首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exocytotic exposure and retrieval of an antigen of chromaffin granule membranes were studied with chromaffin cells isolated from bovine adrenal medulla. Cells were incubated with an antiserum against glycoprotein III followed by fluorescein- or gold-labeled anti-IgG. Immunofluorescence on the cell surface was present in a patchy distribution irrespective of whether bivalent antibodies or Fab fragments were used. During subsequent incubation these fluorescent membrane patches were internalized within 45 min. At the ultrastructural level immunogold-labeled patches were present on the surface of stimulated cells. During incubation (5 min to 6 h) these immunolabeled membrane patches became coated, giving rise to coated vesicles and finally to smooth vesicles. These latter vesicles were found spread throughout the cytoplasm including the Golgi region, but Golgi stacks did not become labeled. Part of the immunolabel was transferred to multivesicular bodies, which probably represent a lysosomal pathway. 30 min after incubation immunolabel was also found in electron-dense vesicles apparently representing newly formed chromaffin granules. After 6 h of incubation immunolabel was found in vesicles indistinguishable from mature chromaffin granules. These results provide direct evidence that after exocytosis membranes of chromaffin granules are selectively retrieved from the plasma membrane and are partly recycled to newly formed chromaffin granules, providing a shuttle service from the Golgi region to the plasma membrane.  相似文献   

2.
Calmodulin-Binding Proteins in Chromaffin Cell Plasma Membranes   总被引:2,自引:1,他引:1  
Abstract: Calmodulin-binding proteins present in chromaffin cell plasma membranes were isolated and directly compared with calmodulin-binding proteins present in chromaffin granule membranes. Chromaffin cell plasma membranes were prepared using Cytodex 1 microcarriers. Marker enzyme studies on this preparation showed a nine- to 10–fold plasma membrane enrichment over cell homogenates and a low contamination of these plasma membranes by subcellular organelles. Plasma membranes prepared in this manner were solubilized with Triton X-100 and applied to a calmodulin-affinity column in the presence of calcium. Several major calmodulin-binding proteins ( 240, 105 , and 65 kilodaltons) were eluted by an EGTA-containing buffer. 125I-Calmodulin overlay experiments on nitrocellulose sheets containing both chromaffin plasma and granule membranes showed that these two membranes have several calmodulin-binding proteins in common ( 65, 60, 53 , and 50 kilodaltons), as well as unique calmodulin-binding proteins (34 kilodaltons in granule membranes and 240 and 160 kilodaltons in plasma membranes). The 65–kilodalton calmodulin-binding protein present in both membrane types was shown to consist of two isoforms (pI 6.0 and 6.2) by two-dimensional gel electrophoresis. Previous experiments from our laboratory, using two monoclonal antibodies (mAb 30 and mAb 48) specific for a rat brain synaptic vesicle membrane protein (p65), showed that the monoclonal antibodies reacted with a 65–kilodalton calmodulin-binding protein present in at least three neurosecretory vesicles (chromaffin granules, neurohypophyseal granules, and rat brain synaptic vesicles). When these monoclonal antibodies were tested on chromaffin cell plasma membranes and calmodulin-binding proteins isolated from these membranes, they recognized a 65–kilodalton protein. These results indicate that an immunologically identical calmodulin-binding protein is expressed in both chromaffin granule membranes (as well as other secretory vesicle membranes) and chromaffin cell plasma membranes, thus suggesting a possible role for this protein in granule/plasma membrane interaction.  相似文献   

3.
We have analyzed the properties and subcellular localization of synaptophysin (protein p38) in bovine adrenal medulla. In one-dimensional immunoblotting the adrenal antigen appears identical to synaptophysin of rat synaptic vesicles. In two-dimensional immunoblotting it migrates as a heterogeneous band varying in pI from 4.5 to 5.8. Subcellular fractionation by various sucrose gradients revealed that synaptophysin was present in two different cell particles. More than half of the antigens present in adrenal medulla were confined to special membranes that sedimented both with the "large granules" and with microsomal elements. These membranes could be removed from the large granule sediment by washing. In gradients it equilibrated in regions of low sucrose density. These membranes did not contain any markers for chromaffin granules. Less than half of the amount of synaptophysin present in adrenal medulla copurified with chromaffin granules. Despite several variations in the fractionation scheme synaptophysin could not be removed from chromaffin granules. After washing of granule membranes with alkaline solution synaptophysin still cosedimented in gradients with typical granule markers. The concentration of synaptophysin in membranes of chromaffin granules is low (less than 10%) when compared with synaptic vesicles. It is concluded that in adrenal medulla synaptophysin is present in special membranes, probably in high concentration, and in membranes of chromaffin granules, either in a low concentration in all or in a higher concentration in some of them.  相似文献   

