首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ca2+-ATPase of sarcoplasmic reticulum from rabbit skeletal muscle was incorporated into vesicles made from dimyristoylphosphatidylcholine or dipalmitoylphosphatidylcholine. The Ca2+-ATPase activity of these reconstituted membranes became appreciable above 20 degrees C and 30 degrees C, respectively, in accord with the results of previous investigators. Measurement by the spin-labeling technique of the fluidity of the bulk lipid revealed the gel-to-liquid crystalline phase transition at 29 degrees C and 39 degrees C, respectively, while the fluidity of the boundary lipid in both samples was found to be low throughout the temperature range studied. The rotational mobility of the Ca2+-ATPase protein in both samples, measured by saturation transfer electron spin resonance, was also very low throughout the temperature range studied and its temperature-dependence did not show any break or jump corresponding to the phase transition of the bulk lipid. On the other hand, the structural fluctuation of the Ca2+-ATPase protein in dimyristoylphosphatidylcholine-recombinant, measured in terms of hydrogen-deuterium exchange reaction kinetics, showed a jump at about 27 degrees C, apparently in accordance with the phase transition of the bulk lipid. Results obtained in this study suggested that the Ca2+-ATPase protein molecules are in an aggregated state in these reconstituted membranes and that the Ca2+-ATPase activity is neither directly correlated to the fluidity of the boundary lipid nor to the rotational mobility of the Ca2+-ATPase, contrary to the suggestions of previous investigators (Hesketh et al. (1976) Biochemistry 15, 4145-4151; Hidalgo et al. (1978) J. Biol. Chem. 253, 6879-6887).  相似文献   

2.
By means of saturation transfer electron spin resonance spectroscopy the rotational motion of spin-labeled Ca2+-dependent ATPase molecules has been investigated for three kinds of preparations of rabbit skeletal muscle sarcoplasmic reticulum: MacLennan's enzyme (purified ATPase preparation), DOPC- and egg PC-ATPase (purified ATPase preparations in which endogenous lipids are replaced with dioleoyl and egg yolk phosphatidylcholine, respectively). The rotational mobility of the enzyme in these preparations is somewhat lower than that in the intact membrane, probably due to the reduced amount of lipids. For all the preparations, however, the Arrhenius plot for rotational mobility showed a break at about 18 degrees C, the same temperature at which a break in the Arrhenius plot for Ca2+-ATPase activity occurs. This result provides further evidence that the break in the Arrhenius plot is not related to a lipid phase transition but to a change in the physical state of the Ca2+-ATPase molecule existing in fluid lipids.  相似文献   

3.
The influence of phospholipid environment upon the mobility of spin labels covalently bound to the Ca2+-transport ATPase (ATP phosphohydrolase [EC 3.6.1.3]) was studied by electron spin resonance spectroscopy in native and reconstituted sarcoplasmic reticulum membranes. Fragmented sarcoplasmic reticulum of rabbit skeletal muscle was covalently labeled with maleimide spin-labels of different chain length or with 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidinooxyl, and the phospholipids were exchanged for dipalmitoylphosphatidylcholine or dioleoylphosphatidylcholine. With short-chain maleimide or iodoacetamide spin labels, the spectrum of the protein-bound label reflected the change in microenvironment caused by replacement of endogenous phospholipids with dipalmitoylphosphatidylcholine as a decrease in mobility. In contrast, after labeling with long-chain maleimide derivatives, there were no noticeable differences in the spectra before and after substitution with dipalmitophatidylcholine. Replacement of endogenous phospholipids with dioleoylphosphatidylcholine did not affect the spectra. The data indicate that increased viscosity in the environment of Ca2+-transport ATPase produced by replacement of sarcoplasmic reticulum lipids with dipalmitoylphosphatidylcholine reduces the mobility of short-chain maleimide spin labels covalently attached to the Ca2+-transport ATPase polypeptide.  相似文献   

