首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seven protein subunits of cytochrome c oxidase from bovine heart were isolated by gel filtration in the presence of sodium dodecyl sulphate (subunits I, II and III) and guanidine hydrochloride (subunits V, VI and VII), and ion-exchange chromatography in 6 M urea (subunit IV) after the enzyme had been dissociated in 6 M guanidine hydrochloride. When analysed by highly cross-linked sodium dodecyl sulphate/polyacrylamide gel electrophoresis in the presence of urea, the apparent molecular weights were = I, 36700; II, 24300; III, 20400; IV, 17300; V, 12300; VI, 8700: and VII, 5100. Monospecific rabbit antisera were obtained against subunits I, IV, V, VI and VII and a mixture of subunits II and III. These subunit-specific antisera with the exception of anti-I serum all cross-reacted with the detergent-solubilized native oxidase. Enzymatic studies on purified oxidase indicated that immunoglobulins against subunits II + III, IV, V, VI and VII respectively caused 25, 65, 20, 30 and 25% inhibition while anti-I immunoglobulin did not inhibit the activity. The subunit-specific antisera were used to examine the arrangements of the subunits in the membrane. Enzymatic studies using bovine heart mitochondria and rat liver mitochondrial digitonin particles showed that anti-(II + III) serum, anti-V serum and anti-VII serum all inhibited the oxidase activity while the other antisera did not. On the other hand, results of using 125I-labelled immunoglobulins showed that anti-IV, anti-V and anti-VII sera were bound to the surface of inverted vesicles (matrix side) while all other antisera were not. These results indicate that cytochrome oxidase subunits II and III are situated on the outer surface, and subunit IV is exclusively on the matrix surface while subunits V and VII are exposed on both surfaces of the mitochondrial membrane. Subunits I and VI are buried within the membrane, not exposed on either side.  相似文献   

2.
Ornithine decarboxylase (ODC) isolated from a variety of tissues has been separated, using DEAE ion-exchange chromatography, into multiple peaks of activity that appear to be related to control of this enzyme stability. Reports of these charge isoforms in current literature are generally unclear as to whether these represent a covalent posttranslational modification or merely an alteration in structural conformation or association. In this study we investigated the relationship of this form separation to the degree of enzyme polymerization, interaction with other proteins and buffer components, and the multiple isoelectric forms of this enzyme noted in denaturing concentrations of urea. High-performance chromatography techniques were used to demonstrate that two of the major enzyme forms, ODC I and II, are really monomers of the enzyme, while minor peaks of activity frequently observed to elute after ODC II contain various dimeric enzyme states. Pyridoxal 5'-phosphate (0.05 mM) added to isolated enzyme preparations composed of I and II monomers induced the formation of I and II dimers as well as a mixed I-II dimer. All three dimer forms were observed to be natural components of freshly isolated crude cell homogenates. The charge distinction between the monomer forms I and II was found to be maintained during ion-exchange chromatography in the presence of 8 M urea, and the enzyme isoforms demonstrated distinct bands on isoelectric focusing gels run in the presence of 9 M urea. Thus, although some of the multiple ornithine decarboxylase forms identified by ion-exchange chromatography of crude mammalian cell homogenates are related to enzyme conformation, the two major forms are distinctly charged protein states that can be visualized using two-dimensional gel electrophoresis of highly purified samples.  相似文献   

3.
Immunological characterization of bovine lysyl oxidase   总被引:1,自引:0,他引:1  
Antibodies to homogeneously purified bovine aortic lysyl oxidase were prepared in chickens. The chicken anti-lysyl oxidase antiserum effectively inhibited bovine aortic lysyl oxidase activity. Non-immune antiserum from chickens, goats and humans was found to enhance bovine aortic lysyl oxidase activity, while non-immune rabbit serum inhibited enzyme activity. A competitive ELISA was developed to monitor immunoreactive lysyl oxidase during purification. Chromatography of bovine lysyl oxidase on Sephacryl S-200, the final step in purification, revealed two peaks of immunoreactive lysyl oxidase. The large molecular weight peak appears to contain inactive multimeric forms of the enzyme.  相似文献   