4.
We have devised a new method that permits the investigation of exogenous secretory vesicle function using frog oocytes and bovine chromaffin granules, the secretory vesicles from adrenal chromaffin cells. Highly purified chromaffin granule membranes were injected into Xenopus laevis oocytes. Exocytosis was detected by the appearance of dopamine-beta-hydroxylase of the chromaffin granule membrane in the oocyte plasma membrane. The appearance of dopamine-beta-hydroxylase on the oocyte surface was strongly Ca(2+)-dependent and was stimulated by coinjection of the chromaffin granule membranes with InsP3 or Ca2+/EGTA buffer (18 microM free Ca2+) or by incubation of the injected oocytes in medium containing the Ca2+ ionophore ionomycin. Similar experiments were performed with a subcellular fraction from cultured chromaffin cells enriched with [3H]norepinephrine-containing chromaffin granules. Because the release of [3H]norepinephrine was strongly correlated with the appearance of dopamine-beta-hydroxylase on the oocyte surface, it is likely that intact chromaffin granules and chromaffin granule membranes undergo exocytosis in the oocyte. Thus, the secretory vesicle membrane without normal vesicle contents is competent to undergo the sequence of events leading to exocytosis. Furthermore, the interchangeability of mammalian and amphibian components suggests substantial biochemical conservation of the regulated exocytotic pathway during the evolutionary progression from amphibians to mammals.  相似文献   

5.
Solubilized proteins of the plasma membrane of bovine adrenal medulla were fractionated on the basis of their affinity for secretory vesicles. The isolation procedure included preparation of a highly purified fraction of plasma membranes, its solubilization in detergent, and application to a column prepared from glutaraldehyde-fixed chromaffin granules. Using this technique, one major polypeptide (80% of the material bound) was isolated. This protein has been shown to originate from the plasma membrane and has no affinity for fixed bovine adrenal medullary mitochondria or lysosomes. It is eluted most effectively by low pH (3.0) and can be rebound and re-eluted from fixed secretory granules. In sodium dodecyl sulfate and beta-mercaptoethanol it has an apparent molecular weight of 51,000. In addition, two minor components, comprising about 20% of the material bound were detected having apparent molecular weights in sodium dodecyl sulfate of 14,000 and 62,000. It is suggested that such a molecule could function as a plasma membrane-located receptor for chromaffin granules during the secretory process.  相似文献   

6.
Calpactin I complex, a calcium-dependent phospholipid-binding protein, promotes aggregation of chromaffin vesicles at physiological micromolar calcium ion levels. Calpactin I complex was found to be a globular molecule with a diameter of 10.7 +/- 1.7 (SD) nm on mica. When liposomes were aggregated by calpactin, quick-freeze, deep-etching revealed fine thin strands (6.5 +/- 1.9 [SD] nm long) cross-linking opposing membranes in addition to the globules on the surface of liposomes. Similar fine strands were also observed between aggregated chromaffin vesicles when they were mixed with calpactin in the presence of Ca2+ ion. In cultured chromaffin cells, similar cross-linking short strands (6-10 nm) were found between chromaffin vesicles and the plasma membrane after stimulation with acetylcholine. Plasma membranes also revealed numerous globular structures approximately 10 nm in diameter on their cytoplasmic surface. Immunoelectron microscopy on frozen ultrathin sections showed that calpactin I was closely associated with the inner face of the plasma membranes and was especially conspicuous between plasma membranes and adjacent vesicles in chromaffin cells. These in vivo and in vitro data strongly suggest that calpactin I complex changes its conformation to cross-link vesicles and the plasma membrane after stimulation of cultured chromaffin cells.  相似文献   

