首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Airway responsiveness to inhaled cholinergic agonist during the early stage of pulmonary O2 toxicity was examined to determine whether normobaric hyperoxia alters airway function. Eight healthy nonsmoking males with moderate base-line methacholine responsiveness breathed normobaric O2 (greater than or equal to 95%) over 12 h and on another occasion breathed air in an identical protocol. Vital capacity, expiratory flow, airway responsiveness to methacholine, and respiratory symptoms were measured at 0, 4, 8, and 12 h while subjects breathed O2 and 12 h afterwards. After 12 h, forced vital capacity was significantly decreased with O2 breathing but not with air breathing. At 4, 8, or 12 h of exposure and 12 h after exposure, there was no difference in methacholine sensitivity or reactivity between O2 and air-exposure trials. The earliest manifestations of pulmonary normobaric O2 toxicity in normal adults include diminished vital capacity and the onset of respiratory symptoms, but early O2 toxicity does not produce altered responsiveness to inhaled methacholine.  相似文献   

2.
The physiological response of two central nervous system neurotransmitter receptors to oxidative stress was studied using the rat model of hyperoxia. We show that hyperoxia leads to a decline in the ability of isoproterenol (ISO) to augment GABAergic responses in cerebellar Purkinje neurons in vivo. This effect is reversed by the N-tert-butylalpha-phenylnitrone (PBN). We also show that hyperoxia produces a decline in the ability of oxotremorine (OXO) to stimulate dopamine (DA) release in striatal slices. This effect is accompanied by an increase in hydroxyl radical levels in the CNS reflected in an increase in 2,3-DHBA, suggesting that the change is the result of an increased level of oxidative stress. We also show a time dependent effect of hyperoxia on both beta-adrenergic and muscarinic receptor function. We examined the interaction between age and hyperoxia exposure and found that in 12-month-old rats there is a decline in the baseline response prior to oxygen exposure that may interfere with observing a subsequent effect of hyperoxia. Differential effects were observed between the cerebellum and striatum with respect to the interaction of age and time of oxygen exposure. Overall, the data suggest that age and hyperoxia may be acting via a common mechanism because there was no synergistic effect of the two conditions.  相似文献   

3.
In experiments with hybrid mice (CBA X C57B1)F1 and F2(CBWA), a study was made of the combined effect of normobaric hyperoxia and vibration on sensitivity of the organism to gamma-radiation. A single and protracted (for 5 days, daily) vibration before irradiation aggravated acute radiation sickness. A modifying effect of hyperoxia on the development of the intestinal form of radiation sickness was the same as that observed under the effect of vibration. In the experiments with tetrahybrids, the combined effect of the two factors aggravated drastically the intestinal syndrome of acute radiation sickness (DMF = 1.24).  相似文献   

4.
5.
Continuous exposure of Chinese hamster ovary (CHO) cells to an atmosphere of 98% O2, 2% CO2 (normobaric hyperoxia) leads within a period of several days to cytostasis and clonogenic cell death. Here we report respiratory failure as an important early symptom of oxygen intoxication in CHO cells, resulting in a more than 80% inhibition of oxygen consumption within 3 days of hyperoxic exposure. This inhibition appeared to be correlated with selective inactivation of three mitochondrial key enzymes, NADH dehydrogenase, succinate dehydrogenase, and alpha-ketoglutarate dehydrogenase. The latter enzyme controls the influx of glutamate into the Krebs cycle and is particularly critical for oxidative ATP generation in most cultured cells, which depends on exogenous glutamine rather than glucose as a carbon source. As expected, the inactivation of alpha-ketoglutarate dehydrogenase was correlated with a fall in cellular glutamine utilization, which became apparent from the first day of hyperoxic exposure. Thereafter, glucose utilization and lactate excretion started to increase, up to 3-fold, indicating a cellular response to respiratory failure aimed at increased ATP generation from glycolysis. However, in spite of this response, the cellular ATP level progressively decreased, up to 2.5-fold. Thus, killing of CHO cells by normobaric hyperoxia seems to be due to a severe disturbance of mitochondrial metabolism eventually leading to a depletion of cellular ATP pools.  相似文献   

