首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulation of the neutrophils with fMet-Leu-Phe inhibits the rise in intracellular concentration of free calcium produced by the subsequent addition of platelet-activating factor. This deactivation is not observed in pertussis toxin treated cells. In addition, preincubation of the cells with the protein kinase C activator phorbol 12-myristate 13-acetate for three minutes abolishes completely the rise in calcium produced by platelet-activating factor. This inhibition is prevented by the addition of the protein kinase C inhibitor 1-(5-isoquinoline-sulfonyl)-2-methyl piperazine prior to the addition of the phorbol ester. Phorbol 12-myristate 13-acetate, at a concentration that does not produce significant inhibition, accelerates the rate of calcium removal from the cytoplasm, and this is abolished by the protein kinase C inhibitor. In contrast, the deactivation by fMet-Leu-Phe is not prevented by the protein kinase C inhibitor. The results presented here suggest that the protein kinase C system may regulate the opening by platelet-activating factor of possible plasma membrane associated pertussis toxin independent calcium channels and/or the binding of platelet-activating factor to the receptors. In addition, protein kinase C activation increases the rates of the calcium efflux pump and/or calcium sequestering by intracellular organelles. The most simple and straightforward explanation of the observed deactivation by fMet-Leu-Phe is that the addition of fMet-Leu-Phe to neutrophils stimulates the production of platelet-activating factor which then binds to and deactivates the receptors.  相似文献   

2.
Human neutrophils aggregate and release mediators of inflammation, such as active oxygen species and lysosomal enzymes, when exposed to the chemoattractant, fMet-Leu-Phe, or the tumor promotor, phorbol myristate acetate. In order to 'stage' events which may lead to such neutrophil responses, we determined the temporal relationship between stimulus-induced changes in the endogenous phospholipids phosphatidylinositol (PI) and phosphatidic acid, the mobilization of calcium, and the onset of aggregation and generation of superoxide anion during the initial 2 min of cell activation. Within 5 s after addition of fMet-Leu-Phe (10(-7) M) neutrophils accumulated phosphatidic acid and the levels of PI decreased, as determined by two-dimensional thin-layer chromatography and phosphorus determinations. By 5 s, phosphatidic acid levels rose approximately 3.5-fold and at 15 s the loss of PI exceeded the quantity of phosphatidic acid generated. In response to phorbol myristate acetate (1 microgram/ml), however, changes in PI or phosphatidic acid were not observed until after 60 s. Accumulation of phosphatidic acid in fMet-Leu-Phe-stimulated cells was not inhibited by chelation of extracellular calcium. Neutrophils exposed to either fMet-Leu-Phe or phorbol myristate acetate also showed rapid decrements in fluorescence of cell-associated chlorotetracycline (used as an indirect probe of mobilization of intracellular membrane-associated calcium) and took up 45Ca2+ from the extracellular medium (under 60 s). The results indicate that changes in calcium mobilization, together with the alterations in phospholipid metabolism (under 5 s) anteceded aggregation and the generation of O2-. (10-15 s) induced by fMet-Leu-Phe. In contrast, when neutrophils were exposed to phorbol myristate acetate, changes in PI and phosphatidic acid (over 60 s) were observed after the mobilization of calcium (under 5 s) and the onset of O2-. generation and aggregation (30-35 s).  相似文献   