4.
Lysyl oxidase purified from urea extracts of various connective tissues resolves into multiple catalytically functional species upon chromatography on DEAE-cellulose in 6 M urea. The four enzyme species of bovine aorta retain their original chromatographic behavior on DEAE with time of storage and after purification to homogeneity by gel exclusion chromatography. The peptide maps of each aortic enzyme partially digested by STaphylococcus aureus V8 protease are very similar to each other, as are the peptide maps of complete tryptic digests of each enzyme. Such similarity also exists between the peptide maps of the aortic enzyme and the urea-extractable lysyl oxidase of bovine cartilage, as well as with the peptide maps of a catalytically quiescent protein resolved from the aortic enzyme by gel exclusion chromatography. The substrate activity profiles of the multiple aortic enzyme species are also extremely similar. Although the origin of the enzyme multiplicity remains to be established, there is evident structural and catalytic similarities between the enzyme forms.  相似文献   

5.
Lysyl oxidase of bovine aorta was resolved into four enzymically active species by elution from DEAE-cellulose with a salt gradient in 6m-urea, consistent with purification results obtained with enzyme of other tissues [Stassen (1976) Biochim. Biophys. Acta438, 49-60]. In the present study, each of the four peaks of activity was purified to apparent homogeneity by subsequent chromatography on gel-filtration media in 6m-urea. Each enzyme is eluted as a species with mol.wt. approx. 30000 under these conditions, although lysyl oxidase polymerizes to a series of multimers with molecular weights ranging up to 1000000 in the absence of urea. The apparent subunit molecular weight of each enzyme species determined by electrophoresis in sodium dodecyl sulphate and 8m-urea is approx. 32000-33000. The amino acid compositions of the purified forms of lysyl oxidase are similar to each other, although sufficient differences exist to conclude that each is a unique molecular species. Incorporation of alpha-toluenesulphonyl fluoride into the purification scheme does not alter the resolution of enzyme into four species, suggesting that proteolysis during isolation is not the basis of the heterogeneity. The similar sensitivities of each form of enzyme to chelating agents and to semicarbazide and isoniazid indicate that each requires the participation of a metal ion, presumably Cu(2+), and of a carbonyl compound for enzyme function. The present study describes a method for the purification of multiple species of lysyl oxidase and reveals that significant chemical differences exist between the different enzyme forms.  相似文献   

6.
Methods for the copurification and rapid assessment of the protein profiles corresponding to the multiple variants of bovine aortic lysyl oxidase are described. The individual variants do not resolve from each other by electrophoresis in sodium dodecyl sulfate but are resolved by gel electrophoresis in 8 M urea, thus providing a new method for their detection independent of enzyme assay. Alkylation of the purified mixture of the variants with iodoacetamide after reduction with dithiothreitol identified three disulfides per 32,000-Da monomer. Urea gel electrophoresis revealed that the heterogeneity of lysyl oxidase persists after reduction and alkylation, indicating that disulfide isomers are not the bases of the enzyme heterogeneity.  相似文献   

7.
H Masui  M Satoh    T Satoh 《Journal of bacteriology》1994,176(6):1624-1629
Spheroplasts prepared from a molybdenum cofactor-deficient mutant of Rhodobacter sphaeroides f. sp. denitrificans secreted dimethyl sulfoxide (DMSO) reductase which had no molybdenum cofactor and therefore no activity, whereas those from wild-type cells secreted the active reductase. The inactive DMSO reductase proteins were separated by nondenaturing electrophoresis into two forms: form I, with the same mobility as the native enzyme, and form II, with slower mobility. Both forms had the same mobility on denaturing gel. Form I and active DMSO reductase had the same profile on gel filtration chromatography. Form II was eluted a little faster than the native enzyme, suggesting that DMSO reductase form II was not an aggregated form but a compactly folded form very similar to the native enzyme. Form II was digested by trypsin and denatured with urea, whereas form I was unaffected, like native DMSO reductase. These results suggested that form II was a partially unfolded but compactly folded apoprotein of DMSO reductase.  相似文献   

8.
Multiple forms of myeloperoxidase from normal human neutrophilic granulocytes obtained from a single donor can be resolved by carboxymethyl (CM)-cellulose ion-exchange column chromatography into three forms (I, II, and III) designated in order of elution of adsorbed enzyme using a linear salt gradient. Selective solubilization of individual forms of the enzyme by detergent (form I) or high-ionic-strength procedures (forms II and III) suggested that these forms of the enzyme were compartmentalized differently. All three forms were purified by a combination of preferential extraction, manipulation of ionic strength, and ion-exchange and molecular sieve chromatography. Purified forms II and III had similar specific activities for a variety of substrates. Form I was less active toward several of these same substrates, most notably iodide, with a specific activity about one-half that of forms II and III. All forms had similar spectral properties characteristic of a type alpha heme. The amino acid compositions of the three forms were similar, yet significant differences were found in selected residues such as the charged amino acids. Native polyacrylamide gel electrophoresis resolved small differences in mobility between the forms which were consistent with the charge heterogeneity observed on CM-cellulose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis data were consistent with the generally accepted subunit structure of two heavy chains and two light chains. All three forms contained a small-molecular-weight subunit of Mr 11,500. Form I contained a large subunit of Mr 63,000, while forms II and III contained a corresponding subunit of Mr approximately 57,500. We conclude that heterogeneity of human myeloperoxidase is accompanied by differences in cellular compartmentalization, enzymatic activity, and subunit structure.  相似文献   

