limited information exists regarding the T cell targeting of self Ags in humans. To characterize the T cell response to a connective tissue disease-associated autoantigen, this study generated T cell clones from patients using a set of peptides encompassing the entire linear sequence of the 70-kDa subunit of U1 snRNP (U1-70kDa) small nuclear ribonucleoprotein. Despite the ability of U1-70kDa to undergo multiple forms of Ag modification that have been correlated with distinct clinical disease phenotypes, a remarkably limited and consistent pattern of T cell targeting of U1-70kDa was observed. All tested T cell clones generated against U1-70kDa were specific for epitopes within the RNA binding domain (RBD) of the protein. High avidity binding of the RBD with U1-RNA was preserved with the disease-associated modified forms of U1-70kDa tested. The high avidity interaction between the U1-RBD on the polypeptide and U1-RNA may be critical in immune targeting of this region in autoimmunity. The T cell autoimmune response to U1-70kDa appears to have less diversity than is seen in the humoral response; and therefore, may be a favorable target for therapeutic intervention.  相似文献   

13.
By the peak of the CD8(+) T cell response, the effector cell pool consists of a heterogeneous population of cells that includes both those with an increased propensity to become long-lived memory cells (memory precursor effector cells; MPEC) and those that are terminally differentiated cells (short-lived effector cells; SLEC). Numerous studies have established the critical role that functional avidity plays in determining the in vivo efficacy of CD8(+) effector cells. Currently, how functional avidity differs in MPEC versus SLEC and the evolution of this property within these two populations during the expansion and contraction of the response are unknown. The data presented in this study show that at the peak of the effector response generated after poxvirus infection, SLEC were of higher functional avidity than their MPEC counterpart. Over time, however, SLEC exhibited a decrease in peptide sensitivity. This is in contrast to MPEC, which showed a modest increase in peptide sensitivity as the response reached equilibrium. The decrease in functional avidity in SLEC was independent of CD8 modulation or the amount of Ag receptor expressed by the T cell. Instead, the loss in sensitivity was correlated with decreased expression and activation of ZAP70 and Lck, critical components of TCR membrane proximal signaling. These results highlight the potential contribution of avidity in the differentiation and evolution of the T cell effector response after viral infection.  相似文献   

14.
The CD8 coreceptor enhances T cell function by stabilizing the TCR/peptide/MHC complex and/or increasing T cell avidity via interactions with the intracellular kinases Lck and LAT. We previously reported a CD4(+) T cell (TIL 1383I), which recognizes the tumor-associated Ag tyrosinase in the context of HLA-A2. To determine whether CD8 independent tumor cell recognition is a property of the TCR, we used retroviral transduction to express the TIL 1383I TCR in the CD8(-) murine lymphoma, 58 alpha(-)/beta(-). Immunofluorescent staining of TCR-transduced cells with human TCR V beta subfamily-specific and mouse CD3-specific Abs confirmed surface expression of the transferred TCR and coexpression of mouse CD3. Transduced effector cells secreted significant amounts of IL-2 following Ag presentation by tyrosinase peptide-pulsed T2 cells as well as stimulation with HLA-A2(+) melanoma lines compared with T2 cells alone or HLA-A2(-) melanoma cells. Further analysis of TCR-transduced clones demonstrated a correlation between T cell avidity and cell surface expression of the TCR. Therefore, the TIL 1383I TCR has sufficient affinity to mediate recognition of the physiologic levels of Ag expressed by tumor cells in the absence of CD8 expression.  相似文献   

15.

Background

Cancer vaccines are designed to activate and enhance cancer-antigen-targeted T cells that are suppressed through multiple mechanisms of immune tolerance in cancer-bearing hosts. T regulatory cell (Treg) suppression of tumor-specific T cells is one barrier to effective immunization. A second mechanism is the deletion of high avidity tumor-specific T cells, which leaves a less effective low avidity tumor specific T cell repertoire available for activation by vaccines. Treg depleting agents including low dose cyclophosphamide (Cy) and antibodies that deplete CD25-expressing Tregs have been used with limited success to enhance the potency of tumor-specific vaccines. In addition, few studies have evaluated mechanisms that activate low avidity cancer antigen-specific T cells. Therefore, we developed high and low avidity HER-2/neu-specific TCR transgenic mouse colonies specific for the same HER-2/neu epitope to define the tolerance mechanisms that specifically affect high versus low avidity tumor-specific T cells.

