首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1996,134(6):1365-1373
Nascent pre-mRNAs associate with the abundant heterogeneous nuclear RNP (hnRNP) proteins and remain associated with them throughout the time they are in the nucleus. The hnRNP proteins can be divided into two groups according to their nucleocytoplasmic transport properties. One group is completely restricted to the nucleus in interphase cells, whereas the other group, although primarily nuclear at steady state, shuttles between the nucleus and the cytoplasm. Nuclear export of the shuttling hnRNP proteins is mediated by nuclear export signals (NESs). Mounting evidence indicates that NES-bearing hnRNP proteins are mediators of mRNA export. The hnRNP C proteins are representative of the nonshuttling group of hnRNP proteins. Here we show that hnRNP C proteins are restricted to the nucleus not because they lack an NES, but because they bear a nuclear retention sequence (NRS) that is capable of overriding NESs. The NRS comprises approximately 78 amino acids and is largely within the auxiliary domain of hnRNP C1. We suggest that the removal of NRS-containing hnRNP proteins from pre- mRNA/mRNA is required for mRNA export from the nucleus and is an essential step in the pathway of gene expression.  相似文献   

2.
3.
SMN interacts with a novel family of hnRNP and spliceosomal proteins   总被引:19,自引:0,他引:19  
Spinal muscular atrophy (SMA) is a common neurodegenerative disease caused by deletion or loss-of-function mutations of the survival of motor neurons (SMN) protein. SMN is in a complex with several proteins, including Gemin2, Gemin3 and Gemin4, and it plays important roles in small nuclear ribonucleoprotein (snRNP) biogenesis and in pre-mRNA splicing. Here, we characterize three new hnRNP proteins, collectively referred to as hnRNP Qs, which are derived from alternative splicing of a single gene. The hnRNP Q proteins interact with SMN, and the most common SMN mutant found in SMA patients is defective in its interactions with them. We further demonstrate that hnRNP Qs are required for efficient pre-mRNA splicing in vitro. The hnRNP Q proteins may provide a molecular link between the SMN complex and splicing.  相似文献   

4.
5.
RNA biogenesis is essential and vital for accurate expression of genes. It is obvious that cells cannot continue normal metabolism when RNA splicing is interfered with. sgt13018 is such a mutant, with partial loss of function of GAMETOPHYTIC FACTOR 1 (GFA1); a gene likely involved in RNA biogenesis in Arabidopsis. The mutant is featured in the phenotype of diminished female gametophyte development at stage FG5 and is associated with the arrest of early embryo development in Arabidopsis. Bioinformatics data showed that homoiogs of gene GFA1 in yeast and human encode putative U5 snRNPspecific proteins required for pre-mRNA splicing. Furthermore, the result of yeast two-hybrid assay indicated that GFA1 physically interacted with AtBrr2 and AtPrp8, the putative U5 snRNP components, of Arabidopsis. This investigation suggests that GFA1 is involved in mRNA biogenesis through interaction with AtBrr2 and AtPrp8 and functions in megagametogeneeis and embryogenesis in plant.  相似文献   

6.
Our previous evidence suggests that heterogeneous nuclear ribonucleoprotein (hnRNP) A1 plays a part in the regulation of the Cyp2a5 gene by interacting with the 3' untranslated region (UTR) of the CYP2A5 mRNA. However, the exact role of this interaction is not clear. The aim of the present work was to gain further insight into the regulation process of Cyp2a5. For this purpose the 3' UTR of CYP2A5 was fused to the coding region of luciferase mRNA. Luciferase recombinants containing either the full length 3' UTR, or the 3' UTR lacking a previously described 71 nucleotide (nt) region (the hnRNP A1 primary binding site), were transiently expressed in cells expressing or lacking hnRNP A1. The expression of the luciferase recombinants was examined both at mRNA and enzyme activity levels. The results disclosed that the presence of hnRNP A1 was required for the high expression of the recombinant carrying the full length 3' UTR of CYP2A5. Deletion of the hnRNP A1 primary binding site dramatically modified the expression pattern: the mRNA levels and luciferase activities of the deletion mutant were independent from hnRNP A1. These results conclusively demonstrate that the 71 nt region in the 3' UTR of CYP2A5 mRNA can confer hnRNP A1-dependent regulation to a gene. In addition, comparison of RNA levels and luciferase activities suggested that regions flanking the hnRNP A1 binding site could regulate translation of the CYP2A5 mRNA. These results are consistent with a model in which the binding of hnRNP A1 to the 71 nt putative hairpin-loop region in the CYP2A5 mRNA 3' UTR upregulates mRNA levels possibly by protecting the mRNA from degradation.  相似文献   