6.
Sufficient oxygenation is indispensable for cognitive performance in mammals. In order to assure adequate oxygenation and to prevent hypoxia in medicine or aviation, different approaches of oxygen delivery are realized. With regard to hyperoxia, it is well known that it increases the risk of tissue toxicity and inflammation by generating radical oxygen species. However, this impact of hyperoxia on the expression of specific brain proteins has not been evaluated in detail yet. The present study analyzes time-dependent changes in protein expression in rat brain after a short-term exposure to normobaric hyperoxia. Thirty-six Wistar rats were randomly assigned to six different groups, three normobaric hyperoxia (NH) groups or three normobaric normoxia (NN) groups, each consisting of n = 6 animals. NH animals were exposed to 100% oxygen, NN rats to 21% oxygen, each group for 3 h. One group of NH and one group of NN were killed immediately after the 3 h, one group each after 3 days and one group each after 7 days. Rat brains were removed for analysis and whole brain detergent protein lysates were separated via two-dimensional gel electrophoresis followed by subsequent identification of protein expression alterations by peptide mass fingerprinting using mass spectrometry. Also, a functional network mapping and molecular pathway analysis were carried out. Statistical analysis was performed using analysis of variance (ANOVA) with Bonferroni correction using P < 0.01. Physiological parameters of the animals did not differ significantly between the two groups except for partial oxygen pressure (580 vs. 89 mmHg; P < 0.05). The expression of nine proteins was found to be significantly altered (five up-regulated: GOT1, CCT2, TCP1, G6PD, and ALB; four down-regulated: PEBP1, PRDX2, ENO1, and MDH1). IPA generated a network with eight focus proteins associated with pathways in “cell death, cancer, and signalling”. Although hyperoxia was normobaric and induced for only 3 h, significant changes in brain protein expression were detectable immediately after the 3 h, after 3 days, as well as after 7 days. This may indicate effects on brain protein expression take place in the rat brain following a relatively short period of hyperoxia.  相似文献   

7.
Entry of HeLa and CHO-10 cells into mitosis can be inhibited by incorporation of p-fluorophenylalanine at certain temperatures, 37 °C for the former cell type and 39.5 °C for the latter. At lower temperatures, 32 °C in the former and 37 °C in the latter, the analogue does not inhibit entry of cells into mitosis. The possibility that the analogue is not incorporated at the permissive temperatures has been ruled out; indeed incorporation is relatively greater at the permissive temperatures. The results suggest that the physiological properties of analogue protein molecules differ depending on the temperature at which they are synthesized; the higher the temperature the more likely they are to malfunction.  相似文献   

8.
Recent reports indicate that under certain restricted conditions hyperoxia may decrease tissue O2 consumption. However, this effect has not been established for whole body O2 consumption in the intact healthy conscious state. The goal of the present study was to document the effect of hyperoxia on resting whole body O2 consumption and hemodynamics under these latter more general physiological conditions. The inspired gas was delivered by mask to six fasted resting conscious dogs and alternated hourly between air and O2-enriched air (hyperoxia) for 5 h, while hemodynamics and blood gas data were obtained every 20 min. Compared with air breathing, hyperoxia increased the mean arterial O2 tension from 95 to 475 Torr and decreased heart rate, cardiac output, pulmonary vascular resistance, and right and left ventricular work rates and thus, presumably, myocardial O2 consumption. Hyperoxia also increased systemic vascular resistance and right atrial pressure but did not change stroke volume or systemic arterial pressure. The increase in arterial O2 content during hyperoxia was counterbalanced by the decrease in cardiac output, so that O2 delivery was unchanged by hyperoxia. Surprisingly, hyperoxia decreased the arterial-to-mixed venous difference in O2 content; this decrease together with the decrease in cardiac output produced a decrease in resting whole body O2 consumption from 5.88 +/- 0.68 to 4.80 +/- 0.62 ml O2.min-1.kg-1 (P = 0.0002). It is concluded that under physiological conditions normobaric hyperoxia may decrease metabolic rate in addition to cardiac output, which may have important implications for the metabolic regulation of O2 utilization as well as for the medical and nonmedical uses of O2.  相似文献   

9.
We have measured the levels of typical end products of the processes of lipid peroxidation, protein oxidation, and total antioxidant capacity (TAC) in skin fibroblasts and lymphoblasts taken from patients with familial Alzheimer's disease (FAD), sporadic Alzheimer's disease (AD), and age-matched healthy controls. Compared to controls, the fibroblasts and lymphoblasts carrying amyloid precursor protein (APP) and presenilin-1 (PS-1) gene mutations showed a clear increase in lipoperoxidation products, malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE). In contrast, the antioxidant defenses of cells from FAD patients were lower than those from normal subjects. Lipoperoxidation and antioxidant capacity in lymphoblasts from patients affected by sporadic AD were virtually indistinguishable from the basal values of normal controls. An oxidative attack on protein gave rise to greater protein carbonyl content in FAD patients than in age-matched controls. Furthermore, ADP ribosylation levels of poly(ADP-ribose) polymerase (PARP) nuclear substrates were significantly raised, whereas the PARP content did not differ significantly between fibroblasts carrying gene mutations and control cells. These results indicate that peripheral cells carrying APP and PS-1 gene mutations show altered levels of oxidative markers even though they are not directly involved in the neurodegenerative process of AD. These results support the hypothesis that oxidative damage to lipid, protein, and DNA is an important early event in the pathogenesis of AD.  相似文献   