4.
We derive equations that describe changes in the steady-state fluorescence polarization of the probe 1,6-diphenyl-1,3,5-hexatriene (DPH) or in the spectrum of electron spin resonance (ESR) nitroxide spin-labeled lipid probes as a function of the intrinsic molecule concentration in lipid bilayer membranes. We make use of an assumption used by us in an earlier paper. The equations are independent of any membrane model. They are valid when a DPH probe or a spin-labeled chain is equivalent to an unlabeled lipid hydrocarbon chain only as far as their general space-filling properties are concerned. We consider cases where the bilayer is either in a single homogeneous phase or in a two-phase region. We apply our equations to analyze ESR data from delipidated sarcoplasmic reticulum membranes and from egg yolk phosphatidylcholine bilayers containing Ca2+-ATPase, and DPH data from dipalmitoylphosphatidylcholine (DPPC) bilayers containing Ca2+-ATPase, both for T greater than Tc. The following conclusions were derived: (i) Ca2+-ATPase oligomers are "randomly" distributed, for the concentrations studied, in the fluid phase. (ii) There is no fixed stoichiometric ratio of "boundary" lipids and oligomers. (iii) Between 24k and 28k lipid molecules are able to surround each isolated oligomer composed of k Ca2+-ATPase monomers. Finally, we apply our equations to analyze DPH studies on DPPC bilayers containing Ca2+-ATPase for T less than Tc. We find that the results reported are in accord with the predictions of the model. In the Appendix, we show that an analytical expression for probabilities used by us is in very good agreement with the results of computer simulation.  相似文献   

5.
本文报道用荧光偏振及顺磁共振两种方法研究Mg~(2+)及其它二价金属离子对嵌有H~+-ATP酶的脂酶体不同层次脂质流动性的影响。 (1)顺磁标记探剂5-、12-、16-氮氧基硬脂酸测定结果表明Mg~(2+)和其它二价金属离子都能降低膜脂双分子层表层的流动性。降低流动性的顺序为Mg~(2+)=Ca~(2+)>Sr~(2+)>Cd~(2+)。较深层脂则无明显变化。 (2)荧光探剂7-、12-(9-蒽酰)硬脂酸及16-(9-蒽酰)棕榈酸的测定结果也表明Mg~(2+)和其它二价金属离子降低了膜脂表层的流动性,尤以Mn~(2+)、Ca~(2+)降低流动性最显著,流动性降低的顺序为;Mn~(2+) Ca>Sr~(2+) Mg~(2+) Cd~(2+)。除Mn~(2+)、Ca~(2+)还能影响膜脂深层的流动性外,其它与对照无明显差异。  相似文献   

6.
A new method was used for reconstituting active sodium deoxycholate solubilized Ca2+-ATPase of rabbit skeletal muscle sarcoplasmic reticulum. Removal of the detergent by dialysis at the pretransition temperature of the pure lipid (22 degrees C) favored the formation of sheet-like structures with a lipid and protein content close to that of the detergent-solubilized sample. Freeze-fracture electron micrographs revealed the Ca2+-ATPase to be organized in rows corresponding to the typical banded pattern seen in low-temperature freeze-fracture micrographs of pure lipid bilayers. Incubation of the sheetlike structures at a temperature (38 degrees C) above the pure lipid main phase transition (33.5 degrees C) caused closure of the sheets into vesicles displaying homogeneous intramembranous particle distributions, at least for membranes containing less than 150 lipids per Ca2+-ATPase. However, in membranes of higher lipid content, free lipid patches were seen both above and below the lipid phase transition. By use of high-sensitivity differential scanning calorimetry, three classes of excess heat capacity peaks were observed in the vesiculated samples. A broadened "free lipid" peak occurred for samples containing between 550 and 200 lipids per protein (Tm = 33.5 degrees C, as for the order-disorder transition in pure lipid vesicles). Between 200 and 150 lipids per Ca2+-ATPase, a broad shoulder became apparent in the range of 29-32 degrees C. Below 150 lipids per Ca2+-ATPase, a peak at 26-28 degrees C became increasingly prominent with lower lipid content. At a lipid to protein ratio of about 30, no peaks in heat capacity were observed. The temperature dependence of diphenylhexatriene fluorescence anisotropy revealed a similar pattern of membrane phase behavior, except that a phase transition was detected at 33.5 degrees C in all membranes studied. On the basis of these observations, we propose that the Ca2+-ATPase is surrounded by a "lipid annulus" of motionally inhibited lipid molecules that do not contribute to a calorimetrically detectable phase transition. Beyond the annulus, "secondary domains" of disrupted lipid packing account for the peak at 26-28 degrees C and the 29-32 degrees C shoulders. At high lipid to protein ratios, the secondary domains coexist with protein-free, lipid-bilayer patches, which account for the peak at 33.5 degrees C.  相似文献   