9.
Lysyl oxidase is a specific amine oxidase that catalyzes the formation of aldehyde cross-link intermediates in collagen and elastin. In this study, lysyl oxidase from embryonic chick cartilage was purified to constant specific activity and a single protein band on sodium dodecyl sulfate acrylamide gel electrophoresis. This band had an apparent molecular weight of 62,000. The eluted protein cross-reacted with inhibiting antisera developed against highly purified lysyl oxidase. The highly purified enzyme was active with both insoluble elastin and embryonic chick skin or bone collagen precipitated as reconstituted, native fibrils. There was low activity with nonhydroxylated collagen, collagen monomers, or native fibrils isolated from lathyritic calvaria. The maximum number of aldehyde intermediates formed per molecule of collagen that became insoluble was two. These results indicate that lysyl oxidase has maximum activity on ordered aggregates of collagen molecules that may be overlapping associations of only a few collagen molecules across. Formation of aldehyde intermediates and cross-links during fibril formation may facilitate the biosynthesis of stable collagen fibrils and contribute to increased fibril tensile strength in vivo.  相似文献   

10.
A method is described for the purification of piglet skin lysyl oxidase from a crude urea extract by two simple chromatographic procedures. The method relies on the selective interaction between Sephacryl S-200 and lysyl oxidase that occurs in the absence of urea and in conditions of low ionic strength.  相似文献   

11.
Lysyl oxidase: evidence that pyridoxal phosphate is a cofactor   总被引:5,自引:0,他引:5  
Both crude and partially purified preparations of embryonic chick aortic lysyl oxidase tend to gradually lose enzymic activity when illuminated, or when urea is removed by dialysis. Full activity is restored to such preparations by dialysis versus low concentrations of pyridoxal 5′-phosphate prior to assay. Upon treatment with potassium cyanide or semicarbazide, purified embryonic chick aortic lysyl oxidase gives rise to fluorescent derivatives. The fluorescence spectrum of the semicarbazide adduct closely resembles that of pyridoxal phosphate semicarbazone. A preliminary ultraviolet/visible spectrum of bovine aortic lysyl oxidase is also presented; this shows features which add to the existing evidence that lysyl oxidase contains an essential pyridoxal phosphate cofactor.  相似文献   

12.
Structural and catalytic properties of copper in lysyl oxidase   总被引:3,自引:0,他引:3  
The spectral and catalytic properties of the copper cofactor in highly purified bovine aortic lysyl oxidase have been examined. As isolated, various preparations of purified lysyl oxidase are associated with 5-9 loosely bound copper atoms per molecule of enzyme which are removed by dialysis against EDTA. The enzyme also contains 0.99 +/- 0.10 g atom of tightly bound copper per 32-kDa monomer which is not removed by this treatment. The copper-free apoenzyme, prepared by dialysis of lysyl oxidase against alpha,alpha'-dipyridyl in 6 M urea, catalyzed neither the oxidative turnover of amine substrates nor the anaerobic production of aldehyde at levels stoichiometric with enzyme active site content, thus contrasting with the ping pong metalloenzyme. Moreover, the spectrum of the apoenzyme was not measurably perturbed upon anaerobic incubation with n-butylamine, while difference absorption bands were generated at 250 and 308 nm in the spectrum of the metalloenzyme incubated under the same conditions. A difference absorption band also developed at 300-310 nm upon anaerobic incubation of pyrroloquinoline quinone, the putative carbonyl cofactor of lysyl oxidase, with n-butylamine. Full restoration of catalytic activity occurred upon the reconstitution of the apoenzyme with 1 g atom of copper/32-kDa monomer, whereas identical treatment of the apoenzyme with divalent salts of zinc, cobalt, iron, mercury, magnesium, or cadmium failed to restore catalytic activity. The EPR spectrum of copper in lysyl oxidase is typical of the tetragonally distorted, octahedrally coordinated Cu(II) sites observed in other amine oxidases and indicates coordination by at least three nitrogen ligands. The single copper atom in the lysyl oxidase monomer is thus essential at least for the catalytic and possibly for the structural integrity of this protein.  相似文献   