7.
A novel cDNA clone (20.5) which is differentially expressed between two closely related T-lymphoma cell clones was isolated by subtraction-enriched differential screening. SL12.4 cells, from which the cDNA was isolated, have characteristics of thymocytes at an intermediate stage in development. A sister cell clone derived from the same tumor, SL12.3, does not express this mRNA, has a distinct phenotype, and expresses fewer genes required for mature T-cell function. The cDNA sequence predicts a highly hydrophobic protein (approximately 49.5 kilodaltons) which contains seven putative membrane spanning domains. The gene was expressed on concanavalin A-activated T lymphocytes and was designated Tea (T-cell early activation gene). The Tea gene mapped to chromosome 8 and appeared to be conserved among mammalian and avian species. The Tea gene is distinct from, but bears extensive amino acid and DNA sequence similarity with, the murine ecotropic retroviral receptor which is encoded by the Rec-1 gene. Neither gene product displayed significant homology with other known transmembrane-spanning proteins. Thus, the Tea and Rec-1 genes establish a new family encoding multiple membrane-spanning proteins.  相似文献   

8.
A cDNA clone which expresses a protein that cross-reacts immunologically with the human C1 and C2 hnRNP core proteins has been isolated. The clone was selected by a sensitive immunochemical assay employing an avidin-biotin complex for detection, and identified as a clone for the hnRNP C proteins by a highly sensitive antibody select assay that is described here. The clone contains 677 nucleotides, and, as shown by northern blotting, is derived from a 1.5 Kb poly(A)+ mRNA. There are regions of strong homology between the human and mouse genes, weak homology is seen with chicken DNA, and very little, if any, homology can be detected with Drosophila, Artemia, sea urchin, or yeast DNAs. Two peptides (a total of 24 amino acids) of the calf thymus single-stranded DNA binding protein UP2 show perfect homology with the deduced amino acid sequence of the clone, suggesting that UP2 is related to the hnRNP C proteins. There is also a region that has a sequence very similar to two regions of the single-stranded DNA binding protein UP1 that contain proposed DNA binding sites.  相似文献   

