首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M Takahashi  P Hagmar 《FEBS letters》1991,279(2):270-272
In vitro binding of RecA protein to double-stranded DNA (dsDNA) was studied using ion-exchange liquid chromatography. The method allowed quantification of both free DNA and free protein. The results unambiguously showed a binding stoichiometry of 3 base pairs per RecA monomer. The binding exhibited cooperativity, and the stoichiometry suggested that RecA does not form complexes with two molecules of dsDNA. More than 90% of RecA molecules in the sample were active for DNA binding.  相似文献   

2.
In an attempt to understand the role of ATP as a cofactor at the interaction of the RecA protein with DNA, we have studied the orientation geometries of the cofactor analogs adenosine 5′-O-(3-thiotriphosphate) (ATPγS) and guanosine 5′-O-(3-thiotriphosphate) (GTPγS) in RecA-DNA complexes using flow linear dichroism spectroscopy. Both cofactors promote the formation of RecA-DNA complexes of similar structure as judged from similar orientations of DNA bases. The DNA orientation was probed through the dichroism of the long-wavelength absorption of a DNA analog, poly(dεA). In this way differences between the dichroic spectra of the ATPγS–RecA–DNA and GTPγS-RecA-DNA complexes, observed in the shorter-wavelength region, are related to orientation at variations of the cofactor chromophores. The results show that the guanine plane of GTPγS is oriented parallel with the principal axis of the complex in contrast to the more perpendicular orientation of the DNA bases. This observation directly excludes the possibility that the cofactor could be intercalated between the DNA bases. This observation directly excludes the possibility that the cofactor could be intercalated between the DNA bases. The orientation of the adenine base of ATPγS, which may be similar to that of guanine of GTPγS albeit not exactly the same, is also inconsistent with intercalation. The possibility that the cofactor bound to the protein could be intercalated in DNA had been speculated from the observation that some DNA intercalators can induce RecA binding to DNA in the absence of cofator. There are probably no direct interactions between the cofator and the DNA bases and the role of the cofactor is probably related to interaction with RecA and a modification of protein conformation.  相似文献   

3.
The RecA803 protein suppresses the recombinational repair defect of recF mutations and displays enhanced joint molecule formation in vitro (Madiraju et al., 1988). To understand the physical basis for these phenomena, the biochemical properties of RecA803 protein were compared with those of the wild-type protein. The RecA803 protein shows greater DNA-dependent ATPase activity than the wild-type protein with either M13 single-stranded (ss) DNA, which contains secondary structure, or double-stranded DNA. This increased activity reflects an enhanced ability of the mutant protein to form active complexes with these DNA molecules rather than an enhanced catalytic turnover activity, because identical kcat values for ATP hydrolysis are obtained when DNA substrates lacking secondary structure are examined. In addition, the ssDNA-dependent ATPase activity of RecA803 protein displays greater resistance to inhibition by SSB (single-stranded DNA binding) protein. These properties of the RecA803 protein are not due to either an increased binding affinity for ssDNA or an increased kinetic lifetime of RecA803 protein-ssDNA complexes, demonstrating that altered protein-DNA stability is not the basis for the enhanced properties of RecA803 protein. However, the nucleation-limited rate of association with ssDNA is more rapid for the RecA803 protein than for wild-type RecA protein. Consequently, we suggest that altered protein-protein interactions may account for the differences between these two proteins. The implications of these results with regard to the partial suppression of recF mutations by recA803 are discussed (Madiraju et al., 1988).  相似文献   

4.
Abstract

We have characterised complexes between RecA and single-stranded homopolynucleotides by linear dichroism spectroscopy and small angle neutron scattering to investigate base pairing possibilities among DNA strands bound in a RecA filament. We find that in the presence of the non-hydrolysable cofactor ATPγS, and very likely also in the presence of ATP, a RecA fiber has three distinct DNA binding sites, each of which can bind one strand of DNA at a stoichiometry of three nucleotides per RecA monomer. The structural and hydrodynamic properties of the complexes are found to depend on the number of strands bound and on sequence complementarity among the strands. For example, RecA-[homopolymer]3-ATPγS complexes aggregate when either of the strands bound in sites I and II is complementary to the strand bound in site III. We have also studied the RecA catalysed annealing of complementary homopolymers and find it to be most efficient when two strands of one homopolymer are bound per RecA filament prior to the addition of the complementary homopolymer. These results suggest that a DNA strand bound in site III can base-pair with either of the strands in sites I and II, whereas the latter strands are unable to base-pair with each other.  相似文献   