13.
Rabbit antisera were prepared against the purified glucoamylases I and II ofAspergillus niger. Relationships between the two enzyme forms were investigated by using the antisera in immunodiffusion and immunoinhibition experiments. Both the forms of glucoamylase gave a single continuous precipitin band demonstrating very close structural resemblance. They gave almost identical immunoprecipitation patterns and had the same equivalence points indicating that the two forms ofA. niger gluoamylases were immunologically identical. The enzyme treated with periodate was immunologically identical with the controls and had slightly less enzyme activity but showed greatly reduced stability on storage at 4‡ C.  相似文献   

14.
Purified rat-liver dihydropteridine reductase is homogeneous by gel filtration (Mr approximately 51,000), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr approximately 25,500), and native polyacrylamide gel electrophoresis, suggesting that the enzyme is composed of two identical subunits. However, analysis by isoelectric focusing has revealed three enzyme forms with approximate isoelectric points of 6.5, 5.9, and 5.7 (designated forms, I, II, and III, respectively). The three forms, isolated in 65% yield by preparative chromatofocusing, are stable in 0.05 M phosphate buffer, pH 6.8, containing 1 mM beta-mercaptoethanol and exhibit similar kinetic constants when the catalytic activities of the isolated forms are compared with quinonoid dihydrobiopterin as substrate. All forms generate complexes with the enzymatic cofactor NADH which are also detectable by IEF. When examined further by IEF under denaturing conditions in 6 M urea the enzyme demonstrates a differing subunit composition for its three forms. Two distinct subunits, designated alpha and beta, can be identified, and additional evidence suggests that the native enzyme forms I, II, and III represent the three differing dimeric combinations alpha alpha (form I), alpha beta (form II), and beta beta (form III).  相似文献   

15.
Evidence is presented that beef aorta contains two forms of lysyl oxidase which we have designated as lysyl oxidase A and B. The two forms of the enzyme can be separated by DEAE-cellulose chromatography. Immunogical tests show that lysyl oxidase A and B have distinct antigenic determinants. Immunoelectrophoresis at pH 8.6 showed that the aorta lysyl oxidase A and B differed in net charge. Antisera to pure lysyl oxidase A formed a precipitin line with lysyl oxidase A but did not react with lysyl oxidase B in the Ouchterlony double immunodiffusion test. These findings show that it will now be necessary to separate the two forms of enzymes for certain types of biochemical studies of lysyl oxidase.  相似文献   

16.
Ribulose-1,5-bisphosphate (Rbu-P2) carboxylase isolated from Rhodopseudomonas sphaeroides 2.4.1.Ga was separated into two different forms by DEAE-cellulose column chromatography. Both forms, designated Peak I and Peak II have been purified to homogeneity by the criterion of polyacrylamide disc-gel electrophoresis. The Peak I carboxylase has a molecular weight of 550,000, while the Peak II carboxylase is a smaller protein having a molecular weight of approximately 360,000. Sodium dodecyl sulfate electrophoresis revealed a large subunit for both enzymes which migrates similarly to the large subunit of spinach Rbu-P2 carboxylase. The Peak I enzyme also exhibited a small subunit having a molecular weight of 11,000. No evidence for a smaller polypeptide was found associated with the Peak II enzyme. Antisera prepared against the Peak I enzyme inhibited Peak I enzymatic activity, but had no effect on the activity of the Peak II enzyme. The two enzymes exhibited marked differences in catalytic properties. The Peak I enzyme exhibits optimal activity at pH 8.0 and is inhibited by low concentrations of 6-phosphogluconate, while the Peak II enzyme has a pH optimum of 7.2 and is relatively insensitive to 6-phosphogluconate.  相似文献   

17.
Type IX of the Ehlers-Danlos syndrome (E-D IX) and the Menkes syndrome are X-linked recessively inherited disorders characterized by abnormalities in copper metabolism. These abnormalities are associated with a severe reduction in the activity of lysyl oxidase, the extracellular copper enzyme that initiates crosslinking of collagens and elastin. No increase in this deficient enzyme activity was obtained when culture media from fibroblasts of patients with E-D IX or the Menkes syndrome were incubated with copper under various conditions in vitro. A distinct, although small, increase in lysyl oxidase activity was obtained, however, when copper-supplemented media were used during culturing of the fibroblasts, although even under these conditions, the enzyme activity in the media from the affected cells remained markedly below that of the controls. Immunoprecipitation, dot-blotting, and immunoperoxidase staining experiments with antisera to human lysyl oxidase indicated that fibroblasts from patients with E-D IX or the Menkes syndrome do not secrete into their medium, or contain inside the cell, any significant amounts of a copper-deficient, catalytically inactive lysyl oxidase protein. These findings appear to be consistent with the hypothesis that synthesis of the lysyl oxidase protein itself is impaired. The possibility is not excluded, however, that a copper-deficient enzyme protein may be synthesized in normal amounts but become degraded very rapidly inside the cell. The failure to obtain any large increase in the deficient lysyl oxidase activity upon various forms of copper administration suggests that it may not be possible to obtain any significant improvement in the connective tissue manifestations of these disorders by copper therapy.  相似文献   