9.
In the eucaryotic nucleus, heterogeneous nuclear RNAs exist in a complex with a specific set of proteins to form heterogeneous nuclear ribonucleoprotein particles (hnRNPs). The C proteins, C1 and C2, are major constituents of hnRNPs and appear to play a role in RNA splicing as suggested by antibody inhibition and immunodepletion experiments. With the use of a previously described partial cDNA clone as a hybridization probe, full-length cDNAs for the human C proteins were isolated. All of the cDNAs isolated hybridized to two poly(A)+ RNAs of 1.9 and 1.4 kilobases (kb). DNA sequencing of a cDNA clone for the 1.9-kb mRNA (pHC12) revealed a single open reading frame of 290 amino acids coding for a protein of 31,931 daltons and two polyadenylation signals, AAUAAA, approximately 400 base pairs apart in the 3' untranslated region of the mRNA. DNA sequencing of a clone corresponding to the 1.4-kb mRNA (pHC5) indicated that the sequence of this mRNA is identical to that of the 1.9-kb mRNA up to the first polyadenylation signal which it uses. Both mRNAs therefore have the same coding capacity and are probably transcribed from a single gene. Translation in vitro of the 1.9-kb mRNA selected by hybridization with a 3'-end subfragment of pHC12 demonstrated that it by itself can direct the synthesis of both C1 and C2. The difference between the C1 and C2 proteins which results in their electrophoretic separation is not known, but most likely one of them is generated from the other posttranslationally. Since several hnRNP proteins appeared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis as multiple antigenically related polypeptides, this raises the possibility that some of these other groups of hnRNP proteins are also each produced from a single mRNA. The predicted amino acid sequence of the protein indicates that it is composed of two distinct domains: an amino terminus that contains what we have recently described as a RNP consensus sequence, which is the putative RNA-binding site, and a carboxy terminus that is very negatively charged, contains no aromatic amino acids or prolines, and contains a putative nucleoside triphosphate-binding fold, as well as a phosphorylation site for casein kinase type II. The RNP consensus sequence was also found in the yeast poly(A)-binding protein (PABP), the heterogeneous nuclear RNA-binding proteins A1 and A2, and the pre-rRNA binding protein C23. All of these proteins are also composed of at least two distinct domains: an amino terminus, which possesses one or more RNP consensus sequences, and a carboxy terminus, which is unique to each protein, being very acidic in the C proteins and rich in glycine in A1, and C23 and rich in proline in the poly(A)-binding protein. These findings suggest that the amino terminus of these proteins possesses a highly conserved RNA-binding domain, whereas the carboxy terminus contains a region essential to the unique function and interactions of each of the RNA-binding proteins.  相似文献   

10.
11.
More than 20 different heterogeneous nuclear ribonucleoproteins (hnRNPs) are associated with pre-mRNAs in the nucleus of mammalian cells and these proteins appear to influence pre-mRNA processing and other aspects of mRNA metabolism and transport. The arrangement of hnRNP proteins on pre-mRNAs is likely to be unique for each RNA and may be determined by the different RNA-binding preferences of each of these proteins. hnRNP F (M(r) = 53 kD, pI = 6.1) and hnRNP H (M(r) = 56 kD, pI = 6.7-7.1) are abundant components of immunopurified hnRNP complexes and they have distinct nucleic acid binding properties. Unlike other hnRNP proteins which display a varying range of affinities for different ribonucleotidehomopolymers and ssDNA, hnRNP F and hnRNP H bind only to poly(rG) in vitro. hnRNP F and hnRNP H were purified from HeLa cells by poly(rG) affinity chromatography and oligonucleotides derived from peptide sequences were used to isolate a cDNA encoding hnRNP F. The predicted amino acid sequence of hnRNP F revealed a novel protein with three repeated domains related to the RNP consensus sequence RNA-binding domain. Monoclonal antibodies produced against bacterially expressed hnRNP F were specific for both hnRNP F and hnRNP H and recognized related proteins in divergent organisms, including in the yeast Saccharomyces cerevisiae. hnRNP F and hnRNP H are thus highly related immunologically and they share identical peptides. Interestingly, immunofluorescence microscopy revealed that hnRNP F and hnRNP H are concentrated in discrete regions of the nucleoplasm, in contrast to the general nucleoplasmic distribution of previously characterized hnRNP proteins. The unique RNA-binding properties, amino acid sequence and distinct intranuclear localization of hnRNP F and hnRNP H make them novel hnRNP proteins that are likely to be important for the processing of RNAs containing guanosine-rich sequences.  相似文献   

