首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Quorum sensing (QS) signal decay in Agrobacterium tumefaciens occurs in response to starvation or host signals. We have demonstrated that the gamma-aminobutyric acid (GABA) shunt metabolite links stress response to QS signal decay. Mutation of the aldH gene encoding a succinic semialdehyde dehydrogenase (SSADH) that converts succinic semialdehyde (SSA) to succinic acid results in early expression of the signal degrading enzyme, AttM. Exogenous addition of SSA or its precursor GABA induces AttM expression and abolishes Ti plasmid conjugative transfer. SSA acts by binding to the repressor AttJ that regulates the attKLM operon. attK encodes another SSADH. The stress alarmone ppGpp and SSA modulates separately the expression of the two SSADH enzymes, which might control the intracellular SSA level and hence to switch on/off the QS signal decay system in response to environmental changes. These findings document for the first time a sophisticated signalling mechanism of the widely conserved GABA degradation pathway in prokaryotes.  相似文献   

3.
The Agrobacterium tumefaciens C58 genome contains three putative N-acyl homoserine lactone (acyl-HSL) hydrolases, which are closely related to the lactonase AiiA of BACILLUS: When expressed in Escherichia coli, two of the putative acyl-HSL hydrolases, AttM and AiiB, conferred the ability to degrade acyl-HSLs on the host. In Erwinia strain 6276, the lactonases reduced the endogenous acyl-HSL level and the bacterial virulence in planta.  相似文献   

4.
5.
The Agrobacterium tumefaciens C58 genome contains three putative N-acyl homoserine lactone (acyl-HSL) hydrolases, which are closely related to the lactonase AiiA of Bacillus. When expressed in Escherichia coli, two of the putative acyl-HSL hydrolases, AttM and AiiB, conferred the ability to degrade acyl-HSLs on the host. In Erwinia strain 6276, the lactonases reduced the endogenous acyl-HSL level and the bacterial virulence in planta.  相似文献   

6.
The metabolic effects of 60-min exposure to 250-2000 mg gamma-hydroxybutyrate (GHB) per kilogram or 150-1200 mg gamma-butyrolactone (GBL) per kilogram were studied in rats by measurement of the cerebral hemisphere contents of energy phosphates and glycolytic-Krebs' cycle metabolites. A general pattern of increased glycogen and glucose with decreased pyruvate, lactate, alpha-ketoglutarate, and malate was observed. This pattern in association with unchanged adenylates and decreased energy phosphate utilization was consistent with a metabolic adaptation to a state of cerebral depression. The major qualitative difference between the two drugs was that higher doses of GBL were associated with additional decreases of citrate and glutamate. Since these doses of GBL were also associated with acute increases of arterial CO2 tension, it is proposed that these differences were secondary to hypercapnia and not due to a distinctive primary action of GBL. Derivation of the cytoplasmic NAD(P)H:NAD(P)+ ratios indicated that GHB and GBL were not associated with consistent alterations of the cytoplasmic redox state.  相似文献   

7.
Since the regulation of illicit gamma-hydroxybutyric acid (GHB) as a Federal Schedule I drug, the use of substitute chemical precursors such as gamma-butyrolactone (GBL) and 1,4-butanediol have emerged. Most recently there have been concerns about another potential analog of GHB, namely tetrahydrofuran (THF). While there is some suggestion that THF can be converted to GHB or GBL, little is known about the pharmacology of THF. Various doses of THF and GBL were studied in neurobehavioral tests to better characterize the pharmacology of THF. The TD(50)'s (with 95% confidence intervals) of THF for loss of the righting reflex and failure of performance on the rotarod test were 15.18 (11.88-19.39) and 7.00 (5.22-9.40) mmol/kg, respectively. These values were significantly greater (p<0.05) than those determined for GBL: 4.60 (3.25-6.51), and 0.85 (0.52-1.38) mmol/kg, respectively. The effects of THF on the impairment of motor function in the rotarod test were antagonized by pretreatment with the GABA(B) receptor antagonist CGP-35348 (200 mg/kg, i.p.).While both THF and GBL had depressant effects on open-field locomotor activity, the pattern of activity at the lower doses of THF and GBL were dissimilar. Chronic treatment with low dose THF (5 or 10 mmol/kg, i.p.) followed by acute challenge with THF (15 mmol/kg, i.p.) demonstrated tolerance to the observed sedative effects. While some of the mechanisms of the THF actions on the central nervous system appear likely to involve direct or indirect interactions with the GABA(B) receptor, some differences in its qualitative and quantitative pharmacology suggests other mechanisms are also likely involved in the observed neurobehavioral effects of these selected doses of THF in mice.  相似文献   

8.
Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD(+) dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP(+) dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH.  相似文献   