7.
Since it was possible for Ca2+,Mg2+-ATPase of sarcoplasmic reticulum (SR) to change its aggregation state in the membrane depending on temperature, and since the change could be the cause of the break in the Arrhenius plot of Ca2+,Mg2+-ATPase activity, the aggregation state of Ca2+,Mg2+-ATPase at 0 degrees C in the membrane was compared with that at 35 degrees C by freeze-fracture electron microscopy. These temperatures are below and above the break in the Arrhenius plot (about 18 degrees C), respectively. Two kinds of samples were used; fragmented SR vesicles and egg PC-ATPase vesicles, a reconstituted preparation from purified Ca2+,Mg2+-ATPase and egg yolk phosphatidylcholine (egg PC). For both the appearance of particles in the fracture faces of the samples fixed at 0 degrees C was similar to that at 35 degrees C, and phase separation between protein and lipid was not observed even at 0 degrees C. The size of the particles was measured and histograms of the sizes at 0 degrees C and 35 degrees C were made. The histogram at 0 degrees C was similar to that at 35 degrees C with a peak at 7.1 nm, which is 1-2 nm smaller than the value reported so far. The number of the particles per unit area of the membrane was also counted. The value at 0 degrees C was similar to that at 35 degrees C. These results indicate that Ca2+,Mg2+-ATPase of SR exists in the same aggregation state (estimated as oligomer based on the values obtained in this experiment) between 0 degrees C and 35 degrees C. Based on the results of this study we think that the break in the Arrhenius plot of Ca2+,Mg2+-ATPase activity in SR is not caused by the change in the aggregation state of Ca2+,Mg2+-ATPase.  相似文献   

8.
The fluidity of human erythrocyte membrane, and the effect of chlorpromazine at prelytic and lytic concentrations on the fluidity have been studied by using three kinds of fatty acid spin labels and measuring the temperature dependence of Mg2+-ATPase activity. The Arrhenius plot of the apparent rotational correlation time, tau c, for probes I(12,3) and I(5,10) showed an abrupt discontinuity at about 30 degrees C, and the plot for I(1,14) at 25 degrees C, indicating that a large difference in the fluidity exists between the interior and the outer surface of the lipid bilayer. The portions of the fatty acid chain near the ten carbon bond lengths removed from the bilayer surface became more fluid by chlorpromazine treatment; there was a decrease in the break point to around 26 degrees C following treatment with 0.6 or 1 mM of the drug. Two breaks at 21 and 30 degrees C in the Arrhenius plot of the Mg2+-ATPase activity were observed in normal erythrocyte membrane. The activation energy of the Mg2+-ATPase reaction has the values of 3.0 and 22.1 kcal/mol above the upper break and below the lower break, respectively. The drug exposure induced only a slight shift in the break temperatures, while the treatment significantly enhanced the associated activation energies of the reaction. These results suggest that the boundary phospholipids of the Mg2+-ATPase in the membrane are probably more rigid than the bulk lipids.  相似文献   