18.
In crude extracts of adipose tissue the protein kinase dissociates slowly at 30 degrees into regulatory and catalytic subunits in the presence of 700 mug per ml of histone or 0.5 M NaCl. If the kinase is first dissociated by adding 10 muM adenosine 3':5'-monophosphate (cAMP), reassociation occurs instantaneously after removal of the cAMP by Sephadex G-25 chromatography. In contrast, in crude xtracts of heart, the protein kinase dissociates rapidly in the presence of 700 mug per ml of histone or 0.5 M NaCl and reassociates slowly after removal of cAMP. These differences are accounted for by the existence of two types of protein kinases in these tissues, referred to as types I and II. DEAE-cellulose chromatography of extracts of adipose tissue produces only one peak of cAMP-dependent protein kinase activity (type II) which elutes between 0.15 and 0.25 M NaCl. Similar chromatography of heart extracts resolves enzyme activity into two peaks; a type I enzyme which elutes between 0.05 and 0.1 M and predominates (greater than 75% of total activity), and a type II enzyme which elutes between 0.15 and 0.25 M NaCl. The dissociation properties of the types I and II enzymes from heart and adipose tissue are retained after partial purification by DEAE-cellulose and Sepharose 6B chromatography. Rechromatography of the separated peaks of the cardiac enzymes does not change the elution pattern. Sucrose density gradient centrifugation and gel filtration studies indicate that the molecular weights of these enzymes are very similar. The type II enzyme isolated by DEAE-cellulose chromatography of heart extracts resembles the adipose tissue enzyme, i.e. it undergoes slow dissociation at 30 degrees in the presence of histone or 0.5 M NaCl. The adipose tissue kinase and the heart type II kinase are not identical, however, since they do not elute at exactly the same point on DEAE-cellulose columns. A survey of several tissues indicates the presence of type I and II protein kinases similar to the enzymes in adipose tissue and heart as determined by DEAE-cellulose chromatography of crude extracts and by dissociation of the enzymes with histone. The presence of MgATP prevents dissociation of type I enzyme from heart by 0.5 M NaCl or histone. The profile of the enzyme on DEAE-cellulose, however, is not changed...  相似文献   

19.
Outer membrane preparations of rat liver mitochondria were isolated, after the mitochondria had been prepared by mild digitonin treatment under isotonic conditions. L-Kynurenine 3-hydroxylase [EC 1.14.13.9] was solubilized on a large scale from outer membrane by mixing with 1% digitonin or 1% Triton X-100, followed by fractionation into a minor fraction I and a major fraction II by DEAE-cellulose column chromatography. The distribution of total L-Dynurenine 3-hydroxylase was roughly 20 and 80% in fraction I and II, respectively. Fraction I consisted of crude enzyme loosely bound to anion exchanger. In the present investigation, fraction I was not used because of its low activity and rapid inactivation. In contrast, fraction II consisted of crude enzyme with high activity, excluded from DEAE-cellulose column chromatography in the presence of 1 M KC1. In addition, fraction II was purified by Sephadex G-200 gel filtration and DEAE-Sephadex A-50 column chromatography with linear gradient elution, adding 1 M KC1 and 1% Triton X-100 to 0.05 M Tris-acetate buffer, pH 8.1. After isoelectric focusing, the purified enzyme preparation was proved to be homogeneous, since the L-kynurenine 3-hydroxylase fraction gave a single band on disc gel electrophoresis. The molecular weight of this enzyme was estimated to be approximately 200,000 or more by SDS-polyacrylamide gel electrophoresis and from the elution pattern on Sephadex G-200 gel filtration. A 16-Fold increase of the enzyme activity was obtained compared with that of the mitochondrial outer membrane. The isoelectric point of the enzyme was determined to be pH 5.4 by Ampholine isoelectric focusing.  相似文献   

20.
The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号