3.
Human neutrophils aggregate and release mediators of inflammation, such as active oxygen species and lysosomal enzymes, when exposed to the chemoattractant, fMet-Leu-Phe, or the tumor promotor, phorbol myristate acetate. In order to ‘stage’ events which may lead to such neutrophil responses, we determined the temporal relationship between stimulus-induced changes in the endogenous phospholipids phosphatidylinositol (PI) and phosphatidic acid, the mobilization of calcium, and the onset of aggregation and generation of superoxide anion during the initial 2 min of cell activation. Within 5 s after addition of fMet-Leu-Phe (10?7 M) neutrophils accumulated phosphatidic acid and the levels of PI decreased, as determined by two-dimensional thin-layer chromatography and phosphorus determinations. By 5 s, phosphatidic acid levels rose approximately 3.5-fold and at 15 s the loss of PI exceeded the quantity of phosphatidic acid generated. In response to phorbol myristate acetate (1 μg/ml), however, changes in PI or phosphatidic acid were not observed until after 60 s. Accumulation of phosphatidic acid in fMet-Leu-Phe-stimulated cells was not inhibited by chelation of extracellular calcium. Neutrophils exposed to either fMet-Leu-Phe or phorbol myristate acetate also showed rapid decrements in fluorescence of cell-associated chlorotetracycline (used as an indirect probe of mobilization of intracellular membrane-associated calcium) and took up 45Ca2+ from the extracellular medium (under 60 s). The results indicate that changes in calcium mobilization, together with the alterations in phospholipid metabolism (under 5 s) anteceded aggregation and the generation of O?2 (10–15 s) induced by fMet-Leu-Phe. In contrast, when neutrophils were exposed to phorbol myristate acetate, changes in PI and phosphatidic acid (over 60 s) were observed after the mobilization of calcium (under 5 s) and the onset of O?2 generation and aggregation (30–35 s).  相似文献   

4.
In order to analyze the complex activities of histamine H2 receptor activation on neutrophils, human HL-60 promyelocytic leukemia cells were differentiated into neutrophils by incubation with dimethyl sufoxide, loaded with the Ca2+-sensitive indicator dyes, indo-1 or fura-2, and the levels of intracellular Ca2+ ([Ca2+]i) measured in a fluorescent-activated cell sorter and fluorimeter, respectively. Histamine increased [Ca2+]i in a dose-dependent manner with a half-maximal concentration (EC50) of approximately 10(-6) to 10(-5) M, which exhibited H2 receptor specificity. Prostaglandin E2 and isoproterenol also induced [Ca2+]i mobilization in HL-60 cells, whereas the cell permeable form of cAMP and forskolin failed to increase [Ca2+]i. Since H2-receptor mediated [Ca2+]i mobilization was not inhibited by reducing the concentration of extracellular Ca2+ nor by the addition of Ca2+ channel antagonists, LaCl3 and nifedipine, [Ca2+]i mobilization is due to the release of Ca2+ from intracellular stores. Furthermore, both 10(-4) M histamine and 10(-6) M fMet-Leu-Phe increased the levels of 1,4,5-inositol trisphosphate. However, histamine-induced mobilization of [Ca2+]i was inhibited by cholera toxin but not by pertussis toxin, whereas the action of fMet-Leu-Phe was inhibited by pertussis toxin but not by cholera toxin. These data suggest that H2 receptors on HL-60 cells are coupled to two different cholera toxin-sensitive G-proteins and activate adenylate cyclase and phospholipase C simultaneously.  相似文献   

5.
The addition of the chemotactic factor fMet-Leu-Phe to cell homogenates causes a decrease in the pertussis toxin catalyzed ADP-ribosylation of a 41 kDa protein. The fMet-Leu-Phe induced decrease is not abolished in homogenates prepared from phorbol 12-myristate 13-acetate treated neutrophils. This decreased ribosylation probably reflects a dissociation of the GTP-binding protein oligomer that is not followed by association, possibly because of the release of the alpha-subunit into the suspending medium. Furthermore, fMet-Leu-Phe stimulates the binding of radiolabelled guanylylimidodiphosphate to membrane preparations. Again, the stimulated binding of guanylylimidodiphosphate is not affected by treating the intact neutrophils with phorbol 12-myristate 13-acetate. In addition leukotriene B4, platelet activating factor and fMet-Leu-Phe activate a high-affinity GTPase in membrane preparations. The basal level of this GTPase activity is dramatically inhibited in membrane preparations isolated from cells treated with phorbol 12-myristate 13-acetate. On the other hand, the fMet-Leu-Phe stimulated component is only marginally reduced. The present findings suggest that PMA does not prevent receptor G-protein interaction.  相似文献   