7.
The distribution of concanavalin A (con A) receptor sites on the membranes of chromaffin granules has been investigated by binding studies using 125I-labelled con A and by electron-microscope studies using ferritin-labelled con A. In both experiments con A was observed to bind to chromaffin granule membranes but not to intact granules. The ferritin-con A particles bind to only one of the two possible surfaces of the chromaffin granule membranes. These results are in agreement with previous observations concerning the asymmetric distribution of saccharide residues on the surfaces of a number of different plasma membranes. They suggest that for the intracellular membrane of the chromaffin granule the saccharide sites, like those in plasma membranes, are not exposed to the cell cytoplasm. Further work is necessary to establish whether these sites are on the inner surface of the membrane or whether they are unmasked during the conversion of granules to membrane ghosts.  相似文献   

8.
Recent evidence suggests that endocytosis in neuroendocrine cells and neurons can be tightly coupled to exocytosis, allowing rapid retrieval from the plasma membrane of fused vesicles for future use. This can be a much faster mechanism for membrane recycling than classical clathrin-mediated endocytosis. During a fast exo-endocytotic cycle, the vesicle membrane does not fully collapse into the plasma membrane; nevertheless, it releases the vesicular contents through the fusion pore. Once the vesicle is depleted of transmitter, its membrane is recovered without renouncing its identity. In this report, we show that chromaffin cells contain catecholamine-free granules that retain their ability to fuse with the plasma membrane. These catecholamine-free granules represent 7% of the total population of fused vesicles, but they contributed to 47% of the fusion events when the cells were treated with reserpine for several hours. We propose that rat chromaffin granules that transiently fuse with the plasma membrane preserve their exocytotic machinery, allowing another round of exocytosis.  相似文献   

9.
Both neuronal and endocrine cells contain secretory vesicles that store and release neurotransmitters and peptides. Neuronal cells release their secretory material from both small synaptic vesicles and large dense-core vesicles (LDCVs), whereas endocrine cells release secretory products from LDCVs. Neuronal small synaptic vesicles are known to express three integral membrane proteins: 65,000 calmodulin-binding protein (65-CMBP) (p65), synaptophysin (p38), and SV2. A controversial question surrounding these three proteins is whether they are present in LDCV membranes of endocrine and neuronal cells. Sucrose density centrifugation of adrenal medulla was performed to study and compare the subcellular distribution of two of these small synaptic vesicle proteins (65-CMBP and synaptophysin). Subsequent immunoblotting and 125I-Protein A binding experiments performed on the fractions obtained from sucrose gradients showed that 65-CMBP was present in fractions corresponding to granule membranes and intact chromaffin granules. Similar immunoblotting and 125I-Protein A binding experiments with synaptophysin antibodies showed that this protein was also present in intact granules and granule membrane fractions. However, an additional membrane component, equilibrating near the upper portion of the sucrose gradient, also showed strong immunoreactivity with anti-synaptophysin and high 125I-Protein A binding activity. In addition, immunoblotting experiments on purified plasma and granule membranes demonstrated that 65-CMBP was a component of both membranes, whereas synaptophysin was only present in granule membranes. Thus, there appears to be a different subcellular localization between 65-CMBP and synaptophysin in the chromaffin cell.  相似文献   

10.
The nature of the G-proteins present in the pre- and post-synaptic plasma membranes and in the synaptic vesicles of cholinergic nerve terminals purified from the Torpedo electric organ was investigated. In pre- and post-synaptic plasma membranes, Bordetella pertussis toxin, known to catalyze the ADP-ribosylation of the alpha-subunit of several G-proteins, labels two substrates at 41 and 39 kDa. The 39 kDa subunit detected by ADP-ribosylation in the synaptic plasma membrane fractions was immunologically similar to the Go alpha-subunit purified from calf brain. In contrast to bovine chromaffin cell granules, no G-protein could be detected in Torpedo synaptic vesicles either by ADP-ribosylation or by immunoblotting.  相似文献   