9.
The hydrophobic spin label used in ESR showed that the iminoxyl radical rotation in the native membrane of sarcoplasmatic reticulum (SR) occurred much faster than in the membranes, modified by a synthetic lipid. Such effect was observed throughout the whole temperature range (7-40 degrees). Experimental technique for the modification of the SR membrane and the lipid by ultrasonic treatment has been developed. Synthetic lipids without ultrasonic treatment did not inhibit the activity of Ca2+-ATPase. The change in both the enzyme activity and its ability to transport the Ca2+ ions through the membrane vesicules was observed after the phospholipids incorporation into the SR membrane. The investigation of the temperature dependence (in Arrhenius coordinates) of native and modified by lecithin Ca2+-ATPase after ultrasonic treatment and also of a "pure enzyme" showed the presence of two sharp breaks at 20 degrees and 40-42 degrees. It was shown tha the break of an Arrhenius anamorphosis was caused by a lipid environment of ATPase, "melting" of a phospholipid bilayer. The break at 20-22 degrees was observed in all cases and even after the incorporation of all the lipids into the SR membrane. This phenomenon can be explained by the distortion of the protein-lipid interaction, affecting the conformation mobility of protein and the geometry of its catalytically active center.  相似文献   

10.
Lipid fluidity in native and denatured sarcoplasmic reticulum membranes and extracted lipids was monitored between -30 and 30 degrees C using trans-parinaric acid as a fluorescent probe. In addition to a large increase in fluidity between -30 and 0 degree C in each system, a phase change centered near 10 degrees C was observed in the extracted lipids but not in either the native or denatured membranes. A significant change in fluorescence intensity near 15 degrees C was observed in native sarcoplasmic reticulum membranes, however, when trans-parinaric acid was excited by energy transfer from tryptophan residues of the membrane protein. When Ca2+-ATPase was subjected to proteolytic cleavage by trypsin as a function of temperature, a change in susceptibility was detected at about 15-20 degrees C in the native membranes but not in a solubilized preparation. It is proposed that one or more structural changes in the microenvironment of Ca2+-ATPase in the native membrane occur between 15 and 20 degrees C which may be related to the change in apparent activation energy which is observed for this enzyme.  相似文献   

11.
Model membranes consisting of dimyristoyl phosphatidylcholine and a hydrophobic protein from bovine myelin, lipophilin, were studied using the cholesterol-resembling cholestane ESR spin label. Orientation of the membranes made it possible to deconvolute the spectra into two fractions, one of oriented spin labels reflecting phospholipid bilayer of high order, and one of isotropically tumbling spin labels ascribed to the lipid fraction surrounding the protein molecule (boundary lipid). This isotropic tumbling is different from the behavior of phospholipid molecules near the protein, which retain some degree of order, and indicates that the boundary lipid fraction in our model system forms a rather fluid environment for the protein. A nonlinear relation was found between protein concentration and amount of boundary spin labels. Addition of cholesterol decreases the amount of boundary spin labels. Both findings form evidence for a preferential binding of cholesterol by the membrane protein.  相似文献   

12.
Lipid spin labels have been used to study lipid-protein interactions in bovine and frog rod outer segment disc membranes, in (Na+, K+)-ATPase membranes from shark rectal gland, and in yeast cytochrome oxidase-dimyristoyl phosphatidylcholine complexes. These systems all display a two component ESR spectrum from 14-doxyl lipid spin-labels. One component corresponds to the normal fluid bilayer lipids. The second component has a greater degree of motional restriction and arises from lipids interacting with the protein. For the phosphatidylcholine spin label there are effectively 55 +/- 5 lipids/200,000-dalton cytochrome oxidase, 58 +/- 4 mol lipid/265,000 dalton (Na+, K+)-ATPase, and 24 +/- 3 and 22 +/- 2 mol lipid/37,000 dalton rhodopsin for the bovine and frog preparations, respectively. These values correlate roughly with the intramembrane protein perimeter and scale with the square root of the molecular weight of the protein. For cytochrome oxidase the motionally restricted component bears a fixed stoichiometry to the protein at high lipid:protein ratios, and is reduced at low lipid:protein ratios to an extent which can be quantitatively accounted for by random protein-protein contacts. Experiments with spin labels of different headgroups indicate a marked selectivity of cytochrome oxidase and the (Na+, K+)-ATPase for stearic acid and for cardiolipin, relative to phosphatidylcholine. The motionally restricted component from the cardiolipin spin label is 80% greater than from the phosphatidylcholine spin label for cytochrome oxidase (at lipid:protein = 90.1), and 160% greater for the (Na+, K+)-ATPase. The corresponding increases for the stearic acid label are 20% for cytochrome oxidase and 40% for (Na+, K+)-ATPase. The effective association constant for cardiolipin is approximately 4.5 times greater than for phosphatidylcholine, and that for stearic acid is 1.5 times greater, in both systems. Almost no specificity is found in the interaction of spin-labeled lipids (including cardiolipin) with rhodopsin in the rod outer segment disc membrane. The linewidths of the fluid spin-label component in bovine rod outer segment membranes are consistently higher than those in bilayers of the extracted membrane lipids and provide valuable information on the rate of exchange between the two lipid components, which is suggested to be in the range of 10(6)-10(7) s-1.  相似文献   