6.
The modulatory influences of phorbol esters on the functional responsiveness of human peripheral blood neutrophils have been investigated. These studies focused on measurements of the levels of cytoplasmic free calcium and of tyrosine phosphorylation as well as on their ability to mount an oxidative response. Short incubation times (< 1 min) with low concentrations of phorbol esters (5-50 nM) were shown to enhance the above indices of neutrophil responsiveness to chemotactic factors such as fMet-Leu-Phe and leukotriene B4. On the other hand, a time- and concentration-dependent inhibition of calcium mobilization and superoxide production was also observed. The effects of the phorbol esters were stereo-specific and were antagonized by a novel protein kinase C inhibitor (RO 318220) but were not affected by the oxidative burst inhibitor diphenyleneiodonium. Pre-incubation of the cells with phorbol 12,13-dibutyrate (PDBu) altered in a concentration-dependent manner the tyrosine phosphorylation pattern stimulated by fMet-Leu-Phe. In addition, the tyrosine kinase inhibitor erbstatin inhibited the priming of the mobilization of calcium induced by PDBu. These data demonstrate the rapidity of the effects of the activation of protein kinase C, their potential to modulate positively the early events of the excitation-response coupling sequence and the complexity of the functional interrelationships among the various cellular activation pathways available to human neutrophils and other non-muscle cells.  相似文献   

7.
J Lang  F Boulay  G Li    C B Wollheim 《The EMBO journal》1993,12(7):2671-2679
In neutrophils fMet-Leu-Phe activates phospholipase C via a pertussis toxin sensitive G-protein and induces granule secretion. We have transfected a human cDNA sequence encoding the fMet-Leu-Phe receptor into the insulin secreting cell line RINm5F to study receptor-effector coupling with special regard to secretion. Stable overexpression resulted in membrane hyperpolarization, reduction of cAMP accumulation and inhibition of insulin secretion upon exposure of cells to fMet-Leu-Phe with EC50 values in the pmol range. As in the neutrophil, nanomolar concentrations of ligand induced membrane depolarization and activation of phospholipase C, with subsequent mobilization and influx of calcium. In permeabilized cells the inhibitory effect of fMet-Leu-Phe on secretion was partially retained indicating a direct action of the fMet-Leu-Phe receptor on exocytosis. Pertussis toxin abolished the effects of fMet-Leu-Phe. Our results suggest conserved coupling from fMet-Leu-Phe receptor to pertussis toxin sensitive transducers analogous to the mechanism in neutrophils. However, the net biological effect of receptor activation is determined by additional factors intrinsic to the host cell.  相似文献   

8.
The hypothesis that protein kinase C (PKC) participates in agonist-mediated desensitization of formyl peptide receptors in HL-60 granulocytes was tested. fMet-Leu-Phe and leukotriene B4(LTB4) produced homologous desensitization of agonist-stimulated intracellular calcium transients. Pre-treatment with the PKC activator, phorbol myristate acetate (PMA; 10 nM), abolished both fMet-Leu-Phe and LTB4-stimulated calcium transients. Membranes prepared from control HL-60 granulocytes (NM) or cells treated with 10 nM PMA (PMA-M) demonstrated increased formyl peptide receptor and G protein density, as determined by radioligand binding and pertussis toxin- and cholera toxin-catalysed ADP ribosylation. fMet-Leu-Phe stimulation of guanosine 5′-[γ-thio]-triphosphate (GTPγS) binding and GTP hydrolysis and GDP inhibition of fMet-Leu-Phe binding were not different between NM and PMA-M. Pre-treatment with 10 nM PMA did not inhibit subsequent fMet-Leu-Phe-stimulated superoxide generation or phospholidase D activation. We conclude that PKC desensitizes fMet-Leu-Phe-stimulated phospholipase C, but not phospholipase D, responses and that PKC activation does not mediate agonist-induced desensitization of formyl peptide receptors.  相似文献   