12.
The TCL1 gene, which is located on chromosome 14, plays a major role in human hematopoietic malignancies and encodes a 14-kDa protein whose function has not been determined. This gene is expressed in pre-B cells, in immature thymocytes, and, at low levels, in activated T cells but not in peripheral mature B cells and in normal cells. The Tcl1 protein is similar in its primary structure to a protein encoded by the mature T-cell proliferation gene (MTCP1). The MTCP1 gene is located on the X chromosome and has been shown to be involved in rare chromosomal translocations in T-cell proliferative diseases. The murine TCL1 gene resides on mouse chromosome 12 and is homologous to the human TCL1 and MTCP1 genes. Murine Tcl1 protein has 116 amino acid residues and shares 50% sequence identity with human Tcl1, while the human and mouse Mtcp1 are nearly identical, with conservative differences in only six residues. The TCL1 and MTCP1 genes appear to be members of a family of genes involved in lymphoid proliferation and T-cell malignancies. Our laboratory has undertaken the study of the Tcl1 and Mtcp1 proteins to determine the structure and the function of these related proteins. In the present report, we have produced, using a bacterial expression system, the purified murine Tcl1 protein and a mutant form of murine Tcl1 protein containing a cysteine to alanine mutation at amino acid position 85. The recombinant proteins were purified by chromatography on a Ni-NTA resin followed by reverse-phase FPLC using a buffer system at pH 7.9 and a polymer-based reverse-phase column. The murine Tcl1 recombinant protein displays limited solubility and forms disulfide-linked dimers and oligomers, while the mutant murine Tcl1 C86A protein has increased solubility and does not form higher order oligomers. The purified recombinant murine proteins were characterized by N-terminal sequence analysis, mass spectrometry, and circular dichroism spectroscopy. Initial results indicate that the mutant murine Tcl1 C86A protein is suitable for both NMR and X-ray crystallographic methods of structure determination.  相似文献   

13.
14.
A clone designated A.t.RAB6 encoding a small GTP-binding protein was isolated from a cDNA library of Arabidopsis thaliana leaf tissue. The predicted amino acid sequence was highly homologous to the mammalian and yeast counterparts, H.Rab6 and Ryh1/Ypt6, respectively. Lesser homology was found between the predicted Arabidopsis protein sequence and two small GTP-binding proteins isolated from plant species (44% homology to Zea mays Ypt1 and 43% homology to Nicotiana tabacum Rab5). Conserved stretches in the deduced amino acid sequence of A.t.Rab6 include four regions involved in GTP-binding, an effector region, and C-terminal cysteine residues required for prenylation and subsequent membrane attachment. Northern blot analysis demonstrated that A.t.Rab6 mRNA was expressed in root, leaf, stem, and flower tissues from A. thaliana with the highest levels present in roots. Escherichia coli produced histidine-tagged A.t.Rab6 protein-bound GTP, whereas a mutation in one of the guanine nucleotide-binding sites (asparagine122 to isoleucine) rendered it incapable of binding GTP. Functionally, the A.t.RAB6 gene was able to complement the temperature-sensitive phenotype of the YPT6 null mutant in yeast. The isolation of this gene will aid in the dissection of the machinery involved in soluble protein sorting at the trans-Golgi network of plants.  相似文献   

15.
C G Burd  G Dreyfuss 《The EMBO journal》1994,13(5):1197-1204
Pre-mRNA is processed as a large complex of pre-mRNA, snRNPs and pre-mRNA binding proteins (hnRNP proteins). The significance of hnRNP proteins in mRNA biogenesis is likely to be reflected in their RNA binding properties. We have determined the RNA binding specificity of hnRNP A1 and of each of its two RNA binding domains (RBDs), by selection/amplification from pools of random sequence RNA. Unique RNA molecules were selected by hnRNP A1 and each individual RBD, suggesting that the RNA binding specificity of hnRNP A1 is the result of both RBDs acting as a single RNA binding composite. Interestingly, the consensus high-affinity hnRNP A1 binding site, UAGGGA/U, resembles the consensus sequences of vertebrate 5' and 3' splice sites. The highest affinity 'winner' sequence for hnRNP A1 contained a duplication of this sequence separated by two nucleotides, and was bound by hnRNP A1 with an apparent dissociation constant of 1 x 10(-9) M. hnRNP A1 also bound other RNA sequences, including pre-mRNA splice sites and an intron-derived sequence, but with reduced affinities, demonstrating that hnRNP A1 binds different RNA sequences with a > 100-fold range of affinities. These experiments demonstrate that hnRNP A1 is a sequence-specific RNA binding protein. UV light-induced protein-RNA crosslinking in nuclear extracts demonstrated that an oligoribonucleotide containing the A1 winner sequence can be used as a specific affinity reagent for hnRNP A1 and an unidentified 50 kDa protein. We also show that this oligoribonucleotide, as well as two others containing 5' and 3' pre-mRNA splice sites, are potent inhibitors of in vitro pre-mRNA splicing.  相似文献   