Methodology/Principal Findings

High and low avidity CD8+ T cell receptor (TCR) transgenic mice specific for the breast cancer antigen HER-2/neu (neu) were developed to provide a purified source of naïve, tumor-specific T cells that can be used to study tolerance mechanisms. Adoptive transfer studies into tolerant FVB/N-derived HER-2/neu transgenic (neu-N) mice demonstrated that high avidity, but not low avidity, neu-specific T cells are inhibited by Tregs as the dominant tolerizing mechanism. High avidity T cells persisted, produced IFNγ, trafficked into tumors, and lysed tumors after adoptive transfer into mice treated with a neu-specific vaccine and low dose Cy to deplete Tregs. Analysis of Treg subsets revealed a Cy-sensitive CD4+Foxp3+CD25low tumor-seeking migratory phenotype, characteristic of effector/memory Tregs, and capable of high avidity T cell suppression.

Conclusion/Significance

Depletion of CD25low Tregs allows activation of tumor-clearing high avidity T cells. Thus, the development of agents that specifically deplete Treg subsets should translate into more effective immunotherapies while avoiding autoimmunity.  相似文献   

16.
Cytotoxic T lymphocytes (CTLs) play a dominant role in the pathogenesis of autoimmune diabetes, commonly denoted Type 1 Diabetes (T1D). These CTLs (notably CD8+ T cells) recognize and kill insulin-secreting pancreatic β cells, reducing their number by ∼90%. The resulting reduction of insulin secretion causes the defective regulation of glucose metabolism, leading to the characteristic symptoms of diabetes. Recognition of β cells as targets by CTLs depends on the interactions between MHC-peptide complexes on the surface of β cells and receptors (TCRs) on T cells. Those CTLs with high affinity TCRs (also called high avidity T cells) cause most of the harm, while those with low affinity TCRs (also called low avidity T cells) play a more mysterious role. Recent experimental evidence suggests that low avidity T cells accumulate as memory T cells during the disease and may be protective in NOD mice (a strain prone to developing T1D), delaying disease progression. It has been hypothesized that such low avidity T cells afford disease protection either by crowding the islets of Langerhans, where β cells reside, or by killing antigen presenting cells (APCs).In this paper, we explore the hypothesized mechanisms for this protective effect in the context of a series of models for (1) the interactions of low and high avidity T cells, (2) the effect of APCs and (3) the feedback from β cell killing to autoantigen-induced T cell proliferation. We analyze properties of these models, noting consistency of predictions with observed behaviour. We then use the models to examine the influence of various treatment strategies on the progression of the disease. The model reveals that progressive accumulation of memory low avidity autoreactive T cells during disease progression makes treatments aimed at expanding these protective T cell types more effective close to, or at the onset of clinical disease. It also provides evidence for the hypothesis that low avidity T cells kill APCs (rather than the alternate hypothesis that they crowd the islets).  相似文献   

17.
Recent studies in both animal models and clinical trials have demonstrated that the avidity of T cells is a major determinant of antitumor and antiviral immunity. In this study, we evaluated several different vaccine strategies for their ability to enhance both the quantity and avidity of CTL responses. CD8(+) T cell quantity was measured by tetramer binding precursor frequency, and avidity was measured by both tetramer dissociation and quantitative cytolytic function. We have evaluated a peptide, a viral vector expressing the Ag transgene alone, with one costimulatory molecule (B7-1), and with three costimulatory molecules (B7-1, ICAM-1, and LFA-3), with anti-CTLA-4 mAb, with GM-CSF, and combinations of the above. We have evaluated these strategies in both a foreign Ag model using beta-galactosidase as immunogen, and in a "self" Ag model, using carcinoembryonic Ag as immunogen in carcinoembryonic Ag transgenic mice. The combined use of several of these strategies was shown to enhance not only the quantity, but, to a greater magnitude, the avidity of T cells generated; a combination strategy is also shown to enhance antitumor effects. The results reported in this study thus demonstrate multiple strategies that can be used in both antitumor and antiviral vaccine settings to generate higher avidity host T cell responses.  相似文献   