9.
The conjugative transfer of Agrobacterium plasmids is controlled by a quorum-sensing system consisting of TraR and its acyl-homoserine lactone (HSL) ligand. The acyl-HSL is essential for the TraR-mediated activation of the Ti plasmid Tra genes. Strains A6 and C58 of Agrobacterium tumefaciens produce a lactonase, BlcC (AttM), that can degrade the quormone, leading some to conclude that the enzyme quenches the quorum-sensing system. We tested this hypothesis by examining the effects of the mutation, induction, or mutational derepression of blcC on the accumulation of acyl-HSL and on the conjugative competence of strain C58. The induction of blc resulted in an 8- to 10-fold decrease in levels of extracellular acyl-HSL but in only a twofold decrease in intracellular quormone levels, a measure of the amount of active intracellular TraR. The induction or mutational derepression of blc as well as a null mutation in blcC had no significant effect on the induction of or continued transfer of pTiC58 from donors in any stage of growth, including stationary phase. In matings performed in developing tumors, wild-type C58 transferred the Ti plasmid to recipients, yielding transconjugants by 14 to 21 days following infection. blcC-null donors yielded transconjugants 1 week earlier, but by the following week, transconjugants were recovered at numbers indistinguishable from those of the wild type. Donors mutationally derepressed for blcC yielded transconjugants in planta at numbers 10-fold lower than those for the wild type at weeks 2 and 3, but by week 4, the two donors showed no difference in recoverable transconjugants. We conclude that BlcC has no biologically significant effect on Ti plasmid transfer or its regulatory system.  相似文献   

10.
The virE locus that is responsible for the efficiency of infection by Agrobacterium tumefaciens (T. Hirooka and C. Kado, J. Bacteriol. 168:237-243, 1986) is located next to the right boundary of the virulence (Vir) region of the nopaline plasmid pTiC58. This locus is very similar to the virE locus of octopine type Ti plasmids on the basis of nucleotide and amino acid sequence comparisons as well as genetic complementation analyses. The nucleotide sequence of virE revealed three open reading frames, arranged as an operon, with a potential coding capacity for proteins of 9, 7.1, and 63.5 kilodaltons. The promoter region of virE was analyzed by using gene fusions to promoterless cat and lux genes. Two different promoters were detected, one which operates in A. tumefaciens and one which operates in Escherichia coli. virE is transcribed from left to right toward the T region. In A. tumefaciens, the expression of virE was induced by acetosyringone and required the presence of pTiC58.  相似文献   

11.
12.
A new and sensitive method for the quantitation of γ-hydroxybutyric acid (GHB) and its lactone precursor γ-butyrolactone (GBL), has been developed and successfully utilized to determine the endogenous content of these compounds in a single rat brain. The method involves conversion of endogenous GHB into GBL and extracting the GBL with CHCl3. The concentrated CHCl3 extract is treated with BF3 methanol reagent to produce methyl γ-hydroxybutyrate. Introduction of electron capturing groups was accomplished by further reacting the methyl γ-hydroxybutyrate with heptafluorobutyric anhydride in the presence of pyridine. Prior to quantitation by electron capture gas chromatography, the sample was cleaned up by thin layer chromatography (tlc) using a preabsorbent plate which removed many extraneous peaks as well as CHCl3 used as the solvent. The effciency of the procedure was evaluated by carrying [1-14C]GBL through the derivatization. This indicated that about 15% of the starting labeled GBL was converted to the final electron capturing product. δ-Valerolactone was used as an internal standard.  相似文献   

13.
An antibody that inhibits over 95% of the cytosolic NADP+-dependent gamma-hydroxybutyrate (GHB) dehydrogenase activity of either rat brain or kidney was found to inhibit only approximately 50% of the conversion of [1-14C]GHB to 14CO2 by rat kidney homogenate. A similar result was obtained with sodium valproate, a potent inhibitor of GHB dehydrogenase. The mitochondrial fraction from rat brain and kidney was found to catalyze the conversion of [1-14C]GHB to 14CO2. The dialyzed mitochondrial fraction also catalyzed the oxidation of GHB to succinic semialdehyde (SSA) in a reaction that did not require added NAD+ or NADP+ and which was not inhibited by sodium valproate. The enzyme from the mitochondrial fraction which converts GHB to SSA appears to be distinct from the NADP+-dependent cytosolic oxidoreductase which catalyzes this reaction.  相似文献   

14.
gamma-Hydroxybutyric acid (GHB) is a central nervous system (CNS) depressant and hypnotic which, in recent times, has shown an increasing abuse either as recreational drug (due to its euphoric effects and ability to reduce inhibitions) or as doping agent (enhancer of muscle growth). Analogues of GHB, namely gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD), share its biological activity and are rapidly converted in vivo into GHB. At present, GHB and analogues are placed in the Schedules of Controlled Substances. Numerous intoxications in GHB abusers have been reported with depressive effects, seizures, coma and possibly death. The purpose of the present work was the development of a rapid analytical method based on capillary zone electrophoresis for the direct determination of GHB in human urine and serum at potentially toxic concentrations. Analytical conditions were as follows. Capillary: length 40 cm (to detector), 75 microm i.d.; buffer: 5.0 mM Na(2)HPO(4), 15 mM sodium barbital adjusted to pH 12 with 1.0 M NaOH; voltage: 25 kV at 23 degrees C; indirect UV detection at 214 nm; injection by application of 0.5 psi for 5 s. alpha-Hydroxyisobutyric acid was used as internal standard (IS). Sample pretreatment was limited to 1:8 dilution. Under these conditions, the sensitivity was approximately 3.0 microg/ml (signal-to-noise ratio >3). Calibration curves prepared in water, urine and serum were linear over concentration ranges 25-500 microg/ml with R(2)>/=0.998. Analytical precision was fairly good with R.S.D.<0.60% (including intraday and day-to-day tests). Quantitative precision in both intraday and day-to-day experiments was also very satisfactory with R.S.D.相似文献   