11.
The presence of calmodulin-binding proteins in three neurosecretory vesicles (bovine adrenal chromaffin granules, bovine posterior pituitary secretory granules, and rat brain synaptic vesicles) was investigated. When detergent-solubilized membrane proteins from each type of secretory organelle were applied to calmodulin-affinity columns in the presence of calcium, several calmodulin-binding proteins were retained and these were eluted by EGTA from the columns. In all three membranes, a 65-kilodalton (63 kilodaltons in rat brain synaptic vesicles) and a 53-kilodalton protein were found consistently in the EGTA eluate. 125I-Calmodulin overlay tests on nitrocellulose sheets containing transferred chromaffin and posterior pituitary secretory granule membrane proteins showed a similarity in the protein bands labeled with radioactive calmodulin. In the presence of 10(-4) M calcium, eight major protein bands (240, 180, 145, 125, 65, 60, 53, and 49 kilodaltons) were labeled with 125I-calmodulin. The presence of 10 microM trifluoperazine (a calmodulin antagonist) significantly reduced this labeling, while no labeling was seen in the presence of 1 mM EGTA. Two monoclonal antibodies (mAb 30, mAb 48), previously shown to react with a cholinergic synaptic vesicle membrane protein of approximate molecular mass of 65 kilodaltons, were tested on total membrane proteins from the three different secretory vesicles and on calmodulin-binding proteins isolated from these membranes using calmodulin-affinity chromatography. Both monoclonal antibodies reacted with a 65-kilodalton protein present in membranes from chromaffin and posterior pituitary secretory granules and with a 63-kilodalton protein present in rat brain synaptic vesicle membranes. When the immunoblotting was repeated on secretory vesicle membrane calmodulin-binding proteins isolated by calmodulin-affinity chromatography, an identical staining pattern was obtained. These results clearly indicate that an immunologically identical calmodulin-binding protein is expressed in at least three different neurosecretory vesicle types, thus suggesting a common role for this protein in secretory vesicle function.  相似文献   

12.
We present a model for the calculation of intragranular vesicle adhesion energy in a two-vesicle system consisting of an external secretory vesicle (chromaffin granule) and an intragranular vesicle (IGV) that adheres from the inside to the granule membrane. The geometrical parameters characterizing the granule-IGV systems were derived from freeze-fracture electron micrographs. Adhesion is brought about by incubation of the granules in hyperosmolar sucrose solutions. It is accompanied by a deformation of the granule because the intragranular vesicle bulges it outwards, and by segregation of intramembraneous particles from the adherent part of the granule membrane. Adhesion prevents the deformed granules from osmotic reexpansion and, therefore, causes hyperosmotic relaxation lysis. We estimated specific adhesion energy at -3 erg/cm2, a value which is 10 - 1000 times larger than the energy of van der Waals interaction between membranes. This large interaction energy probably results from changes of the granule core induced by dehydration. A minimization of the interface between the granule core and adjacent membranes could exclude intragranular vesicles from the core and squeeze them towards the granule membrane. This might induce a new kind of interaction between both membranes, which is irreversible and causes lysis upon osmotic relaxation.  相似文献   

13.
The glycoproteins of the membranes of bovine chromaffin granules were characterized by two polyacrylamide gel electrophoresis systems. Five components (I-V) were demonstrated with apparent molecular weights ranging in the unreduced form from 45,000 to 150,000. Glycoprotein I was identified as the enzyme dopamine β-hydroxylase. Four of these glycoproteins (with the exception of component IV) were apparently also present in the membranes of pig and horse chromaffin granules. The soluble proteins of chromaffin granules contained at least three glycoproteins. Only glycoprotein I (dopamine β-hydroxylase) was present both in the soluble content and in the membranes of chromaffin granules. Affinity chromatography with lectins demonstrated that from the soluble proteins only dopamine β-hydroxylase was adsorbed by concanavalin A, whereas none of these proteins reacted with wheat germ lectin and Ricinus communis agglutinin. Three membrane proteins including dopamine β-hydroxylase and glycoprotein II as major components were adsorbed by concanavalin A, whereas wheat germ lectin bound only component II and a small amount of component III. By electron microscopy it was demonstrated that concanavalin A did not bind to intact chromaffin granules whereas ruthenium red and cationized ferritin did. Isotope labelling after galactose oxidase treatment revealed that at least the carbohydrate portion of the major glycoproteins is present on the inner side of the granule membranes facing the content.  相似文献   