5.
Genetic and cytological evidences suggest that Bacillus subtilis RecN acts prior to and after end-processing of DNA double-strand ends via homologous recombination, appears to participate in the assembly of a DNA repair centre and interacts with incoming single-stranded (ss) DNA during natural transformation. We have determined the architecture of RecN–ssDNA complexes by atomic force microscopy (AFM). ATP induces changes in the architecture of the RecN–ssDNA complexes and stimulates inter-complex assembly, thereby increasing the local concentration of DNA ends. The large CII and CIII complexes formed are insensitive to SsbA (counterpart of Escherichia coli SSB or eukaryotic RPA protein) addition, but RecA induces dislodging of RecN from the overhangs of duplex DNA molecules. Reciprocally, in the presence of RecN, RecA does not form large RecA–DNA networks. Based on these results, we hypothesize that in the presence of ATP, RecN tethers the 3′-ssDNA ends, and facilitates the access of RecA to the high local concentration of DNA ends. Then, the resulting RecA nucleoprotein filaments, on different ssDNA segments, might promote the simultaneous genome-wide homology search.  相似文献   

6.
By using flow linear dichroism, in combination with nuclease digestion and two spectroscopically distinguishable DNAs, we demonstrate the existence of two internal and one external DNA-binding sites in the RecA fiber. A number of different complexes between RecA and single- and double-stranded DNAs are characterized with respect to stoichiometry, location, and base orientation of each of the associated DNAs. Based on these results, we discuss important steps of the mechanism of general genetic recombination.  相似文献   

7.
We show that certain DNA sequences have the ability to influence the positioning of RecA monomers in RecA-DNA complexes. A tendency for RecA monomers to be phased was observed in RecA protein complexes with several oligonucleotides containing a recombinational hotspot sequence, the chi-site from Escherichia coli. This influence was observed in both the 5' to 3' and 3' to 5' directions with respect to chi. A 5'-end phosphate group and probably some other features in DNA also influence the phasing of RecA monomers. We conclude that natural DNAs contain a number of features that influence the positioning of RecA monomers. The ability of specific DNA sequences to influence the positioning of RecA monomers demonstrates some specificity in the binding of individual bases at different sites within a RecA monomer and, most likely, reflects the stereochemical non-equivalence of these sites. The possible biological implications of the phasing of RecA monomers in presynaptic DNA-protein cofilaments are discussed.  相似文献   

8.
Bacterial RecA protein is the key enzyme in the processes of homologous recombination, post-replication repair and induction of SOS-repair functions. While a significant amount of data on the structure of RecA protein and its functional analogs has been obtained, there is little information about the molecular dynamics of this protein. In this work we present the results of neutron spin-echo measurements of the relaxation kinetics of filaments formed by RecA proteins from E. coli and P. aeruginosa. The results suggest that the protein filaments exhibit both diffusion and internal relaxation modes, which change during the formation of complexes of these proteins with ATP and single-stranded DNA.  相似文献   

9.
Binding of RecA to poly(dG-m5dC) and poly(dG-dC) under B- and Z-form conditions was studied using circular dichroism (CD) and linear dichroism (LD). LD revealed a quantitative binding of RecA to Mg2+-induced Z-form poly(dG-m5dC) with a stoichiometry of 3.1 base pairs/RecA monomer, which is slightly larger than the 2.7 base pairs observed for the B-form. The LD spectra indicate a preferentially perpendicular orientation of DNA bases and a rather parallel orientation of the tryptophan residues relative to the fiber axis in both complexes. The association rate of RecA to Z-form DNA was found to be slower than to B-form. CD measurements showed that the polynucleotide conformation is retained upon RecA binding, and CD and LD confirm that RecA binds to both forms of DNA. The Mg2+-induced Z-form is shown to be retransformed into B-form, both in free and in RecA-complexed polynucleotides by addition of NaCl, whereas the B----Z transition cannot be induced by addition of Mg2+ when the polynucleotide is complexed with RecA. From this it is inferred that RecA does not stabilize the Z-conformation of the polynucleotide but that it can kinetically "freeze" the polynucleotide in its B-conformation. On all essential points, the same conclusions were also reached in a corresponding study of unmethylated poly(dG-dC) with the Z-form induced by Mn2+.  相似文献   