9.
The addition of propionic acid to rabbit neutrophils causes cell acidification and increases the amount of actin associated with the cytoskeleton. Both responses are rapid, and while the cell acidification is somewhat long-lasting, the increase in cytoskeletal actin is transient. It reaches a maximum value within 15 seconds and then returns to the basal level. Unlike fMet-Leu-Phe, however, propionic acid does not cause a rise in the intracellular concentration of free calcium. Pretreatment of the cells with pertussis toxin inhibits the propionic acid-produced increase in cytoskeletal actin but not the decrease in intracellular pH. However, the rate of return to the base line of the cell acidification produced by propionic acid is diminished in cells pretreated with pertussis toxin. On the other hand, both the decrease in intracellular pH and the increase in cytoskeletal actin produced by fMet-Leu-Phe are inhibited by pertussis toxin treatment. The results presented here suggest two important points. First, while cell acidification may trigger directly or indirectly the association of actin with the cytoskeleton, it is certainly not sufficient. Second, a functional guanine-nucleotide regulatory protein is required for stimulated cytoskeletal actin. One or more components of the G-protein and/or their effects on phosphoinositide hydrolysis may increase the number of actin monomers and the availability of preexisting actin filaments to these monomers.  相似文献   

10.
Effect of botulinum D toxin on neutrophils   总被引:1,自引:0,他引:1  
Activated botulinum D toxin ADP-ribosylates a 22 kDa molecular weight protein in homogenates obtained by sonication of a suspension of rabbit peritoneal neutrophils. The ADP-ribosylation catalyzed by activated botulinum D toxin is inhibited in homogenates obtained from cells pretreated with the toxin, suggesting that it is able to enter into these cells and be activated by them. The rise in intracellular concentration of free calcium in toxin treated cells stimulated by fMet-Leu-Phe is similar to that found in control cells. The basal concentration of intracellular free calcium is significantly elevated in neutrophils treated with the intact but not with the activated form of the botulinum D toxin. Superoxide generation in control and native toxin treated cells stimulated with fMet-leu-Phe, phorbol 12-myristate 13-acetate or opsonized zymosan is the same. The release of beta-glucosaminidase produced by fMet-Leu-Phe or Concanavalin A in botulinum D toxin treated neutrophils was slightly higher than the corresponding release in control cells. Furthermore, the fMet-Leu-Phe-induced increase in the amount of actin associated with the cytoskeleton is not inhibited by botulinum D toxin. These results suggest that the 22 kDa protein which can be ADP-ribosylated by botulinum D toxin is not involved in these stimulated neutrophil responses.  相似文献   

11.
The characteristics of the activation of a histone H4 kinase activity in Triton X-100 lysates of rabbit peritoneal neutrophils pretreated with fMet-Leu-Phe were studied: The activation of the kinase was a) inhibited by the antagonist of formylpeptide, t-Boc-(Phe-Leu)2(-)-Phe, b) completely inhibited by pertussis toxin pretreatment, c) not affected by the pretreatment of neutrophils with an activator of protein kinase C, phorbol-12-myristate-13-acetate, or an inhibitor of protein kinase C, 1-(5-isoquinoline-sulfonyl)-2-methyl-piperazine, and d) not inhibited in the cells preloaded with the intracellular calcium chelators, bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetra acetic acid acetoxymethyl-ester (BAPTA/AM). These results suggest that the stimulus-induced activation of H4 kinase requires functional receptor and GTP-binding protein but neither calcium mobilization nor protein kinase C activation.  相似文献   