14.
When exocytosis of granule contents is induced by nicotine stimulation, glycoprotein III (a chromaffin granule membrane constituent) is exposed on the surface of cultured chromaffin cells, where it may be labeled with an immunocytochemical tracer. The subsequent fate of this glycoprotein after endocytosis was followed at the ultrastructural level using immunogold methods and was analyzed by morphometry. After stimulation exocytosis membranes newly inserted into the plasma membrane labeled with gold particles for glycoprotein III were found to be endocytosed via coated vesicles and finally found in organelles devoid of chromogranin A, the major secretory granule protein. At intervals between 30 min and 24 h after cell stimulation and immunolabeling, most labeled structures were identified by two different morphological approaches as prelysosomes and lysosomes. In contrast with results obtained on freshly isolated chromaffin cells, it is thus concluded that in cultured cells granule membrane recycling into new granules does not occur. It is suggested that the fate of granule membrane endocytosed after cell stimulation may be influenced by the external conditions to which cells are previously exposed.  相似文献   

15.
Membranes of chromaffin granules were isolated from the adrenal glands of four different species. The solubilized membrane proteins could be resolved into several bands by polyacrylamide-gel electrophoresis (alkaline and acid gel systems). Two major protein components appeared to be common to the chromaffin granule membranes of ox, horse, pig and man. The various membrane proteins of bovine chromaffin granules were separated by filtration on Sephadex G-200 in the presence of sodium dodecyl sulphate. Two major membrane proteins (A and B) were obtained in purified form. Treatment of protein A with 2-mercaptoethanol before electrophoresis resulted in two more rapidly migrating subunits, whereas protein B was unaffected by mercaptoethanol treatment. The amino acid compositions of the two purified proteins were determined. They are very similar to that of the total membrane proteins but significantly different from that of the chromogranins, the soluble proteins of chromaffin granules.  相似文献   

16.
Digitonin permeabilizes the plasma membranes of bovine chromaffin cells to Ca2+, ATP, and proteins and allows micromolar Ca2+ in the medium to stimulate directly catecholamine secretion. In the present study the effects of digitonin (20 microM) on the plasma membrane and on intracellular chromaffin granules were further characterized. Cells with surface membrane labeled with [3H]galactosyl moieties retained label during incubation with digitonin. The inability of digitonin-treated cells to shrink in hyperosmotic solutions of various compositions indicated that tetrasaccharides and smaller molecules freely entered the cells. ATP stimulated [3H]norepinephrine uptake into digitonin-treated chromaffin cells fivefold. The stimulated [3H]norepinephrine uptake was inhibited by 1 microM reserpine, 30 microM NH4+, or 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The data indicate that [3H]norepinephrine was taken up into the intracellular storage granules by the ATP-induced H+ electrochemical gradient across the granule membrane. Reduction of the medium osmolality from 310 mOs to 100 mOs was required to release approximately 50% of the catecholamine from chromaffin granules with digitonin-treated chromaffin cells which indicates a similar osmotic stability to that in intact cells. Chromaffin granules in vitro lost catecholamine when the digitonin concentration was 3 microM or greater. Catecholamine released into the medium by micromolar Ca2+ from digitonin-treated chromaffin cells that had subsequently been washed free of digitonin could not be pelleted in the centrifuge and was not accompanied by release of membrane-bound dopamine-beta-hydroxylase. The studies demonstrate that 20 microM of digitonin caused profound changes in the chromaffin cell plasma membrane permeability but had little effect on intracellular chromaffin granule stability and function. It is likely that the intracellular chromaffin granules were not directly exposed to significant concentrations of digitonin. Furthermore, the data indicate that during catecholamine release induced by micromolar Ca2+, the granule membrane was retained by the cells and that catecholamine release did not result from release of intact granules into the extracellular medium.  相似文献   