13.
The interaction of lipid soluble spin labels with wheat embryo axes has been investigated to obtain insight into the structural organization of lipid domains in embryo cell membranes, using conventional electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) spectroscopy. Stearic acid spin labels (n-SASL) and their methylated derivatives (n-MeSASL), labelled at different positions of their doxyl group (n=5, 12 and 16), were used to probe the ordering and molecular mobility in different regions of the lipid moiety of axis cell membranes. The ordering and local polarity in relation to the position of the doxyl group along the hydrocarbon chain of SASL, determined over the temperature range from -50 to +20 degrees C, are typical for biological and model lipid membranes, but essentially differ from those in seed oil droplets. Positional profiles for ST-EPR spectra show that the flexibility profile along the lipid hydrocarbon chain does exist even at low temperatures, when most of the membrane lipids are in solid state (gel phase). The ordering of the SASL nitroxide radical in the membrane surface region is essentially higher than that in the depth of the membrane. The doxyl groups of MeSASLs are less ordered (even at low temperatures) than those of the corresponding SASLs, indicating that the MeSASLs are located in the bulk of membrane lipids rather than in the protein boundary lipids. The analysis of the profiles of EPR and ST-EPR spectral parameters allows us to conclude that the vast majority of SASL and MeSASL molecules accumulated in embryo axes is located in the cell membranes rather than in the interior of the oil bodies. The preferential partitioning of the doxyl stearates into membranes demonstrates the potential of the EPR spin-labelling technique for the in situ study of membrane behavior in seeds of different hydration levels.  相似文献   

14.
The organization of lipids in sarcoplasmic reticulum membrane was studied with a variety of stearic spin labels and a phosphatidylcholine spin label. The ESR spectra of the spin-labeled membranes consisted of two components, one due to labels in lipid bilayer structure and the other due to more immobilized labels. The relative intensity of the immobilized component increased when the lipid content of the membrane was decreased by treatment with phospholipase A [EC 3.1.1.4] and subsequent washing with bovine serum albumin. Membrane containing 30% of the intact phospholipid, i.e.0.15 mg of phospholipid per mg of protein, showed a spectrum consisting only of the immobilized component (the overall splitting ranged from 58.5 G to 60.5 G). The immobilized component was ascribed to lipids complexed with protein. The fraction of lipids in the two different organizations was determined from the ESR spectrum. The activity of the Ca2+-Mg2+ dependent ATPase [ATP phosphohydrolase, EC 3.6.1.3] was found to increase almost linearly with the lipid bilayer content in the membrane, whereas phosphoenzyme formation was almost independent of the bilayer content. This indicated that the bilayer structure is necessary for the ATPase to attain its full transport activity.  相似文献   