12.
Signalling for increased cytoskeletal actin in neutrophils   总被引:3,自引:0,他引:3  
The addition of fMet-Leu-Phe, platelet-activating factor, leukotriene B4 or sodium propionate to rabbit neutrophils causes an increase in the amount of actin associated with the cytoskeletal actin. The increase is rapid, transient and inhibitable by pertussis toxin. On the other hand, the addition of phorbol 12-myristate 13-acetate or NH4Cl causes a pertussis toxin-insensitive increase in cytoskeletal actin. The effects of the phorbol ester and fMet-Leu-Phe are additive, and in the presence of the phorbol ester, the fMet-Leu-Phe induced effect declines to the level produced by the phorbol ester. These results suggest that: one of the signalling pathways for actin polymerization involves a guanine-nucleotide binding protein; actin polymerization mediated through this pathway is rapid, transient and inhibitable by pertussis toxin, and a second signalling pathway is independent of this guanine-nucleotide binding protein; actin polymerization, mediated by this second pathway, is somewhat slower, sustained and insensitive to pertussis toxin. These results are discussed in terms of a model which includes gelsolin, profilin and the pertussis toxin-sensitive guanine-nucleotide binding protein.  相似文献   

13.
The addition of pertussis toxin to rabbit neutrophils inhibits the rise in the intracellular concentration of free calcium induced by the chemotactic factors fMet-Leu-Phe and leukotriene B4. At high concentrations of fMet-Leu-Phe, the inhibitory effect of the toxin is more on the stimulus-induced increase in membrane permeability to calcium than on calcium mobilization from internal stores. These results suggest that the "G protein" system either directly or indirectly is involved in the regulation of the stimulus-induced changes in the calcium mobilization and/or gating systems.  相似文献   

14.
A major function of Rac2 in neutrophils is the regulation of oxidant production important in bacterial killing. Rac and the related GTPase Cdc42 also regulate the dynamics of the actin cytoskeleton, necessary for leukocyte chemotaxis and phagocytosis of microorganisms. Although these GTPases appear to be critical downstream components of chemoattractant receptor signaling in human neutrophils, the pathways involved in direct control of Rac/Cdc42 activation remain to be determined. We describe an assay that measures the formation of Rac-GTP and Cdc42-GTP based on their specific binding to the p21-binding domain of p21-activated kinase 1. A p21-binding domain glutathione S-transferase fusion protein specifically binds Rac and Cdc42 in their GTP-bound forms both in vitro and in cell samples. Binding is selective for Rac and Cdc42 versus RhoA. Using this assay, we investigated Rac and Cdc42 activation in neutrophils and differentiated HL-60 cells. The chemoattractant fMet-Leu-Phe and the phorbol ester phorbol myristate acetate stimulate formation of Rac-GTP and Cdc42-GTP with distinct time courses that parallel cell activation. We also show that the signaling pathways leading to Rac and Cdc42 activation in HL-60 cells involve G proteins sensitive to pertussis toxin, as well as tyrosine kinase and phosphatidylinositol 3-kinase activities.  相似文献   

15.
Propionic acid stimulates superoxide generation in human neutrophils   总被引:2,自引:0,他引:2  
Short-chain carboxylic acids are the metabolic by-products of pathogenic anaerobic bacteria and are found at sites of infection in millimolar quantities. We previously reported that propionic acid, one of the short-chain carboxylic acids, induces an increase in intracellular Ca2+ ([Ca2+]i) in human neutrophils. Here we investigate the effect of propionic acid on superoxide generation in human neutrophils. Propionic acid (10 mm) induced inositol 1,4, 5-trisphosphate (IP3) formation and a rapidly transient increase in [Ca2+]i, but not superoxide generation, whereas 1 microm formylmethionyl-leucyl-phenylalanine (fMLP), a widely used neutrophil-stimulating bacterial peptide, stimulated not only IP3 formation and Ca2+ mobilization but also superoxide generation. The IP3 level induced by propionic acid was slightly lower than that induced by fMLP. The transient increase in [Ca2+]i induced by propionic acid immediately returned to the basal level, whereas a sustained increase in [Ca2+]i, which was higher than the basal level, following a transient increase in [Ca2+]i was induced by fMLP. The peak level induced by propionic acid was lower than that with fMLP. In the absence of extracellular Ca2+, thapsigargin, a potent inhibitor of endoplasmic reticulum Ca2+-ATPase, induced an increase in [Ca2+]i even after propionic acid stimulation, but not after fMLP. The Ca2+ ionophore A23187 and thapsigargin induced superoxide generation by themselves. Propionic acid enhanced the superoxide generating effect of A23187 and thapsigargin. These results suggest that Ca2+ mobilization induced by propionic acid is much weaker than that with fMLP, and propionic acid is able to generate superoxide in the presence of a Ca2+ ionophore and a Ca2+ influx activator.  相似文献   