10.
The effect of the presence of melanin on the response of mammalian cells to ionizing radiation was investigated in a model system utilizing the ability of Chinese hamster ovary cells to incorporate melanin by endocytosis. Cells were incubated in monolayer cultures from 2 to 20 hours with melanin prepared from 'beef eye' or synthesized by air oxidation of 3,4-dihydroxyphenylalanine. For asynchronous cultures, the survival curve parameters for cells incubated with both types of melanin were indistinguishable from those of the same cells without added melanin. The radiation response to fractionated doses of 6 Gy separated by various periods did not indicate any effect of melanin on the extent or kinetics of repair of sublethal damage. Likewise, the repair of potentially lethal damage in plateau phase cultures was unaffected by the presence of melanin. Thus the explanation for the clinical radiation resistance of melanomas in the absence of a direct radiation effect might more likely be found in consideration of other factors such as the role of melanin in oxygen consumption or in differentiation.  相似文献   

11.
12.
13.
We previously reported (J Appl Physiol 89: 807-822, 2000) that < or =10 min of hyperbaric oxygen (HBO(2); < or = 2,468 Torr) stimulates solitary complex neurons. To better define the hyperoxic stimulus, we measured PO(2) in the solitary complex of 300-microm-thick rat medullary slices, using polarographic carbon fiber microelectrodes, during perfusion with media having PO(2) values ranging from 156 to 2,468 Torr. Under control conditions, slices equilibrated with 95% O(2) at barometric pressure of 1 atmospheres absolute had minimum PO(2) values at their centers (291 +/- 20 Torr) that were approximately 10-fold greater than PO(2) values measured in the intact central nervous system (10-34 Torr). During HBO(2), PO(2) increased at the center of the slice from 616 +/- 16 to 1,517 +/- 15 Torr. Tissue oxygen consumption tended to decrease at medium PO(2) or = 1,675 Torr to levels not different from values measured at PO(2) found in all media in metabolically poisoned slices (2-deoxy-D-glucose and antimycin A). We conclude that control medium used in most brain slice studies is hyperoxic at normobaric pressure. During HBO(2), slice PO(2) increases to levels that appear to reduce metabolism.  相似文献   

14.
Abstract

Objectives

Oxidative stress (OS) is defined as an imbalance in the production of reactive oxygen species and the capacity of antioxidant defenses. The objective of this work was to investigate OS and antioxidant capacity in pregnant women.

Methods

Parameters of the oxidative status and antioxidant capacity in serum and whole blood were evaluated in thirty-nine women with normal pregnancy.

Results

The assessment of antioxidants indicated an increase in superoxide dismutase and catalase activities (P < 0.05 and P < 0.01) and a decrease in ascorbic acid levels and the total content of sulfhydryl (P < 0.05 and P < 0.001). Additionally, when the pro-oxidant system was investigated we found an increase (P < 0.01) in malondialdehyde and no significant change (P > 0.05) in protein carbonylation.

Discussion

This study demonstrates that there is a change in the pro-oxidant and antioxidant defenses associated with body and circulation changes that are inherent to the pregnancy process.  相似文献   

15.
16.
17.
J J Gille  H Joenje 《Mutation research》1992,275(3-6):405-414
According to the free radical theory of aging, loss of cellular function during aging is a consequence of accumulating subcellular damage inflicted by activated oxygen species. In cells, the deleterious effects of activated oxygen species may become manifest when the balance between radical formation and destruction (removal) is disturbed creating a situation denoted as 'oxidative stress'. Cell culture systems are especially useful to study the effects of oxidative stress, in terms of both toxicity and cellular adaptive responses. A better understanding of such processes may be pertinent to fully comprehend the cellular aging process. This article reviews three model systems for oxidative stress: extracellular sources of O2-. and H2O2, and normobaric hyperoxia (elevated ambient oxygen). Methodological and practical aspects of these exposure models are discussed, as well as their prominent effects as observed in cultures of Chinese hamster cell lines. Since chronic exposure models are to be preferred, it is argued that normobaric hyperoxia is a particularly relevant oxidative stress model for in vitro cellular aging studies.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号