18.
IL-2 and TGF-β1 play key roles in the immunobiology of Foxp3-expressing CD25(+)CD4(+) T cells (Foxp3(+)Treg). Administration of these cytokines offers an appealing approach to manipulate the Foxp3(+)Treg pool and treat T cell-mediated autoimmunity such as type 1 diabetes. However, efficacy of cytokine treatment is dependent on the mode of application, and the potent pleiotropic effects of cytokines like IL-2 may lead to severe side effects. In the current study, we used a gene therapy-based approach to assess the efficacy of recombinant adeno-associated virus vectors expressing inducible IL-2 or TGF-β1 transgenes to suppress ongoing β cell autoimmunity in NOD mice. Intramuscular vaccination of recombinant adeno-associated virus to 10-wk-old NOD female mice and a subsequent 3 wk induction of IL-2 was sufficient to prevent diabetes and block the progression of insulitis. Protection correlated with an increased frequency of Foxp3(+)Treg in the periphery as well as in the draining pancreatic lymph nodes and islets. IL-2 induced a shift in the ratio favoring Foxp3(+)Treg versus IFN-γ-expressing T cells infiltrating the islets. Induction of IL-2 had no systemic effect on the frequency or activational status of T cells and NK cells. Induction of TGF-β1 had no effect on the Foxp3(+)Treg pool or the progression of β cell autoimmunity despite induced systemic levels of activated TGF-β1 that were comparable to IL-2. These results demonstrate that inducible IL-2 gene therapy is an effective and safe approach to manipulate Foxp3(+)Treg and suppress T cell-mediated autoimmunity and that under the conditions employed, IL-2 is more potent than TGF-β1.  相似文献   

19.
Cell-based antitumor immunity is driven by CD8(+) cytotoxic T cells bearing TCR that recognize specific tumor-associated peptides bound to class I MHC molecules. Of several cellular proteins involved in T cell:target-cell interaction, the TCR determines specificity of binding; however, the relative amount of its contribution to cellular avidity remains unknown. To study the relationship between TCR affinity and cellular avidity, with the intent of identifying optimal TCR for gene therapy, we derived 24 MART-1:27-35 (MART-1) melanoma Ag-reactive tumor-infiltrating lymphocyte (TIL) clones from the tumors of five patients. These MART-1-reactive clones displayed a wide variety of cellular avidities. alpha and beta TCR genes were isolated from these clones, and TCR RNA was electroporated into the same non-MART-1-reactive allogeneic donor PBMC and TIL. TCR recipient cells gained the ability to recognize both MART-1 peptide and MART-1-expressing tumors in vitro, with avidities that closely corresponded to the original TCR clones (p = 0.018-0.0003). Clone DMF5, from a TIL infusion that mediated tumor regression clinically, showed the highest avidity against MART-1 expressing tumors in vitro, both endogenously in the TIL clone, and after RNA electroporation into donor T cells. Thus, we demonstrated that the TCR appeared to be the core determinant of MART-1 Ag-specific cellular avidity in these activated T cells and that nonreactive PBMC or TIL could be made tumor-reactive with a specific and predetermined avidity. We propose that inducing expression of this highly avid TCR in patient PBMC has the potential to induce tumor regression, as an "off-the-shelf" reagent for allogeneic melanoma patient gene therapy.  相似文献   

20.
Tetrameric MHC/peptide complexes are important tools for enumerating, phenotyping, and rapidly cloning Ag-specific T cells. It remains however unclear whether they can reliably distinguish between high and low avidity T cell clones. In this report, tetramers with mutated CD8 binding site selectively stain higher avidity human and murine CTL capable of recognizing physiological levels of Ag. Furthermore, we demonstrate that CD8 binding significantly enhances the avidity as well as the stability of interactions between CTL and cognate tetramers. The use of CD8-null tetramers to identify high avidity CTL provides a tool to compare vaccination strategies for their ability to enhance the frequency of high avidity CTL. Using this technique, we show that DNA priming and vaccinia boosting of HHD A2 transgenic mice fail to selectively expand large numbers of high avidity NY-ESO-1(157-165)-specific CTL, possibly due to the large amounts of antigenic peptide delivered by the vaccinia virus. Furthermore, development of a protocol for rapid identification of high avidity human and murine T cells using tetramers with impaired CD8 binding provides an opportunity not only to monitor expansion of high avidity T cell responses ex vivo, but also to sort high avidity CTL clones for adoptive T cell transfer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号