16.
Hypomorphic mutation in hnRNP U results in post-implantation lethality   总被引:1,自引:0,他引:1  
  相似文献   

17.
The c-myc proto-oncogene plays a key role in the proliferation, differentiation, apoptosis, and regulation of the cell cycle. Recently, it was demonstrated that the 5' nontranslated region (5' NTR) of human c-myc mRNA contains an internal ribosomal entry site (IRES). In this study, we investigated cellular proteins interacting with the IRES element of c-myc mRNA. Heterogeneous nuclear ribonucleoprotein C (hnRNP C) was identified as a cellular protein that interacts specifically with a heptameric U sequence in the c-myc IRES located between two alternative translation initiation codons CUG and AUG. Moreover, the addition of hnRNP C1 in an in vitro translation system enhanced translation of c-myc mRNA. Interestingly, hnRNP C was partially relocalized from the nucleus, where most of the hnRNP C resides at interphase, to the cytoplasm at the G(2)/M phase of the cell cycle. Coincidently, translation mediated through the c-myc IRES was increased at the G(2)/M phase when cap-dependent translation was partially inhibited. On the other hand, a mutant c-myc mRNA lacking the hnRNP C-binding site, showed a decreased level of translation at the G(2)/M phase compared to that of the wild-type message. Taken together, these findings suggest that hnRNP C, via IRES binding, modulates translation of c-myc mRNA in a cell cycle phase-dependent manner.  相似文献   

18.
19.
E. Zdarsky  J. Favor    I. J. Jackson 《Genetics》1990,126(2):443-449
The murine b locus encodes the tyrosinase related protein, TRP-1, a putative membrane-bound, copper-containing enzyme having about 40% amino acid identity with tyrosinase. The protein is essential for production of black rather than brown hair pigment. We show that skin of mutant brown mice contains the same amount of TRP-1 mRNA as wild type. On sequencing the coding region of the mutant mRNA we find four nucleotide differences from the wild-type (Black) sequence. Two of these differences result in different amino acid residues encoded by the brown allele. By sequencing the TRP-1 gene from a mouse in which a reversion from brown to Black has been induced by ethylnitrosourea we are able to show that only one of these amino acid changes, which substitutes a tyrosine for a conserved cysteine, is the cause of the brown phenotype. This mutation is adjacent to another cysteine at which, in the analogous position in tyrosinase a mutation results in the albino phenotype. The sequence of the revertant is the first report of DNA sequence of an ethylnitrosourea-induced genetic change in mouse.  相似文献   

20.
Chloroplast development requires coordinated expression of both nuclear- and chloroplast-encoded genes. To better understand the roles played by nuclear-encoded chloroplast proteins in chloroplast biogenesis, we isolated an Arabidopsis mutant, egy1-1, which has a dual phenotype, reduced chlorophyll accumulation and abnormal hypocotyl gravicurvature. Subsequent map-based cloning and DNA sequencing of the mutant gene revealed a 10-bp deletion in an EGY1 gene, which encodes a 59-kDa metalloprotease that contains eight trans-membrane domains at its C-terminus, and carries out beta-casein degradation in an ATP-independent manner. EGY1 protein accumulation varies between tissue types, being most prominent in leaf and stem tissues, and is responsive to light and ethylene. EGY1-GFP hybrid proteins are localized in the chloroplast. egy1 mutant chloroplasts had reduced granal thylakoids and poorly developed lamellae networks. Furthermore, the accumulation of chlorophyll a/b binding proteins of the light-harvesting complexes I and II (Lhca and Lhcb) are significantly decreased in three separate loss-of-function egy1 mutants. Taken together, these results suggest that EGY1 metalloprotease is required for chloroplast development and, hence, a defective EGY1 gene has pleiotropic effects both on chloroplast development and on ethylene-dependent gravitropism of light-grown hypocotyls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号