15.
In Paramecium, no Ca2(+)-ATPases with the properties of Ca2+ pumps have been identified. Here we report a pellicle associated Ca2(+)-ATPase activity and a corresponding phosphoprotein intermediate characteristic of a pump. The Ca2(+)-ATPase activity requires 3 mM Mg for optimal Ca2+ stimulation (KCa = 90 nM) and is specific for ATP as substrate (Km = 75 microM). Vanadate and calmidazolium inhibit Ca2(+)-stimulated activity with an EC50 of about 2 microM and 0.5 microM, respectively. Likewise, 10 microM trifluoperazine inhibits 80% of Ca2(+)-ATPase activity, but bovine calmodulin fails to stimulate. The Ca2(+)-ATPase is not inhibited by sodium azide (10 mM), oligomycin (10 micrograms/ml) or ouabain (0.2 mM). Incubation of pellicles with [gamma-32P]ATP specifically labels a 133 kDa protein in a Ca2(+)-dependent, hydroxylamine-sensitive manner, and the level of phosphorylation is increased by 100 microM La3+. Phosphorylation of an endoplasmic reticulum-enriched fraction labels a Ca2(+)-dependent protein different from the pellicle protein, being lower in molecular mass and unaffected by La3+. Ca2+ uptake by the alveolar sacs, integral components of the pellicle membrane complex, is poorly coupled to Ca2(+)-stimulated ATP hydrolysis (Ca2+ transported/ATP hydrolysed less than 0.2) and is much less sensitive to vanadate inhibition (EC50 approx. 20 microM) compared to the total Ca2(+)-ATPase activity. Therefore, the majority of the Ca2(+)-ATPase activity is likely to be plasma membrane associated.  相似文献   

16.
Several maleimide derivatives of potential usefulness as conformational probes were tested for reactivity toward SH groups of Ca2+, Mg2+-ATPase of sarcoplasmic reticulum. These include three fluorescent labels, N-(1-anilinonaphthyl-4)maleimide (ANM), N-(p-(2-benzimidazolyl)phenyl)maleimide (BIPM), and N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide (DACM), and a spin label, 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl (MSL). These reagents also exhibit a selective reactivity toward SH groups which is similar to that of N-ethylmaleimide, although these conformational probes were somewhat more reactive than N-ethylmaleimide. Based on the above finding, procedures were devised to specifically label either one of two reactive SH groups of the ATPase, namely one highly reactive but functionally nonessential (SHN) and the other, essential for the decomposition of the E-P intermediate (SHD) [Kawakita, M., et al. (1980) J. Biochem. 87, 609-617], with any one of these conformational probes. Sarcoplasmic reticulum membranes labeled with ANM at either SHN or SHD showed a characteristic fluorescence whose intensity reversibly changed in response to the removal and readdition of Ca2+ ions in the range of 10(-6) to 10(-7) M. The change could be ascribed to a conformational change of the ATPase in response to dissociation and association of Ca2+ ions at the transport site. The Ca2+-dependent fluorescence change was quantitatively different, depending on whether the ATPase was labeled at SHN or SHD. Moreover, it was probe-specific in that BIPM and DACM fluorescence did not change in response to Ca2+. The possible significance of these observations is discussed.  相似文献   

17.
The molecular environment of Ca2+ translocating sites of skeletal muscle sarcoplasmic reticulum (SR) (Ca2+ + Mg2+)-ATPase has been studied by pulsed-laser excited luminescence of Eu3+ used as a Ca2+ analogue. Interaction of Eu3+ with SR was characterized by investigating its effect on partial reactions of the Ca2+ transport cycle. In native SR vesicles, Eu3+ was found to inhibit Ca2+ binding, phosphoenzyme formation, ATP hydrolysis activity and Ca2+ uptake in parallel fashion. The non-specific binding of Eu3+ to acidic phospholipids associated with the enzyme was prevented by purifying (Ca2+ + Mg2+)-ATPase and exchanging the endogenous lipids with a neutral phospholipid, dioleoylglycerophosphocholine. The results demonstrate that the observed inhibition of Ca2+ transport by Eu3+ is due to its binding to Ca2+ translocating sites. The 7F0----5D0 transition of Eu3+ bound to these sites was monitored. The non-Lorentzian nature of the excitation profile and a double-exponential fluorescence decay revealed the heterogeneity of the two sites. Measurement of fluorescence decay rates in H2O/D2O mixture buffers further distinguished the sites. The number of water molecules in the first co-ordination sphere of Eu3+ bound at transport sites were found to be 4 and 1.5. Addition of ATP reduced these numbers to zero and 0.6. These data show that the calcium ions in translocating sites are well enclosed by protein ligands and are further occluded down to zero or one water molecule of solvation during the transport process.  相似文献   