16.
Human neutrophils and HL-60 leukaemic cells possess an NADPH oxidase which catalyses superoxide (O2-) formation and is activated by the chemotactic peptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMet-Leu-Phe). In dibutyryl cyclic AMP-differentiated HL-60 cells, ATP and UTP in the presence of cytochalasin B activated O2- formation with EC50 values of 5 microM and efficacies amounting to 30% of that of fMet-Leu-Phe. The potency order of purine nucleotides in activating O2- generation was ATP = adenosine 5'-O-(3-thiotriphosphate) greater than ITP greater than dATP = ADP. Pyrimidine nucleotides activated NADPH oxidase in the potency order UTP greater than dUTP greater than CTP = TTP = UDP. Pertussis toxin completely prevented activation of NADPH oxidase by fMet-Leu-Phe and UTP, whereas the effect of ATP was only partially inhibited. ATP and UTP enhanced O2- generation induced by fMet-Leu-Phe by up to 8-fold, and primed the cells to respond to non-stimulatory concentrations of fMet-Leu-Phe. Activation of NADPH oxidase by UTP but not by ATP was inhibited by various activators of adenylate cyclase. In dimethyl sulphoxide-differentiated HL-60 cells and in human neutrophils, ATP and UTP per se did not activate NADPH oxidase, but they potentiated the effect of fMet-Leu-Phe. Our results suggest that purine and pyrimidine nucleotides act via purino- and novel pyrimidinoceptors respectively, which are coupled to guanine nucleotide-binding proteins leading to the activation of NADPH oxidase. As ATP and UTP are released from cells under physiological and pathological conditions, these nucleotides may play roles as intercellular signal molecules in the activation of O2- formation.  相似文献   

17.
The relationship between the chemotactic-factor-elicited changes in the intracellular pH and the shape of human neutrophils was investigated using simultaneous measurements of both parameters. The results demonstrate first that fMet-Leu-Phe and leukotriene B4 elicit qualitatively similar pH and shape change responses from the neutrophils. A relationship between the chemoattractant-elicited decrease in cytoplasmic pH and the shape changes is indicated by several findings including: 1) the similarities in the time courses of the two responses, 2) the ability of propionic acid to induce a transient and pertussis-toxin-sensitive shape change response, and 3) the ability of the calcium ionophore A23187 to similarly induce both responses under conditions when the degranulation is minimized. On the other hand, several other results indicate that the drop in pH is not a sufficient condition for the chemotactic-factor-stimulated shape changes. These include: 1) the ability of pertussis toxin to inhibit the shape changes induced by propionic acid and by A23187 without affecting the drop in pH, and 2) the observation that the drop in pH induced by propionic acid persists significantly longer than the shape change. Increasing the cytoplasmic pH by adding ammonium chloride was also found to cause shape changes in the neutrophils. The response to the base differs in two important aspects from that caused by propionic acid: it is pertussis-toxin-insensitive, and it is long-lived. Chemotactic factors have been found to induce a shape change under conditions when the internal pH was artificially increased or decreased, indicating that it is not the absolute cytoplasmic pH that represents the internal signalling parameter. The results are discussed in terms of the activation of the cytoskeletal network of the neutrophils by chemotactic factors.  相似文献   