10.
Effect of RecF protein on reactions catalyzed by RecA protein.   总被引:12,自引:1,他引:11       下载免费PDF全文
RecF protein is one of at least three single strand DNA (ssDNA) binding proteins which act in recombination and repair in Escherichia coli. In this paper we show that our RecF protein preparation complexes with ssDNA so as to retard its electrophoretic movement in an agarose gel. The apparent stoichiometry of RecF-ssDNA-binding measured in this way is one RecF molecule for every 15 nucleotides and the binding appears to be cooperative. Interaction of the other two ssDNA-binding proteins, RecA and Ssb proteins, has been studied extensively; so in this paper we begin the study of the interaction of RecF and RecA proteins. We found that the RecF protein preparation inhibits the activity of RecA protein in the formation of joint molecules whether added before or after addition of RecA protein to ssDNA. It, therefore, differs from Ssb protein which stimulates joint molecule formation when added to ssDNA after RecA protein. We found that our RecF protein preparation inhibits two steps prior to joint molecule formation: RecA protein binding to ssDNA and coaggregate formation between ssDNA-RecA complexes and dsDNA. We found that it required a much higher ratio of RecF to RecA protein than normally occurs in vivo to inhibit joint molecule formation. The insight that these data give to the normal functioning of RecF protein is discussed.  相似文献   

11.
The interaction between RecA and DNA (in the form of unmodified single-stranded DNA, fluorescent single-stranded DNA and double-stranded DNA) is studied with linear dichroism and fluorescence spectroscopy. RecA is found to form a complex with single-stranded DNA with a binding stoichiometry of about four nucleotides per RecA monomer, in which the DNA bases appear to have a random orientation. Addition of ATP gamma S (a non-hydrolyzable analog of ATP) reduces the stoichiometry to about three nucleotides per RecA and causes the DNA bases to adopt an orientation preferentially perpendicular to the fiber axis. This complex can incorporate an additional strand of single-stranded DNA or double-stranded DNA, yielding a total stoichiometry of six nucleotides or three nucleotides and three base-pairs, respectively, per RecA. RecA, in the presence of ATP gamma S, is also found to interact with double-stranded DNA, with a stoichiometry of about three base-pairs per RecA. In all studied complexes, the tryptophan residues in the RecA protein are oriented with their planes preferentially parallel to the fiber axis, whereas in complexes involving ATP gamma S the planes of the DNA bases are oriented preferentially perpendicular to the fiber. This virtually excludes the possibility that the tryptophan residues are intercalated in the DNA helix. On the basis of these results, a model for the research of homology in the RecA-mediated, strand-exchange reaction in the genetic recombination process is proposed.  相似文献   

12.
recA protein (RecA) performs diverse catalytic activities that require a complex with single-stranded DNA and an NTP. A subset of these functions shows optimal activity at a high DNA/protein ratio and requires NTP hydrolysis, whereas other catalytic activities are optimal in RecA-saturated complexes that require NTP, but do not hydrolyze it. To analyze the mechanism of catalytic discrimination, we investigated the properties of RecA bound to small oligonucleotides (oligos) of defined sizes. We show that RecA bound to (dT)16 is optimal for co-protease activity and not active as ATPase whereas the complex with (dT)24 is competent in ATP hydrolysis but impaired as a co-protease. Thermodynamic measurements of the equilibrium-binding properties of these complexes showed that (dT)24 promoted a more salt sensitive complex than the one formed with (dT)16, indicating more ionic interactions between RecA and DNA in the former. X-ray pictures show that the oligo complexes form helixes. We propose that RecA may change its conformation as a function of the number of phosphates available to the monomer in the interacting DNA lattice, thus promoting an allosteric change in catalytic activities. This model offers explanations for the observed inhibition of co-protease activity by excess ssDNA.  相似文献   