18.
Plasma membrane Ca2+-ATPase activity diminishes by about 50% in red blood cells during preeclampsia. We investigated whether the number of Ca2+-ATPase molecules is modified in red cell membranes from preeclamptic pregnant women by measuring the specific phosphorylated intermediate of this enzyme. Also, we isolated the Ca2+-ATPase protein from both normotensive and preeclamptic pregnant women and estimated its molecular weight, and its cross-reactions with specific polyclonal and monoclonal (5F10) antibodies against it. We measured the Ca2+-ATPase activity in a purified state and the effect of known modulators of this ATPase. It was found that the phosphorylated intermediate associated with PMCA is similar for red cell ghosts from normotensive and preeclamptic women, suggesting a similar number of ATPase molecules in these membranes. The molecular weight of the Ca2+-ATPase is around 140 kDa for both normotensive and preeclamptic membranes, and its cross-reactions with specific antibodies is similar, suggesting that the protein structure remains intact in preeclampsia. Calmodulin, ethanol, or both calmodulin plus ethanol, stimulated the Ca2+-ATPase activity to the same extent for both normotensive and preeclamptic preparations. Our results showed that the reduced Ca2+-ATPase activity of the red cell membranes from preeclamptic women is not associated with a defective enzyme, but rather with a high level of lipid peroxidation.  相似文献   

19.
Laser Raman spectroscopy has been used to examine the conformations of the protein and phospholipid components of sarcoplasmic reticulum from rabbit white skeletal muscle. The phospholipid component is shown to have the conformation of fluid, liquid-crystalline lipids, even at 10 degrees C, and no breaks in the lipid conformation are observed in the range of 10-37 degrees C. Protein (predominantly the Ca2+-dependent ATPase) conformation is shown to contain very little beta-sheet structure under all conditions. Absolute content of alpha-helix and random coil or beta-turn could not be determined because of interference in the amide I and III regions. However, the Ca2+-ATPase in sarcoplasmic reticulum appears to undergo a conformational change at 15-18 degrees C which involves removal of a portion of the tryptophan residues from an aqueous environment and an increase in alpha-helical content. This conformation change coincides with a change in slope of Arrhenius plots of ATP hydrolysis activity. Increasing concentrations of Ca2+ and Mg2+ appear to slightly decrease the alpha-helical content of sarcoplasmic reticulum protein.  相似文献   

20.
A 50% decrease in both the initial rate and the total capacity of Ca2+ uptake by the sarcoplasmic reticulum (SR) occurred 2 days after the onset of chronic (10 Hz) nerve stimulation in rabbit fast-twitch muscle. Prolonged stimulation (up to 28 days) did not lead to further decreases. This reduction, which was detected in muscle homogenates using a Ca2+-sensitive electrode, was reversible after 6 days cessation of stimulation and was not accompanied by changes in the immunochemically (ELISA) determined tissue level or isozyme characteristics of the SR Ca2+-ATPase protein. However, as measured in isolated SR, it correlated with a reduced specific activity of the Ca2+-ATPase. Kinetic analyses demonstrated that affinities of the SR Ca2+-ATPase towards Ca2+ and ATP were unaltered. Positive cooperativity for Ca2+ binding (h = 1.5) was maintained. However, a 50% decrease in Ca2+-dependent phosphoprotein formation indicated the presence of inactive forms of Ca2+-ATPase in stimulated muscle. The reduced phosphorylation of the enzyme was accompanied by an approximately 50% lowered binding of fluorescein isothiocyanate, a competitor at the ATP-binding site. In view of the unaltered affinity for ATP, this finding suggests that active Ca2+-ATPase molecules coexist in stimulated muscle with inactive enzyme molecules, the latter displaying altered properties at the nucleotide-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号