15.
Summary Two enzymes have been found which catalyze the initial step in the catabolism of GHB. The oxidation of GHB to SSA, catalyzed by both of these enzymes, is coupled to the reduction of an oxoacid. In the case of the mitochondrial transhydrogenase, the coupling is obligatory. Although coupling is not obligatory for the GHB dehydrogenase, the stimulation provided by the coupled reaction, and the nature of the kinetics of the uncoupled reaction, may not only allow the reaction to proceed, but may provide a means of regulating the rate of the reaction under in vivo conditions. Since the oxidation of GHB to SSA is the rate limiting step in the overall catabolic pathway (the rate of conversion of GHB to SSA proceeds at approximately one one thousandth of the rate at which SSA is oxidized to succinate by SSA dehydrogenase (30)), factors which regulate the rate of either or both of these enzymes will, in turn, influence tissue levels of endogenous GHB as well as the duration and magnitude of the physiological effect of a dose of GHB.Abbreviations used in this paper GHB -hydroxybutyrate - SSA succinic semialdehyde - DTT dithiothreitol Special issue dedicated to Dr. Louis Sokoloff.  相似文献   

16.

Background

The γ-aminubutyrate (GABA) shunt bypasses two steps of the tricarboxylic acid cycle, and is present in both prokaryotes and eukaryotes. In plants, the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase (GAD), the mitochondrial enzymes GABA transaminase (GABA-T; POP2) and succinic semialdehyde dehydrogenase (SSADH). We have previously shown that compromising the function of the GABA-shunt, by disrupting the SSADH gene of Arabidopsis, causes enhanced accumulation of reactive oxygen intermediates (ROIs) and cell death in response to light and heat stress. However, to date, genetic investigations of the relationships between enzymes of the GABA shunt have not been reported.

Principal Findings

To elucidate the role of succinic semialdehyde (SSA), γ-hydroxybutyrate (GHB) and GABA in the accumulation of ROIs, we combined two genetic approaches to suppress the severe phenotype of ssadh mutants. Analysis of double pop2 ssadh mutants revealed that pop2 is epistatic to ssadh. Moreover, we isolated EMS-generated mutants suppressing the phenotype of ssadh revealing two new pop2 alleles. By measuring thermoluminescence at high temperature, the peroxide contents of ssadh and pop2 mutants were evaluated, showing that only ssadh plants accumulate peroxides. In addition, pop2 ssadh seedlings are more sensitive to exogenous SSA or GHB relative to wild type, because GHB and/or SSA accumulate in these plants.

Significance

We conclude that the lack of supply of succinate and NADH to the TCA cycle is not responsible for the oxidative stress and growth retardations of ssadh mutants. Rather, we suggest that the accumulation of SSA, GHB, or both, produced downstream of the GABA-T transamination step, is toxic to the plants, resulting in high ROI levels and impaired development.  相似文献   

17.
18.
19.
20.
Rhizobium sp. strain NGR234 forms symbiotic, nitrogen-fixing nodules on a wide range of legumes via functions largely encoded by the plasmid pNGR234a. The pNGR234a sequence revealed a region encoding plasmid replication (rep) and conjugal transfer (tra) functions similar to those encoded by the rep and tra genes from the tumor-inducing (Ti) plasmids of Agrobacterium tumefaciens, including homologues of the Ti plasmid quorum-sensing regulators TraI, TraR, and TraM. In A. tumefaciens, TraI, a LuxI-type protein, catalyzes synthesis of the acylated homoserine lactone (acyl-HSL) N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL). TraR binds 3-oxo-C8-HSL and activates expression of Ti plasmid tra and rep genes, increasing conjugation and copy number at high population densities. TraM prevents this activation under noninducing conditions. Although the pNGR234a TraR, TraI, and TraM appear to function similarly to their A. tumefaciens counterparts, the TraR and TraM orthologues are not cross-functional, and the quorum-sensing systems have differences. NGR234 TraI synthesizes an acyl-HSL likely to be 3-oxo-C8-HSL, but traI mutants and a pNGR234a-cured derivative produce low levels of a similar acyl-HSL and another, more hydrophobic signal molecule. TraR activates expression of several pNGR234a tra operons in response to 3-oxo-C8-HSL and is inhibited by TraM. However, one of the pNGR234a tra operons is not activated by TraR, and conjugal efficiency is not affected by TraR and 3-oxo-C8-HSL. The growth rate of NGR234 is significantly decreased by TraR and 3-oxo-C8-HSL through functions encoded elsewhere in the NGR234 genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号