17.
Calmodulin-binding proteins in chromaffin granule membrane and chromaffin cell plasma membranes have been investigated and compared. Chromaffin granules were purified by centrifugation over a 1.7 M sucrose layer. Plasma membranes were obtained in a highly purified form by differential and isopycnic centrifugation. Enzymatic determinations of 5'-nucleotidase, a generally accepted plasma membrane marker, showed a 40-50-fold enrichment as compared to the cell homogenate. Marker enzyme studies demonstrated only minimal contamination by other subcellular organelles. After solubilization with Triton X-100, calmodulin-binding proteins were isolated from chromaffin granule membranes and plasma membranes by affinity chromatography on a calmodulin/Sepharose 4B column. On two-dimensional polyacrylamide gelelectrophoresis a prominent protein (Mr = 65,000, pI ranging from 5.1 to 6) consisting of multiple spots, was present in the calmodulin-binding fraction from chromaffin granule membranes as well as from plasma membranes. Besides this 65 kDa protein both fractions had at least four groups of proteins in common. Also, proteins typical for either preparation were observed. In the calmodulin-binding protein preparations from chromaffin granule membranes a prominent spot with Mr = 80,000 and a pH ranging from 5.0 to 5.7 was present. This protein was enzymatically and immunologically identified as dopamine-beta-monooxygenase.  相似文献   

18.
An investigation of the molecular properties of glycoprotein III has shown this to be a major component of molecular aggregates present in the membrane and soluble fractions of secretory vesicles from bovine adrenal medulla. These aggregates also contain components identified as glycoproteins H, J, and K which are molecular forms of Kex2-related proteases (glycoprotein H) and carboxypeptidase H (glycoprotein components J and K) and which have functions concerned with the processing of prohormones. A number of experiments indicated that these glycoproteins were associated. These components were coimmunoprecipitated from the soluble and membrane fractions of chromaffin granules. Purification of soluble glycoprotein III using wheat germ agglutinin-Sepharose resulted in the recovery of similar proportions of glycoproteins H, J, and K and gel filtration of the eluted material in combination with immunoprecipitation revealed the presence of heteroaggregates containing all of the glycoproteins. Similar results were obtained following octylglucoside solubilization of chromaffin granule membranes. Glycoprotein components III, H, J, and K were also found to have identical distributions following fractionation of chromaffin granule membranes with Triton X-114. It was concluded that the aggregates seen in the soluble fraction reflect an association of these components in the chromaffin granule membrane. This raises the possibility that these interactions are important for the targetting of these glycoproteins to secretory granules.  相似文献   

19.
We tested whether the giant secretory granules observed in the mast cells of the naturally occurring mutant beige mouse (BM) (C57BL/6N-bg) were also present in the adrenal chromaffin cells. The presence of large chromaffin granules (CG) would be a valuable tool for the study of exocytosis in neuronal tissues. Conversely, the observation of large vesicles within chromaffin cells that are different from CG could indicate that CG are of a different origin than granules of mast cells. Ultrastructural analysis demonstrated the presence of large lysososmal-like vesicles in the BM, and also a discrete increase in the number of CG with diameters larger than 240 nm but not of giant CG. In addition, amperometric measurements of single-event exocytosis, using carbon fiber microelectrodes, showed no differences between the quantal size of secretory events from BM and wildtype or bovine chromaffin cells. Minor but significant differences were found between the kinetics of exocytosis in BM cells andwild-type mouse cells. We conclude that CG, but not the abnormal-sized vesicles found in BM chromaffin cells contribute to the catecholamine secretion and that abnormal secretory granules are not present in adrenergic cell lineage.  相似文献   

20.
Bovine chromaffin granules undergo irreversible structural changes during osmotic shrinkage in hypertonic sucrose and salt solutions, such that, on reexposure to isoosmotic conditions they do not regain their original morphology, but undergo lysis ('hyperosmotic relaxation lysis'). Irreversible alterations of granules were induced by hypertonic incubations lasting for as little as 1 min. Fluorescence and EPR membrane labelling experiments showed that hypertonicity did not induce membrane loss for instance by inwardly or outwardly directed pinching off of membrane material. The mean sizes of chromaffin granules as a function of increasing and subsequently decreasing osmotic pressure were measured by photon correlation spectroscopy; there was no significant difference in sizes of hyperosmotically pretreated granules as compared with controls. Freeze-fracture electron micrographs showed the formation of 'twins' and 'triplets' under hypertonic conditions. They also revealed intragranular vesicles of 50-200 nm in diameter in both hypertonically and isotonically suspended granules. 'Twin' and 'triplet' granules were formed by the attachment of intragranular vesicles to the granule membranes. We suggest that hyperosmotic relaxation lysis is caused by the fact that this adhesion partly prevents the granule membrane from reexpanding, thus, leading to its rupture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号