13.
The effect of the Escherichia coli single-stranded DNA binding (SSB) protein on the stability of complexes of E. coli RecA protein with single-stranded DNA has been investigated through direct DNA binding experiments. The effect of each protein on the binding of the other to single-stranded DNA, and the effect of SSB protein on the transfer rate of RecA protein from one single-stranded DNA molecule to another, were studied. The binding of SSB protein and RecA protein to single-stranded phage M13 DNA is found to be competitive and, therefore, mutually exclusive. In the absence of a nucleotide cofactor, SSB protein binds more tightly to single-stranded DNA than does RecA protein, whereas in the presence of ATP-gamma-S, RecA protein binds more tightly than SSB protein. In the presence of ATP, an intermediate result is obtained that depends on the type of DNA used, the temperature, and the magnesium ion concentration. When complexes of RecA protein, SSB protein and single-stranded M13 DNA are formed under conditions of slight molar excess of single-stranded DNA, no effect of RecA protein on the equilibrium stability of the SSB protein-single-stranded DNA complex is observed. Under similar conditions, SSB protein has no observed effect on the stability of the RecA protein-etheno M13 DNA complex. Finally, measurements of the rate of RecA protein transfer from RecA protein-single-stranded DNA complexes to competing single-stranded DNA show that there is no kinetic stabilization of the RecA protein-etheno M13 DNA complex by SSB protein, but that a tenfold stabilization is observed when single-stranded M13 DNA is used to form the complex. However, this apparent stabilizing effect of SSB protein can be mimicked by pre-incubation of the RecA protein-single-stranded M13 DNA complex in low magnesium ion concentration, suggesting that this effect of SSB protein is indirect and is mediated through changes in the secondary structure of the DNA. Since no direct effect of SSB protein is observed on either the equilibrium or dissociation properties of the RecA protein-single-stranded DNA complex, it is concluded that the likely effect of SSB protein in the strand assimilation reaction is on a slow step in the association of RecA protein with single-stranded DNA. Direct evidence for this conclusion is presented in the accompanying paper.  相似文献   

14.
Singleton SF  Xiao J 《Biopolymers》2001,61(3):145-158
The RecA protein of Escherichia coli plays essential roles in homologous recombination and restarting stalled DNA replication forks. In vitro, the protein mediates DNA strand exchange between single-stranded (ssDNA) and homologous double-stranded DNA (dsDNA) molecules that serves as a model system for the in vivo processes. To date, no high-resolution structure of the key intermediate, comprised of three DNA strands simultaneously bound to a RecA filament (RecA x tsDNA complex), has been elucidated by classical methods. Here we review the systematic characterization of the helical geometries of the three DNA strands of the RecA x tsDNA complex using fluorescence resonance energy transfer (FRET) under physiologically relevant solution conditions. Measurements of the helical parameters for the RecA x tsDNA complex are consistent with the hypothesis that this complex is a late, poststrand-exchange intermediate with the outgoing strand shifted by about three base pairs with respect to its registry with the incoming and complementary strands. All three strands in the RecA x tsDNA complex adopt extended and unwound conformations similar to those of RecA-bound ssDNA and dsDNA.  相似文献   

15.
We have analyzed the nature of RecA protein-RecA protein interactions using an affinity column prepared by coupling RecA protein to an agarose support. When radiolabeled soluble proteins from Escherichia coli are applied to this column, only the labeled RecA protein from the extract was selectively retained and bound tightly to the affinity column. Efficient binding of purified 35S-labeled RecA protein required Mg2+, and high salt did not interfere with the binding of RecA protein to the column. Complete removal of the bound enzyme from the affinity column required treatment with guanidine HCl (5 M) or urea (8 M). These and other properties suggest that hydrophobic interactions contribute significantly to RecA protein subunit recognition in solution. Using a series of truncated RecA proteins synthesized in vitro, we have obtained evidence that at least some of the sequences involved in protein recognition are localized within the first 90 amino-terminal residues of the protein. Based on the observation that RecA proteins from three heterologous bacteria are specifically retained on the E. coli RecA affinity column, it is likely that this binding domain is highly conserved and is required for interaction and association of RecA protein monomers. Stable ternary complexes of RecA protein and single-stranded DNA were formed in the presence of the nonhydrolyzable ATP analog adenosine 5'-O-(thiotriphosphate) and applied to the affinity columns. Most of the complexes formed with M13 DNA could be eluted in high salt, whereas a substantial fraction of those formed with the oligonucleotide (dT)25-30 remained bound in high salt and were quantitatively eluted with guanidine HCl (5 M). The different binding properties of these RecA protein-DNA complexes likely reflect differences in the availability of a hydrophobic surface on RecA protein when it is bound to long polynucleotides compared to short oligonucleotides.  相似文献   

16.
The RecA protein of Escherichia coli will drive the pairing and exchange of strands between homologous DNA molecules in a reaction stimulated by single-stranded binding protein. Here, reactions utilizing three homologous DNA pairs which can undergo both paranemic and plectonemic joining were examined by electron microscopy: supertwisted double-stranded (ds) DNA and linear single-stranded (ss) DNA, linear dsDNA and circular ssDNA, and linear dsDNA and colinear ssDNA. Several major observations were: (i) with RecA protein bound to the DNA, plectonemic joints were ultrastructurally indistinguishable from paranemic joints; (ii) complexes which appeared to be joined both paranemically and plectonemically were present in these reactions in roughly equal numbers; and (iii) in complexes undergoing strand exchange, both DNA partners were often enveloped within a RecA protein filament consisting of hundreds of RecA protein monomers and several kilobases of DNA. These observations suggest that, following RecA protein-ssDNA filament formation, strand exchange proceeds by a pathway that can be divided structurally into three phases: pairing, envelopment/exchange, and release of the products.  相似文献   