18.
Platelet activating factor has been found to increase the intracellular level of free calcium (as monitored by the fluorescent calcium indicator quin-2) and to stimulate the turnover of the polyphosphoinositides in rabbit neutrophils. Calcium mobilization induced by platelet activating factor, in contrast to previous reports with chemotactic factors, is unaffected by pertussis toxin; on the other hand, stimulated polyphosphoinositol hydrolysis and granule enzyme secretion are potently antagonized under the same conditions. The calcium, as well as the secretory responses to the lipid mediator are largely dependent on the presence of extracellular calcium. Internal contributions to the quin-2 signal are only detectable at relatively high concentrations of platelet activating factor. Calcium mobilization and secretion stimulated by platelet activating factor are inhibited following a short incubation with phorbol 12-myristate 13-acetate. These results are discussed in terms of the possibility that platelet activating factor activates neutrophils via dual pathways, the first involving direct interaction with phorbol ester inhibitable calcium channels and the other the stimulation in a manner dependent on a guanine nucleotide binding protein of the phospholipase C specific for polyphosphoinositides.  相似文献   

19.
We have examined the role of GTP-binding proteins and the associated cyclic AMP- and calcium-related transduction mechanisms in the regulation of capping in human neutrophils. Pertussis toxin (PT), a probe for the GTP-binding protein Ni, abolished capping induced by fluorescein isothiocyanate-conjugated concanavalin A (Con-A), whereas cholera toxin, a probe for the GTP-binding protein Ns, was without effect. Consistent with the latter finding, ligands acting at receptors associated with the Ns protein, namely the prostaglandin E1 and beta-adrenergic agonists, were without effect on the capping reaction. The possible role of mobilization of internal calcium was evaluated by using Quin2-loaded cells. Calcium mobilization was observed at concentrations of Con-A which yielded optimal capping (10 micrograms/ml). Treatment with PT, phorbol myristrate acetate or 8-(NN-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) abolished both calcium mobilization and capping. Colchicine, which substantially enhanced capping, had no effect on calcium mobilization. At concentrations of the lectin above those required for capping, superoxide generation and enzyme release were noted. These reactions were less susceptible to inhibition by PT, effects being observed only on the Kact. for Con-A-mediated superoxide generation with little effect on the Vmax. The degree of PT-mediated inhibition for enzyme release with Con-A was much lower than that observed with fMet-Leu-Phe. Our results imply that a step involving Ni-mediated calcium mobilization, sensitive to phorbol myristate acetate, is essential to the regulation of capping; a distinct mechanism may be involved in colchicine-mediated enhancement of capping; and Ni may play a relative minor role in the regulation of lectin-mediated exocytosis.  相似文献   

20.
The effects of cholesterol-perturbing agents on the mobilization of calcium induced upon the stimulation of human neutrophils by chemotactic factors were tested. Methyl-beta-cyclodextrin and filipin did not alter the initial peak of calcium mobilization but shortened the duration of the calcium spike that followed the addition of fMet-Leu-Phe. These agents also inhibited the influx of Mn(2+) induced by fMet-Leu-Phe or thapsigargin. Methyl-beta-cyclodextrin and filipin completely abrogated the mobilization of calcium induced by 10(-10) m platelet-activating factor, which at this concentration depends to a major extent on an influx of calcium as well as the influx of calcium induced by 10(-7) m platelet-activating factor. On the other hand, methyl-beta-cyclodextrin and filipin enhanced the mobilization of calcium induced by ligation of FcgammaRIIA, an agonist that did not induce a detectable influx of calcium. Finally, methyl-beta-cyclodextrin and filipin enhanced the stimulation of the profile of tyrosine phosphorylation, the activity of phospholipase D (PLD), and the production of superoxide anions induced by fMet-Leu-Phe. These results suggest that the calcium channels utilized by chemotactic factors in human neutrophils are either located in cholesterol-rich regions of the plasma membrane, or that the mechanisms that lead to their opening depend on the integrity of these microdomains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号