17.
The role of Tyr264 in nucleotide binding and hydrolysis catalyzed by the RecA protein of Escherichia coli was investigated by constructing Gly, Ser, and Phe substitution mutations using oligonucleotide-directed mutagenesis. The corresponding mutant recA genes neither restored resistance to killing by ultraviolet irradiation nor increased homologous recombination in a recA strain. The purified RecA(Gly264) protein was unable to bind nucleotide, hydrolyze ATP, or form stable ternary complexes with adenosine 5'-O-thiotriphosphate and DNA although the mutant protein bound DNA normally in the absence of nucleotide. The RecA (Phe264) and RecA(Ser264) proteins hydrolyzed ATP poorly and the rates were reduced approximately 8- and 18-fold, respectively. Although capable of low levels of ATP hydrolysis, neither the RecA(Phe264) nor the RecA(Ser264) protein promoted DNA pairing or strand exchange reactions in vitro. Furthermore, these mutant RecA proteins were impaired in their ability to form salt-resistant ternary complexes with adenosine 5'-O-thiotriphosphate) and DNA as judged by filter binding. Nevertheless, nucleoprotein complexes formed with either RecA(Phe264) or RecA(Ser264) protein directed efficient cleavage of LexA repressor in vitro. These results demonstrate that Tyr264 is required for efficient ATP hydrolysis and for homologous pairing of DNA but does not participate in activating RecA protein for LexA repressor autodigestion.  相似文献   

18.
Using an ensemble approach, we demonstrate that an oligomeric RecA species is required for the extension phase of RecA filament formation. The RecA K72R mutant protein can bind but not hydrolyze ATP or dATP. When mixed with other RecA variants, RecA K72R causes a drop in the rate of ATP hydrolysis and has been used to study disassembly of hydrolysis-proficient RecA protein filaments. RecA K72R filaments do not form in the presence of ATP but do so when dATP is provided. We demonstrate that in the presence of ATP, RecA K72R is defective for extension of RecA filaments on DNA. This defect is partially rescued when the mutant protein is mixed with sufficient levels of wild type RecA protein. Functional extension complexes form most readily when wild type RecA is in excess of RecA K72R. Thus, RecA K72R inhibits hydrolysis-proficient RecA proteins by interacting with them in solution and preventing the extension phase of filament assembly.  相似文献   

19.
J Flory  C M Radding 《Cell》1982,28(4):747-756
A stoichiometric interaction of RecA protein with single-stranded DNA promotes homologous pairing of the single strand with duplex DNA and subsequent polar formation of a heteroduplex joint. Escherichia coli single-strand-binding (SSB) protein augments these reactions. Electron microscopic observations suggest structural bases for these interactions. Without triphosphates or DNA, RecA protein forms short linear filaments. With added circular single-stranded DNA, it forms extended circular filaments as well as collapsed and aggregated complexes of protein and DNA. The extended circular filaments are stiff and regular in appearance, contrasting with the convoluted structure formed by SSB protein and single-stranded DNA. Together, these two proteins form mixed filaments, which mostly resemble the extended structures containing RecA protein; moreover, SSB protein accelerates formation of extended filaments more than 50-fold, increasing the yield of these structures at the expense of heterogeneous aggregates. Other observations further define the interactions of RecA protein with partially single-stranded DNA, and the effects of ATP gamma S on the tendency of RecA protein to form polymeric structures even in the absence of DNA.  相似文献   

20.
The unresolved mechanism by which a single strand of DNA recognizes homology in duplex DNA is central to understanding genetic recombination and repair of double-strand breaks. Using stopped-flow fluorescence we monitored strand exchange catalyzed by E. coli RecA protein, measuring simultaneously the rate of exchange of A:T base pairs and the rates of formation and dissociation of the three-stranded intermediates called synaptic complexes. The rate of exchange of A:T base pairs was indistinguishable from the rate of formation of synaptic complexes, whereas the rate of displacement of a single strand from complexes was five to ten times slower. This physical evidence shows that a subset of bases exchanges at a rate that is fast enough to account for recognition of homology. Together, several studies suggest that a mechanism governed by the dynamic structure of DNA and catalyzed by diverse enzymes underlies both recognition of homology and initiation of strand exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号